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ABSTRACT A range-reduced static definition-use (def-use) fault detection framework is proposed to
improve the scalability, but still retain its accuracy, when applied to large application programs. It casts
common faults, such as null pointer dereferences, undefined references, buffer overflows, and memory leaks
into a common def-use fault pattern, and uses a two-level path-insensitive approach to classify variable uses
that can trigger faults into must-trigger, must-not-trigger, and may-trigger categories depending on whether
the unsafe uses can actually be, never be, or may be executed. For those must-trigger unsafe uses, faults
are immediately reported, and those must-not-trigger uses are dropped from further analysis. The already
reduced program range that is relevant to the may-trigger unsafe uses is further reduced by using a binary
decision diagram encoded path extraction scheme for more accurate, but more expensive, path-sensitive
analysis. A prototype has been built using this approach, and a set of large realistic applications (a total of
more than 4.8 MLOC) was tested for such common types of def-use faults. Compared with existing popular
path-sensitive detection tools such as Clang Static Analyzer, we find our approach incurs less analysis time,
but achieves good accuracy with a low false positive rate and no false negative.

INDEX TERMS Accuracy, fault detection, scalability, sensitivity, software reliability.

I. INTRODUCTION
Many common program faults, such as null pointer deref-
erence (NPD), undefined reference (UDR), buffer over-
flow (BO), and memory leak (ML), are caused by unintended
and/or unsafe definitions of certain variables. Such faults
can lead to program vulnerability and even cause disastrous
consequences. This kind of faults is commonly referred to
as definition-use (def-use) faults because it is caused by
assigning an unsafe value at a variable’s definition site.
As the assigned value flows through an execution path to the
variable’s use site, a fault will then be triggered. For a def-
use fault, the use site is called a sink, and its corresponding
definition site is called a source. Using static approaches,
i.e. compile time approaches, to detect such faults accuracy
and scalability is of primary concern when applied to very
large application programs. However, achieving both accu-
racy and scalability is quite challenging as most existing
techniques have shown.

For the accuracy-driven approaches, path-sensitive analy-
sis is the primary technique used. They apply path-sensitive
analysis inter-procedurally on the whole program, and solve
the constraints along each control/execution path. The results
are usually very accurate and sound. But for very large appli-
cation programs with a large number of potential execution
paths, their scalability suffers significantly. It may either take
a very long time to complete the analysis, or simply fail to
complete at all. In Saturn [1], an accuracy-driven approach
using path-sensitive techniques, it infers boolean satisfiabil-
ity [2] on each execution path to detect faults. It could suffer
long analysis time, and has a limitation when applied to very
large application programs in practice.

For those approaches that are more scalability-driven,
on-demand strategies are often used to significantly reduce
the analysis time. For example, Clang Static Analyzer
(Clang-SA) [3] is a fault detection tool used as a plug-in to
the Clang compiler. It restricts its analysis to certain types
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of condition expressions on branches for scalability concern.
But it may misdiagnose some infeasible paths as feasible,
and produce many false positive results. In another exam-
ple, Marple [4] tries to limit path-sensitive analysis to only
the execution paths that contain potential faults. Using this
approach, they can exclude many execution paths that are
irrelevant to faults. But it applies path-sensitive analysis to
all other paths, which can still be a very large number for
large application programs. Many of those remaining paths
can actually be analyzed by much less expensive approaches
equally effective in fault detection.

For example, values from definition sites that are passed
along all paths of a branch tree down to a use site located
below the confluence of the branch tree will always (i.e. must)
trigger an unsafe use. In this case, much less expensive path-
insensitive analysis can be equally effective and time saving,
in particular for a very large branch tree. Hence, it is very
important to distinguish among different program regions to
apply either path-sensitive or path-insensitive analysis even
after most irrelevant execution paths are excluded. We still
need to avoid applying path-sensitive analysis as much as
possible.

Another important consideration in fault detection is to
adopt approaches that can fit well in existing compiler
frameworks. Dataflow analysis is a general computation and
propagation framework in most compilers. Instead of com-
puting and propagating fault information outside of it, we
should compute and propagate fault attribute (FA) values in
it as much as possible. In our proposed approach, a fault
attribute lattice (FAL) is introduced to facilitate this approach
(see Fig.3 and Section II-C).

As more application programmers become more safety
conscious, many build safeguards against potential faults in
their programs. For example, they often check whether a
pointer is NULL or not before dereferencing the pointer. This
is usually done by guarding the pointer deference with some
conditional statements with such a check. Hence, even though
the pointer dereferencing could be unsafe (i.e. has a NULL
value), but the fault will never be triggered. Similar cases
exist in memory allocation, e.g. the program will return if
a check shows that the memory allocation fails. The more
robust the program is built, the more such safeguard state-
ments exist. Interestingly, since such safeguard statements
are placed by the programmers themselves, these safeguard
statements have very limited and simple patterns that can be
easily identified using simple pattern matching techniques.
Existing def-use fault detection schemes often unnecessarily
spend a lot of time analyzing such seemingly unsafe uses with
little useful outcome, or report them as false positives.

To address both the accuracy and scalability problems,
we propose a RARE (RAnge-REduced) framework with a
two-level approach to select only a small subset of execution
paths and program regions to apply expensive path-sensitive
analysis (see Fig.2). In the first level, we use a less expensive
path-insensitive but comprehensive (i.e. it is flow-, field-,
and context-sensitive) approach to classify sinks into safe,

must-unsafe and may-unsafe categories. Based on the exe-
cution path and control flow, a sink is further identified as
must-trigger, must-not-trigger or may-trigger depending on
whether the use will definitely be executed and trigger a
fault, will definitely not be executed and will not trigger a
fault, or may be executed andmay trigger a fault, respectively.

For sinkswith a safety attribute of safe, they can be dropped
for further analysis because they can never trigger a fault.
For a must-unsafe sink (e.g. a pointer with a NULL value),
if it will definitely be executed (i.e. it is in the must-trigger
category), a fault can be immediately reported. For thosemay-
unsafe sinks, if they have safeguard statements they are in the
must-not-trigger category, and they can also be discarded for
further analysis (Fig.2).

For the remaining may-unsafe sinks that are in the may-
trigger category further analysis is required. However, before
performing path-sensitive analysis on thesemay-triggersinks,
we use a binary decision diagram (BDD) [5] scheme to
encode path conditions in a compressed way, and a prefix
BDD string-based path extraction scheme to further reduce
the program range needed for path-sensitive analysis (see
Section III-C). Such a two-level approach for def-use fault
detection can be easily adopted in an existing compiler to take
advantage of the most recent advances in program analysis.

In this paper, we made the following contributions.
• We propose a two-level static def-use fault detection

framework. To improve accuracy, it employs both com-
prehensive path-insensitive analysis and range-reduced
path-sensitive analysis in a unified framework. For bet-
ter scalability, it uses a two-level approach to narrow
the range to only a small subset of execution paths and
program regions for applying path-sensitive analysis.
• We built a prototype in Open64 [6] and experi-

mented on a wide range of realistic programs (exceeds
4.8MLOC). It shows that our two-level strategy can
reduce the scope of path-sensitive analysis to a much
smaller range than existing approaches. Compared to
other path-sensitive tools such as Clang-SA [1], our
approach shows significantly lower false positives and
fewer false negatives with faster analysis time.

The rest of the paper is organized as follows. Section II
describes the def-use fault detection problems this paper
intends to address. In Section III, our fault detection
framework and its implementation are described in detail.
Section IV shows the experimental environment, bench-
marks, experimental data, fault detection results and some
analysis. Section V discusses the related work. And finally,
in Section VI, we conclude the paper.

II. PROBLEM STATEMENT
A. EXPLICIT AND NON-EXPLICIT DEF-USE FAULTS
The cause of all def-use faults stems from unsafe definitions
early in the execution paths. To detect such faults, the uses
of the variables that may trigger such faults need to be
analyzed. We call the variables that are relevant to def-use
faults characteristic variables. For example, in the detection of
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FIGURE 1. An example of intra- and inter-procedural fault attribute value computation. (a) Example program. (b) Intra-procedural FA value
computation.

FIGURE 2. RARE Framework.

null pointer deference (NPD) and memory leak (ML) faults,
the characteristic variables are the pointer variables that are
involved in NPD and ML faults. Whereas for undefined ref-
erence (UDR) faults, characteristic variables may include all
program variables along the execution paths. In our work, we
classify def-use faults into the following two categories. Both
are handled in the same fault detection framework.

1) EXPLICIT DEF-USE FAULTS
The typical def-use faults in this category include NPD and
buffer overflow (BO) faults. They have very explicit faulty
uses. For example, when a pointer dereference (a use site)
encounters a NULL value that is assigned earlier, a NPD fault
is triggered. Similarly, when an out-of-range value is assigned
to a buffer index variable, a BO fault is triggered when it is
used later on.

2) NON-EXPLICIT DEF-USE FAULTS
The typical def-use faults in this category include ML and
UDR faults. This kind of faults does not have an explicit

FIGURE 3. Hasse diagrams of NPD and ML fault detection.

def-use pattern or characteristic variables as manifested in
the last category. It needs to be cast into a def-use pattern
to allow def-use FA computation to be carried out in the
same fault detection framework. For example, in ML faults,
memory allocation and de-allocation operations need to be
cast as definition sites (i.e. sources), whereas the program
exit point is cast as a virtual use site (i.e. virtual sink). When
we perform FA computation, a FA value ‘‘MALLOC-unsafe’’
is attached to the pointer variable when a memory allocation
function is called. A FA value ‘‘FREE-safe’’ is attached to
the characteristic variable when a free function is called. The
only use site that can trigger aML fault is at the program exit
point (the virtual use site). If the characteristic variable still
carries unsafe FA value, such asMALLOC-unsafe, a memory
leak fault is triggered at the program exit point (i.e. the
virtual sink). UDR faults are handled similarly. We assign
an ‘‘UNDEFINED-unsafe’’ FA value to each characteristic
variable at the program entry point (the virtual definition site).
If the characteristic variable still carries an ‘‘UNDEFINED-
unsafe’’ FA value at the program exit point, it will trigger a
UDR fault.
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B. PROPAGATION AND COMPUTATION OF FA VALUES
Performing efficient FA value computation and propaga-
tion on characteristic variables is critical. In our current
framework, we assign different FA values to detect different
fault types. For example, for NPD faults, FA values include
NULL, NOTNULL and MAYNULL; whereas for ML faults,
FA values include MALLOC, FIRSTFREE, DOUBLEFREE,
MAYFREE,MAYDOUBLEFREE. These FA values for differ-
ent fault types are all propagated together at the same time
during the dataflow computation.

Each FA value also has a safety attribute, i.e. safe,
must-unsafe and may-unsafeas mentioned earlier. The safety
attribute is attached to the FA value during the dataflow com-
putation. Different safety attributes dictate different actions
during fault detection at a use site (see Fig.2).
• Safe: No fault will be reported.
• Must-Unsafe: It marks the use site as a must-trigger

sink, and report the fault.
• May-Unsafe: If there are guard statements at the use

site, it will change the safety attribute frommay-unsafe
to safe, and mark it as a must-not-trigger sink. No fault
will be reported. For other cases, it is marked as may-
trigger and requires further determination by the later
path-sensitive analysis.

Fig.1 shows an example that involves intra-procedural
and inter-procedural fault attribute computation and
propagation.

1) INTRA-PROCEDURAL FA VALUE COMPUTATION
Path-insensitive FA value computation and propaga-
tion is performed during dataflow computation and
propagation.

(1) For a branch statement, we perform a meet operation
at the branch confluence point, similar to the phi operation in
the static single assignment (SSA) [7]. That is, if the FA values
from all branches are safe, then the use site is safe, same for
the unsafe case. Otherwise, the use site is may-unsafe. For
the may-unsafe case, we need to determine whether the use
site will be executed or not. If it will never be executed, e.g. it
has guard statements, it is in themust-not-trigger category and
no fault will be reported. Otherwise, it is in the may-trigger
category and requires the path-sensitive analysis later.

(2) For a loop, we perform a limited loop unrolling, i.e.
we iterate a few times. It is a quick-and-dirty but effective
approach because in most cases, the FA values can be deter-
mined during the limited loop unrolling, for instance, from
NULL to NOTNULL orMAYNULL. The case of transforming
from NOTNULL or MAYNULL to NULL is rare.

In Fig.1(b), a branch confluence operation is performed
at the definition site of p at line 23, which merges NULL
and NOTNULL to a FA value of MAYNULL. In addition,
since there exists a safeguard statement at line 22, even if the
definition of p is unsafe, it still cannot reach the use site at
line 23. We can thus transition its FA value from MAYNULL
to NOTNULL at line 23.

2) INTER-PROCEDURAL FA VALUE COMPUTATION
The FA computation at a call site is context-sensitive. That
is, different call sites may have different fault behavior. The
example illustrated in Fig.1(c) shows the difference between
the call site at line 18 and that at line 20 of function boo().
The result at line 18 is safe, and is may-unsafe at line 20.

C. FAULT ATTRIBUTE LATTICE
To allow it to fit in the same dataflow infrastructure in a
compiler, we transform the fault detection problem to a FA
computation and propagation problem. To describe the fault
attributes and their computation rules, we introduce the Fault
Attribute Lattice (FAL), which models a FA value as a node
in FAL. The FA transition rules are modeled as the operations
on FAL. A more formal definition of FAL and its operations
are presented in Section III-A-1.

D. REDUCING PROGRAM RANGE FOR PATH-SENSITIVE
ANALYSIS AND FAULT DETECTION
To mitigate the impact of the high cost in more accurate
analyses, we use a two-level approach to reduce the program
range (i.e. the code regions with the relevant execution paths)
using low-overhead analysis approaches.

1) FIRST-LEVEL PROGRAM RANGE REDUCTION
The first-level program range reduction is performed through
sink classification during FA value computation and prop-
agation. In this phase, whenever a use site acquires a safe
FA value, it is dropped from further analysis. If it has an
unsafe FA value, it is further determined whether it is must-
unsafe or amay-unsafe. If it is must-unsafe, it is grouped into
the must-trigger category and reported as a fault. If it is may-
unsafe, then a later path-sensitive analysis may be required to
determine whether it is safe or must-unsafe.
As mentioned earlier, to identify those use sites with

safeguard statements and eliminate them from further path-
sensitive analysis, we collect a small set of code templates that
have some common safeguarded program patterns. We use a
very low cost heuristic pattern matching approach to identify
such safe-guarded use sites, and change their safety attribute
from may-unsafe to safe. They are dropped from further
analysis. It is noteworthy that although such an engineering
approach appears to be ad hoc, it is quite effective in prac-
tice in reducing the program range. It is because application
programmers usually make them very simple and easy to
identify for easy maintenance. As more and more application
programmers are using such safeguard statements to improve
the robustness of their programs, more such code regions can
be dropped for further analysis.

The may-unsafe sinks are further classified into either
must-not-trigger or may-trigger category. The group of may-
trigger sinks and their execution paths form the initial
reduced program range for later path-sensitive analysis.
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2) SECOND-LEVEL PROGRAM RANGE REDUCTION
To further reduce the program range produced in the first-
level, we extract all paths that propagate the unsafe attribute
to each may-trigger sink because they are the paths that
can potentially trigger a fault at the sink. Whether a path
propagates a safe or an unsafe attribute to a sink depends
on the safety attribute of its last definition along the path.
Note that from an unsafe source down to amay-safe sink with
a may-triggerattribute, there could be many paths between
them. There may be definitions with the safe attribute that
override them, and be propagated to the may-trigger sink.
It will change the sink’s safety attribute to safe, and thus be
removed from further path-sensitive analysis.

To facilitate such an analysis, our approach is to encode
those paths between an unsafe definition and a may-
triggersink with a binary decision diagram (BDD) type
of encoding scheme. That is, each path will propagate
an encoded BDD string that records all branch directions
(i.e. true branch or false branch) along the path. Source
definitions and may-trigger sinks also carries such a BDD
string. The last definition on the path that impacts the safety
attribute of the sink must be the definition whose BDD string
is the longest among all definitions’ BDD strings reaching
this sink (see Section III-C-2 for more details).

III. THE RARE FRAMEWORK
In this section, we describe the formal models, heuristic
approaches, and the major components in our framework
shown in Fig.2. There are three major components: (1) first-
level range reduction, (2) second-level range reduction, and
(3) path-sensitive analysis and fault detection.

A. FORMAL MODELS AND APPROACHES
1) FAULT ATTRIBUTE LATTICE (FAL)
A fault attribute lattice (FAL) is an algebra system with three
components: VFAL , Fintersection, and Funion, denoted as:

FAL = (VFAL ,Fintersection,Funion)

The three components, VFAL , Fintersection, and Funion are
defined as follows.

VFAL = {⊥,>, falval1, falval2 . . . falvaln}n ≤ 1

Fintersection : VFAL × VFAL → VFAL
Funion : VFAL × VFAL → VFAL

VFAL is a set of FA values, falvali(1 ≤ i ≤ n), that support
a particular type of def-use fault detection. For example,
for NPD faults, they are NULL, NOTNULL and MAYNULL
(see Fig.3(a)). ⊥ ∈ VFAL represents the initial FA values
(shown as TOP), whereas> represents the detected FA value
that will be reported (denoted as BOTTOM). FA values are
carried by characteristic variables and are modeled as lattice
values at the FAL nodes.
The transition rules of FA values are mapped to the lattice

operations, which are defined through Fintersection or Funion.
For example, Fintersection (NULL, NOTNULL) = MAYNULL

in NPD(see the edges from NULL, NOTNULL to
MAYNULLin Fig.3(a)), or Fintersection ( MALLOC, FIRST-
FREE) = MAYFREE in ML (see Fig.3(b)). We perform
Fintersection at the confluence of branches (see Section III-B-1).
In our algorithm, the FA values will be iteratively modified
until a final FA value is reached, which has been proved
to always terminate on a lattice with a limited height [8].
A Hasse diagram [9] is a commonly used graphical repre-
sentation for such lattices. The Hasse diagrams that represent
the FALs of the two common def-use faults: NPD andML are
shown in Fig.3.

2) TRIGGER-RELEVANT CONTROL-FLOW GRAPH (TR-CFG)
Given a sink of a characteristic variable v, denoted asUSE(v),
the fault detection analysis needs the following information:
1) the definitions of v, denoted as the set DEFs(v), that can
reach the USE(v) through some control-flow paths; 2)USE(v)
itself; and 3) the control-flow paths from DEFs(v) to USE(v).
A sub-graph of the control-flow graph (CFG) that consists
of the above three components is called a Trigger-Relevant
CFG (TR-CFG). That is, TR-CFGv =< V , E >, where
DEFs(v) ⊆ V , and USE(v) ∈ V . TR-CFGv is used to analyze
the triggering scenarios of v. It is also used in the heuristic
must-not-triggerpattern matching for the safeguarded sinks
and the BDD-style path extraction scheme described in
Section III-C-2.

3) HEURISTIC CODE PATTERN MATCHING
For may-unsafe sinks, we further determine whether they
aremust-not-triggersinks or not, e.g. with or without safe-
guard statements. If they are, exclude them from further
analysis. Otherwise, group them as may-trigger sinks and
pass them for second-level range reduction.

The work to determine whether a sink of variable v is
amust-not-trigger sink is conducted on TR-CFGv with heuris-
tic pattern matching. Two of the representative code patterns
for safeguarded must-not-trigger sinks are shown in Fig.4.

FIGURE 4. Code patterns for some safeguard statements.

We search such code patterns for every dominator of a
given sink USE(v) on TR-CFGv. Such code patterns always
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involve the safeguard statements, which can be quickly
identified.

For example, the safeguard statements for NPD are
often in the form of ‘‘if(x==NULL)’’or ‘‘if(x!=NULL).’’
For ML, the safeguard statements are in the form
of‘‘if((x=malloc(. . . ))==NULL).’’ Whereas the typical
actions after such safeguard statements are ‘‘return’’ and
‘‘exit.’’ For BO faults, the safeguard statements are often
in the form of ‘‘if(x < boundary_val)’’ or ‘‘if(x > bound-
ary_val).’’ Although such simple pattern matching cannot
find allmust-not-triggersinks with different patterns of safe-
guard statements, it is still quite effective in practice. In our
experiments, it helps us to identify a large number ofmust-
not-trigger sinks, and reduce the range of path-sensitive anal-
ysis substantially. More patterns can be included if needed.
But we suspect there will be very few, as application program-
mers usually will not use complicated ‘‘tricky’’ safeguard
statements for ease of program maintenance.

B. FIRST-LEVEL RANGE REDUCTION
First-level range reduction includes two parts: (1) aggressive
FA value computation and propagation, and (2) sink classifi-
cation, in particular, on must-not-trigger sinks.

1) AGGRESSIVE FA VALUE COMPUTATION
AND PROPAGATION
A path-insensitive FA computation is first performed to clas-
sify the use sites into three categories according to their
definitions’ triggering attributes, i.e. safe, must-unsafe and
may-unsafe. It includes inter-procedural context-sensitive
FA values computation, and intra-procedural, flow-, field-
sensitive FA values computation.

a: INTER-PROCEDURAL, CONTEXT-SENSITIVE
FA VALUE COMPUTATION ALGORITHM
To make the inter-procedural FA value computation more
accurate, we group the input and output parameters of a func-
tion into Use_Ins and Def_Outs. When we inter-procedurally
compute the FA values, the information of FA values is
attached to the Use_Insand Def_Outs. We first traverse the
call graph in a bottom-up manner. It computes a summary
for each function using common intra-procedural summary
computation algorithm. Here, the summary records whether
the FA computation of local variables andDef_Outs depends
on Use_Ins or not.

After the bottom-up computation, we then traverse the call
graph in a top-down manner. For each function f visited, we
perform the following tasks in a context-sensitive manner.
1) Map Use_In’s FA value of f from the current caller;
2) instantiate f ’s summary, and refresh the FA values accord-
ing to the context it is in. Function pointers are taken into
consideration by using the result from the pointer analysis
when it constructs the call graph. To handle the case of recur-
sive calls, we reduce the call graph to a Strongly Connected
Directed Acyclic Graph (SCC-DAG). It then processes each
function by traversing the SCC-DAG.

b: INTRA-PROCEDURAL, FLOW-SENSITIVE,
AND FIELD-SENSITIVE FA VALUE
COMPUTATION ALGORITHM
In intra-procedural algorithm, it visits each statement of a
function successively based on the SSA representation of the
function. We iteratively compute FA values for all FA related
statements based on the SSA form until no further FA values
are changed. For each statements in functionf , we perform
different computation according to the type of statement s.
The compute rules are as follows:

11(s, assign, ιs) ::= z1(FA(ϒs)) (1)

12(s, call, oρs) ::= z1(FA(τρs), ηsummary) (2)

Here, 1(x, y, z) denotes a computation of characteristic
variable z’s FA value from statement x whose statement
type is y, e.g. an assignment or a call, as shown above
in (1) and (2), respectively.

‘‘m ::= n’’ means m depends on n. zl(p1, p2,. . .pn) is a
computation function that takes p1, p2, . . .pn as arguments.
Formula (1) indicates that if s is an assignment statement,
the FA value of its ιs, i.e. the left-hand side, is computed
according to its right-hand side expression, which is FA(ϒs).
z1 describes such a dependent relation. Note that if the
expression involves characteristic variables, the Fintersection
function of the lattice is used. Formula (2) indicates that if s
is a call statement, the FA values of the output parameters oρs
are computed by applying the FA values of input parameters
FA(τρs) to the function’s summary ηsummary.
In addition, we perform a Fintersection operation at a

branch’s confluence point. For those statements that involve
pointer operations, the point-to information is used to com-
pute the FA values conservatively. We try to use a pointer
analysis that is scalable and accurate. It helps us achieve
overall scalability and accuracy.

The integrated framework of inter- and intra-procedural
algorithm is illustrated in Algorithm 1. Where FA(t ,s1,s2,
. . . sm) computes t’s FA value using s1, s2,. . . sm, m≥1.
The intra-procedural algorithm FA_Val_CP has a polyno-
mial time complexity. This is because the intra-procedural
computation is monotonously upward [8], and the iteration
can be terminated within the height of FAL. For the inter-
procedural algorithm, the worst case is when each statement
is a call statement, and summary re-computation is needed on
every call site. The time complexity can be estimated to be
O(h ∗ n ∗ n). It is close to O(n2) as h is the height of FAL,
which is a small constant, and n is the number of program
statements.

2) SINK CLASSIFICATION
Sink classification is performed along with FA value compu-
tation and propagation, which also takes the safety attributes
into consideration as shown in Algorithm 2.

For those must-unsafe sinks, we can also characterize
them as must-triggersinks and report the faults (lines 3-5).
For those may-unsafe sinks, the heuristic patterns matching
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Algorithm 1 FA Values Computation and Propagation

1 Procedure FA Val CP (CallGraphG)
/∗START: Inter_Compute (CallGraphG); ∗ /

2 BuildG with pointer analysis information;
3 Find Strongly Connected Component ( SCC) of G;
4 Build SCC-DAG of G ;
5 For each node f of SCC-DAG in bottom-up order
6 Intra_Summary(f);
7 End For
8 For each node f of SCC-DAG in top-down order
9 For each incoming edge of f in G
10 Map Use_In’sFA value of f from caller;

/ ∗ START:Intra_Compute(f); ∗ /
11 While ( theFA value changed )
12 For eachsinf
13 If (s is an assignment) then
14 Compute FA(LHS(s),RHS(s));
15 End If
16 If (sis a call) Then
17 Compute FA(Def-Outs, Use-In,summary);
18 End If
19 If (sis a branch convergence) Then
20 Compute the FA(LHS(s),Fintersection );
21 End If
22 End For
23 End While

/ ∗ END:Intra_Compute(f); ∗ /
24 End For
25 End for
26 ComputeFAvalue for each node in each SCC;

/ ∗ END: Inter_Compute(CallGraphG); ∗ /
27 End

algorithm is applied (lines 6-11). The general strategy to
identify must-not-trigger sinks is to check every domina-
tor of a given sink towards its corresponding source in
TR-CFG. The check only needs to be on the fault-related
statements.

For example, for a sink that hold the safeguard statement
such as ‘‘if (< variable>==< unsafe value>)’’ (see ‘‘check
unsafe condition’’ in Fig.4), we will search whether there is a
response action such as exitorfunction return or not. If the pat-
tern matches, the current sink will be excluded from further
consideration. Otherwise, it will be marked as a may-trigger
sink for further analysis. Another example is for sinks that
have safeguard statement such as ‘‘if (<variable>!=<unsafe
value>)’’ (see ‘‘check safe condition’’and the response after
the check in Fig.4), we search their dominators towards their
corresponding sources in TR-CFG to see if such pattern
matches. If we find such a match, they can also be excluded
from further analysis.

The remaining sinks are automatically grouped intomay-
trigger sinks category (lines 12-14), and placed on the
work list for second-level range reduction. The time

Algorithm 2 First-Level Range Reduction

1 Procedure Sink_Classification ( f )
2 For each s in f

/ ∗ Path-insensitive analysis ∗ /
3 If (ause-site of s carries unsafe FA value) Then
4 If (theFA value is withMust attribute) Then

/ ∗must-trigger sinks ∗ /
5 Report the fault;
6 Else

/ ∗ Limited path conditions analysis ∗ /
7 For each dominator of s
8 If (pattern is matched) Then

/ ∗ must-not-trigger sinks ∗ /
9 Ignore the current use site;
10 End If
11 End For
12 If (no pattern matched in all dominators) Then

/ ∗may-trigger sinks ∗ /
13 Put the use-site and its definition into work list for

second-level path-sensitive analysis range
reduction;

14 End If
15 End If
16 End If
17 End For
18 End

complexity of algorithm 2 can be estimated to be O(ns∗ds),
where nsanddsare the number of sinks and dominators,
respectively.

C. SECOND-LEVEL RANGE REDUCTION
After the first-level range reduction, only the may-unsafe
sinks with the may-trigger attribute remain to be further
analyzed at the second-level. A naive approach will be to
use program slicing techniques [10] to extract the state-
ment set that is relevant to each may-trigger sink and its
corresponding source, and apply path-sensitive analysis on
them.

One common technique is to perform a backward slicing
on a may-trigger sink first and get the statement set SBT ; fol-
lowed by a forward slicing from an identified unsafe source
to get the statement set SFS (assume the unsafe source is
reachable). Then find the statement set STS , which is the
intersection of the sets SBT and SFS . STS includes the state-
ments on the execution paths between the source and the sink.
The main drawback of such a slicing approach is that the
collected execution paths not only include the unsafe paths
but may also include many safe paths, which are not required
to be further analyzed. To avoid such a problem, we use an
extraction scheme that only extracts unsafe paths for themay-
triggersinks identified in the first-level range reduction. It is
based on Binary Decision Diagram (BDD) path encoding
scheme.
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TABLE 1. BDD encoding rules.

1) PATH CONDITION ENCODING USING BDD
We encode all branch outcomes (true or false) along an
execution path in the style of BDD. The main encoding rules
are listed in Table 1. They consist of atom rules, multiplica-
tion rules and confluence rules specifically for our encoding
purposes. More complex rules can be generated by a combi-
nation of the above basic rules. The result of a BDDencoding
is called a BDD item, also denoted as BDD if there is no
confusion.

In Table 1, Bdd(b,v) denotes the BDD item when branch b
takes the value of v,which can be eithertrueorfalse. For exam-
ple, Bdd(branch, true)→ 1 indicates using BDD item 1 to
represent a true branch; PBdd(path) denotes the BDD item
of a path, which can be a string of 0 and 1 that includes all
the branch outcomes along the path; Conf(x1,x2) denotes the
BDD item that is a concatenation of BDD itemsx1and x2 at
the confluence of a branch. BDD items are attached to all
sources, sinks, and branch conditions.

FIGURE 5. An BDD encoding example.

In the example shown in Fig.5, the source is attached with
BDD ‘‘0’’; conditions T2, T5 are attached with BDD ‘‘01’’
and BDD ‘‘0110 || 0101,’’ respectively; Sink(2)’s BDD is
‘‘01101 || 01011.’’

2) PREFIX-MATCHED UNSAFE PATHS EXTRACTION
By performing a prefix analysis on a sink’s BDD items,
we can determine the order of the definitions on the path to
the sink. This is because the last definition that assigns the
value to the sink must have the longest BDD item among all
other definitions along the same path. By combining all BDD
items’ safety attributes; the safety attribute of the sink can be
determined.

For each may-trigger sink, we perform the following
steps to extract unsafe paths (shown in Algorithm 3, whose
time complexity is affected by the number of edges in
the CFG).

Algorithm 3 Second-Level Range Reduction

1 Procedure Path_Encoding_and_Extraction
(Punsafe)
/ ∗ Process each may-trigger sink s ∗/

2 For each s in Trigger-Unknown sink set
/ ∗ Compute s’Wdef

∗/
3 Collectdefinitions of s to Sdef inter-procedurally
4 Records’s related function to Sfunc
5 For eachf in Sfunc
6 While not finished traversing onf’s CFG
7 Encode and record each BB ’s BDD item
8 For each d located in f
9 Encode and record d ’s BDD item
10 End For
11 End While
12 End For
13 Descend d ’s BDD item s and formWdef

/ ∗ Collect s’ Ssink_bdd ∗/
14 Collects ’s BDD items to form Ssink_bdd

/ ∗ Peform prefix matching ∗/
15 For each dbdd in Sdefbdd
16 For each sbdd in Ssink_bdd
17 If dbdd is a prefix ofsbdd Then
18 If dbdd is unsafe Then

/ ∗ Get an unsafe path ∗/
19 Put sbdd into Punsafe
20 Delete current sbdd from Ssink_bdd
21 Else

/ ∗ Exclude a safe path ∗/
22 Delete currentsbddfrom Ssink_bdd
23 End If
24 End If
25 End For
26 End For
27 End For
28 End

Step 1: Find all its sources inter-procedurally, perform
BDD encoding related to each source, and attach the BDD
items to its basic block.

Step 2: Sort all sources’ BDD items in a descending order
according to their lengths. Arrange them to form a worklist
Wdefs for the may-trigger sink (lines 13).

Step 3: Collect all BDD items of this may-trigger sink
to form set Ssink_bdd (lines 14), then decide whether the
corresponding path of each element in the set is safeor
unsafe. Check the element scurr in Ssink_bdd one by one
(lines 15-26):

Step 4: For an unsafe definition defunsafe in Wdefs, if scurr
takes defunsafe’s BDD as a prefix, then scurr is removed from
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Ssink_bdd and added it to the unsafe path setPunsafe. Otherwise,
select next item in Ssink_bdd as scurr .

Step 5: For a safe definition defsafe in Wdefs, if scurr takes
defunsafe’s BDD as a prefix then exclude it from Ssink_bdd .

Repeat Step 4 and Step 5 until Ssink_bdd becomes an empty
set 8, or all items in Wdefs have been processed.
For example, in Fig.5, the final unsafe paths set Punsafe is

{‘‘01101,’’ ‘‘01100’’}. There are 6 paths excluded from all
8 paths. It is a considerable reduction in the number of paths.

D. PATH-SENSITIVE ANALYSIS AND DETECTION
In our RARE framework, a potential fault is reportedwhen (1)
a must-trigger unsafesink is identified in the two-level range
reduction phase, and (2) amay-trigger sink is confirmed to
be unsafe along some feasible execution paths, i.e. it is con-
firmed to be a must-trigger after the path-sensitive analysis.
As the program range has been reduced substantially in the

two-level range-reduction phase already (see Fig.7), in our
current implementation, we use an existing path-sensitive
analysis tool (such as Clang-SA) with the guide of our BDD
information to check if an unsafe path is feasible for a may-
unsafe sink or not. If it is actually a must-trigger unsafe sink,
then report such a sink as a potential fault.

IV. EXPERIMENTAL RESULTS
A. PROTOTYPE AND BENCHMARKS
We implement our prototype in Open64 [6], an open-source
compiler with a very sophisticated analysis tool set. We also
implement our path-sensitive analysis for the range-reduced
may-trigger sinks using the enhanced BDD information as
described in Section III in Clang-SA [1]. We also use
more accurate and scalable pointer analysis LevPA [11] in
our implementation. Our experimental platform is an AMD
Opteron hex-core CPU server, with a clock rate of 2.11GHz,
and a memory size of 48GB. All experiments are done in a
single process environment to avoid interferences.

For benchmarks, we selected five open-source realis-
tic applications: openssh [12], sendmail [13], httpd [14],
wine [15] and wireshark [16]. The benchmark set covers a
wide spectrum of application areas such as network-level
security enhancement tool, internet email routing facility,
operating system compatibility-layer application and network
protocol analysis. The total code size exceeds 4.8 million
lines. The largest individual programwireshark hasmore than
2 million lines.

B. RESULTS AND ANALYSIS
1) FIRST-LEVEL RANGE REDUCTION: SINK
CLASSIFICATION RESULTS
One unique feature of RARE is its classification of poten-
tial fault statements into different types, and the use of
different fault detection schemes with varying degrees of
overheads tailored to each type. For must-triggerand must-
not-trigger sinks, we use a low overhead approach. Only
for may-trigger sinks, we use a relative expensive

path-sensitive approach. Consequently, the effectiveness of
this approach is to a large extent dependent on the percentage
of these three sink categories in a program.

Furthermore, note that the FA values of all def-use fault
types (i.e. NPD, BO, ML, UDR faults) are computed and
propagated at the same time during the fault analysis.
However,ML and UDR are of non-explicit def-use types (see
Section II-A), and only NPD and BO have explicit sources
and sinks. Between the two, NPD has the most complicated
and significant triggering characteristics. Thus, NPD fault
detection constitutes the major portion of the overall def-use
fault analysis time. We thus collect statistics based on NPD
fault detection in our measurements.

FIGURE 6. The percentage of each sink category in each benchmark for
NPD detection.

The percentages of three different sink categories for NPD
faults in each benchmark are shown in Fig.6. For most of
our benchmark programs, the combined percentage of must-
trigger and must-not-trigger sinksin each individual program
exceeds 84%. Especially in openssh and wireshark, the per-
centage of must-not-trigger sinks alone is greater than 79%.

FIGURE 7. The percentages of three sink categories in all benchmarks for
NPD detection.

Fig.7 shows the percentage of three different sink cate-
gories in all of the benchmarks combined. It shows that only
23% of sinks are may-trigger, and the remainder is either
must-trigger or must-not-trigger. These results show that
we can substantially reduce the program range that requires
expensive path-sensitive analysis to improve scalability.
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Note that the number of the must-not-trigger sinks in wire-
sharkis very large (see Fig.6). It distorts the distribution
in Fig.7.

As mentioned before, the safeguard statements are very
common and often required in large application in practice.
It is particularly important to take such program characteristic
into consideration when we try to reduce the number of may-
trigger sinks and avoid too many false positives.

TABLE 2. Number of safeguard statements in all benchmarks.

Table 2 shows the number of safeguard statements in
each benchmark program in the 3rd and 4th column under
#STMTsg for NPD and BO faults, respectively. The 2nd col-
umn shows the size of each program in thousand lines of
code (KLOC). Except in httpd, there are more than thousands
of NPD safeguard statements formust-not-trigger sinks in all
benchmarks for NPD faults.

2) SECOND-LEVEL RANGE REDUCTION: REDUCTION RATIO
COMPARED TO SLICING-BASED APPROACHES
To compare the effectiveness of using a BDD-based scheme
in the second level of our program range reduction, we use
a program-slicing scheme based on [17]. It is very similar
to the program slicing approach described in Section III-C.
The results are shown in Table 3. The average reduction ratios
on program size using RARE and slicing-based strategy are
66% and 48%, respectively, i.e. we reduced additional 18% of
program range on average compared to the program slicing-
based approach.

3) DETECTION TIME AND MEMORY USAGE
The detection time of RARE consists of three major parts:
(1) the time for the first-level range reduction; (2) the time
for the second-level range reduction; and (3) the time for the
path-sensitive analysis and fault detection after the two-level
range reduction.

The results are shown in the 5th column and 9th columns
(marked as 1st) in Table 4 for the first part (i.e. the first-
level range reduction). It includes the time to detect the
must-trigger sinks and to exclude the must-not-trigger sinks.
The 6th and 10th (marked as 2nd) columns show the time
for the second part (i.e. the second-level range reduction).
It includes the time to extract unsafe path set (using a
BDD-based approach) for eachmay-triggersink. The
7th and 11th columns (marked as PS) show the third part for
the time that uses a path-sensitive analysis to determine the
feasibility of the extracted unsafe paths and check whether a
may-trigger sink is a fault or not. It is worth noting that the

time for path feasibility determination will be greatly affected
by the ability of third party tool, this is also the part for further
improvement.

We compare our approach with Clang-SA, which uses a
path-sensitive analysis on all execution paths and is available
in popular Clang compiler. As shown in Table 4, the analysis
time in the first two parts, i.e. the two-level range reduction,
is much less than that of using Clang-SA. Clang-SA requires
exploring path feasible states. But it processes only simple
cases. For example, Clang-SA ignores the condition expres-
sions that consist of more than one variable. Even so, the
required exploration space is still quite considerable for large
application programs.

Currently, to simplify our implementation, we use Clang-
SA in the third part to determine the feasibility of the
extracted unsafe paths, and check whether amay-trigger sink
is a fault or not. Its time is shown in the columns under PS.
It shows significant reduction in time compared to Clang-SA
due to the reduced range. However, the total fault detection
time of RARE shown in the 8th and 12th columns under Total
is impacted somewhat by the implementation of Clang-SA.
Nevertheless, the total detection time shown in the last row of
Table 4 still shows (5294-4362)/5294= 17.6% improvement
for NPD, and (5879-4755)/5879 = 23.6% improvement for
ML over Clang-SA.

The memory usage by RARE is mostly determined by
the program analysis, in particular the pointer analysis, and
the two-level range reduction. It varies in different phases.
In general, pointer analysis is the most memory consuming
because it needs to keep a large amount of pointer analy-
sis information. Whereas the space overhead of FA value
computation and propagation is relatively small because it
only keeps the fault attribute values. Our BDD encoding and
unsafe path extraction also uses less memory space compared
to that used in program slicing approaches. It generally uses
less memory space than that used in pointer analysis. Taking
the largest benchmark wireshark as an example, the average
memory usage is only about 2300 MB.

4) DETECTION ACCURACY
Table 5 shows the NPD and ML detection results by Clang-
SA and RARE. In Table 5, #FR denotes the total number
of faults reported. It includes both the truefaults and the
false positives. #FP denotes the number of false positives
after we manually check each of the reported faults. #RFN
denotes the number of false negatives. As there is no golden
standard for the benchmarks we used, we collect all of the
true faults (verified manually) reported by both RARE and
Clang-SA. The number of false negatives #RFN is obtained
by comparing the detected true faults in each approach against
the combined set of all true faults.

For Clang-SA, the loss of detection accuracy is mainly
caused by two factors. One is that it does not check safe-
guarded statements for must-not-triggersinks. This results in
many false positives. For example, many false positives in
wireshark, httpd, and sendmail are in this category. It is also
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TABLE 3. Program size reduction.

TABLE 4. Detection time(in seconds).

TABLE 5. NPD and ML faults detected.

true for many false positives ML faults in openssh. Another
reason is that it often treats infeasible paths as feasible
because it can only handle limited forms of branch conditions.
In comparison, RARE reduced about 66% of false positives.
It plays an important role in improved detection accuracy.

In Table 5, we also show the false positive ratio RFP=
(#FR - #DTF) / #FR, in which #DTF is the number of detected
true faults in each approach. It shows the percentage of true
faults detected in each approach. We also show the false
negative ratio RRFN = (#TF − #DTF)/#TF , in which #TF
is the total number of true faults detected from both RARE
and Clang-SA as explained earlier.

We found that the RFP of Clang-SA for NPD and ML
are about 54% and 38%, respectively, which are quite high.
This shows that our approach of combining two-level range
reduction, BDD-based path extraction scheme and check-
ing of safeguard statements are quite effective. Furthermore,
the average RRFN forML faults in Clang-SA reaches to a high
of 96%. It is distorted by the results fromwine andwireshark.
It is mostly due to poor inter-procedural analysis and wrapper
function identification.

In summary, the average false positive ratio of RARE is
16% (NPD) and 10% (ML), respectively, which is about

a third of Clang-SA’s. There is also no false negative on
the known faults by RARE. We found that RARE’s high
detection accuracy is also due to the following two factors.
1) It eliminates many false positives through the identifi-
cation of must-not-trigger patterns (many from identifying
safeguard statements). 2) It uses highly accurate program
analysis such as the inter-procedural pointer analysis done by
LevPA [11].

V. RELATED WORK
PATH-INSENSITIVE DETECTION
Splint [18] is a path-insensitive annotation-assisted static
detection tool that performs detection very quickly but with
lots of false positives. FindBugs [19] is also a representa-
tive path-insensitive detection tool that employed dataflow
analysis in bug finding in Java code. It suffers the accuracy
problems like other path-insensitive detection approaches.

PATH-SENSITIVE DETECTION
Saturn [2], [20] is an accurate path-sensitive analysis and
detection framework. It transforms the program constructs
into boolean constraints, and use a boolean satisfiabil-
ity (SAT) solver to infer and check faults. But since it
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exhaustively checks all execution paths one by one, the over-
head is very large for large programs. Clang-SA [1] is also a
path-sensitive detection tool. To handle the scalability prob-
lem, it only performs intra-procedural path-sensitive analysis
and restricts the types of path condition expressions it can
process to reduce the overhead. The restrictions often resulted
in a big loss in detection accuracy. Marple [4] employs a
demand-driven path-sensitive approach for scalability. It first
finds all potentially faulty statements in a program, and then
examines paths from each potentially faulty statement to the
program entry and see whether a fault occurs or not. This is
supported by some security policies and queries about faults.
Marple only excludes the fault-unrelated paths. There could
still be a large number of fault-related paths left unanalyzed.

FLOW-BASED DETECTION
Parfait [21] is a static layered program analysis detection
framework developed by Sun Microsystems. It uses a simple
program analysis technique with low overhead to analyze
easy to detect faults, and only does expensive program anal-
ysis on complicated faults. The program analysis involved in
Parfait includes constant propagation, partial evaluation and
symbolic analysis etc. SABER [22] performs fault detection
based on a full-sparse value-flow analysis. It reasons about
the path conditions guarding the flow of a value only on
the relevant parts instead of the entire CFG. But it requires
building sparse value-flow graph. It is primarily for memory
leak faults.

VI. CONCLUSION
In this paper, we propose a range-reduced two-level def-use
fault detection framework, which takes fault triggering char-
acteristics into consideration, leveraging path-insensitive and
path-sensitive analysis on different fault triggering scenarios.
Using such an approach both accuracy and scalability for
large application programs can be successfully addressed.
Such an approach can also fit quite well in the dataflow
framework in exiting compilers. Our experimental results on
more than 4.8 million lines of code (MLOC) in some large
applications in practice demonstrate that such an approach is
quite scalable and accurate.
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