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ABSTRACT Internet of Things based smart grids (SGs) represent a vision of future power systems which
helps to provide electricity in a smart and user friendly way. Demand side management is one of the most
important component of a SG which allows energy consumers to change their electricity consumption pat-
terns to reduce the electricity consumption cost. In this paper, we propose a home energymanagement system
which helps to achieve our desired objectives: reduced electricity consumption cost, peak to average ratio
and maximize user comfort. For this purpose, we have proposed a scheduling technique which is a hybrid of
already existing optimization techniques: bacteria foraging algorithm and harmony search algorithm and is
named as hybrid bacterial harmony (HBH) algorithm. Being producer of electricity units to the consumers,
a utility establishes an incentive based pricing tariff; we, on top of it have employed seasonal time of use tariff
which allows consumers to take decisions regarding their consumption patterns. Moreover, we introduce
the concept of coordination among smart appliances using dynamic programming (DP) approach. The
coordination among appliances is achieved by the help of the large data generated from the appliances of
multiple homes with the joint work of heuristic techniques and DP. The resultant coordination not only
reduces the electricity cost but also increases the user comfort. At last, we evaluate the performance of our
proposed energy management system using our proposed optimization technique HBH. To comparatively
evaluate the performance of our proposed technique, we compare it with already existing techniques.
Simulation results validate that the proposed technique effectively accomplish the desired objectives while
considering the consumer comfort.

INDEX TERMS Smart grids, coordination, game theory, dynamic programming, big data.

I. INTRODUCTION
Numerous challenges are being faced by the electric power
industry. The reliability of existing power grid is one of the
challenges of power system which is affected by the increase
in power demand, a limited amount of natural resources,
and aging infrastructure. To satisfy peak load demands, util-
ities turns on generators running on fossil fuels and natural
gases which ultimately cause environmental issues as these
generators are a great source of emitting harmful gasses.
Therefore, a need of more reliable, sustainable, and an effi-
cient power grid system has emerged. In order to make
power grids more reliable, sustainable, and robust, an intel-
ligent and revolutionary SG infrastructure is established.

This revolutionized infrastructure is established by integrat-
ing two way communication technology such as advanced
metering infrastructure, smart meters and smart appliances
in already existing power system. Various methods; such as
distributed energy, smart pricing and demand response (DR)
are introduced to facilitate this continuously evolving infras-
tructure. It is observed that more than 65% of the reduction
in the electricity consumption is achieved by residential sec-
tor and small commercial building [1]. Home energy man-
agement (HEM) system plays a vital role to enhance the
efficiency of SG.

Demand side management (DSM) and DR are the two
major components of SG. DSM strategies are adopted by
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many utility companies. In order to motivate consumers to
efficiently use electricity, monetary incentives are also pro-
vided to the consumers so that they voluntarily use electricity
in an optimal way and avoid electricity wastage. This strategy
provides a balance between supply and demand.

DR programs are highly amenable and offer numerous ben-
efits to the consumers [2]. It persuades consumers to modify
their electricity usage pattern by shifting their heavy load
from on-peak to off-peak hours in response to varying energy
price. This facilitates in reducing the aggregated electricity
consumption cost and PAR by efficiently managing power
consumption pattern from which both consumers and utility
get benefits.

Numerous energy pricing tariffs are established and are
in use around the globe such as real-time pricing (RTP),
critical peak pricing scheme (CPP), day ahead pricing (DAP),
ToU, inclined block rate (IBR), etc. Energy consumption
minimization, minimization of green house gas emissions,
efficient load management to reduce PAR and consumer
comfort are some of the major problems in the residential
sector of SGs.

Electricity consumption cost reduction, optimal manage-
ment of gross load, making the grid more sustainable, and
PAR reduction are some of the common objectives of SG.
Different heuristic algorithms and DSM strategies are pro-
posed to achieve these objectives in the past. Researchers
use linear programming (LP), mixed integer linear program-
ming, mixed integer nonlinear programming (MINLP), etc.,
in order to minimize electricity cost and optimally schedule
household appliances to manage the load.

In this paper, we propose a HEM system on the basis
of two heuristic algorithms; BFA, HSA. In addition, HBH
is also proposed. These three heuristic approaches are used
for the comparative evaluation of the system on the basis of
performance parameters: electricity consumption cost reduc-
tion and PAR. Consumer comfort in term of waiting time
is also calculated. A concept of coordination among appli-
ances is also introduced based on the knapsack problem. DP
approach is used to solve the knapsack problem to get an
optimal schedule of appliances. Seasonal ToU energy pricing
tariffs are used to calculate energy consumption cost and PAR
reduction. For simulations, two cases are considered (single
home and multiple homes). In case of single home control
parameters are kept same for all three algorithms. However,
due to varying seasons and different need of the consumers,
appliances and their power ratings may vary accordingly.
In case of multiple homes, appliance classes remain same as
in single home case, however, power rating (PR) and length
of operation time (LoT) of each appliance vary randomly for
each home.

The general idea behind this work is to cope with the chal-
lenges of SG while considering the consumers’ participation
and comfort. The major focus of our proposed algorithm is to
manage the load in order to minimize the electricity cost and
PAR. It also helps to make system flexible and robust. The
main contributions of this paper are:

1) A new hybrid algorithm (HBH) is proposed which
effectively exploits the search space to produce optimal
results.

2) Concept of coordination among appliances is intro-
duced.

3) We have analysed the effect of seasons (Summer and
Winter) on performance parameters (electricity cost,
PAR and consumer comfort) by tuning the control
parameters of HBH.

The rest of the paper is organized as follow: Section II
presents an overview of current literature work. Prob-
lem description is given in Section III. In Section IV,
proposed system model is discussed. In Section V, pro-
posed scheme is described. Feasible regions are discussed
in Section VI. In Section VII, simulation and results are
discussed. Section VIII, concludes the paper.

NOMENCLATURE OF THE INDEX TERMS
Ne Number of elimination dispersal steps.
Nr Number of reproduction steps.
Nc Number of chemotaxis.
Np Number of populations.
Ns Number of swim steps.
Ci Step size.
1 Vector in random direction.
xiL Lower bound of decision variable.
xiU Upper bound of decision variable.
xnewi Decision variable.

II. STATE OF THE ART LITERATURE REVIEW
In recent years, extensive research is going on in SG domain.
To cope with the challenges of this domain such as electric-
ity load management, minimization of energy consumption
cost, PAR reduction, and maximization of consumer comfort,
many heuristic techniques are used to find optimal solutions
for scheduling problems. Consequently, making it more reli-
able, stable and efficient. In this regard, some of the papers
are discussed in this section.

A novel energy management system (EMS) for DR is pro-
posed in [1] for residential and small commercial buildings.
They formulate a fully automated EMS’s for rescheduling
problem as a reinforcement learning problem, as this formu-
lation does not require explicit modeling of the consumers
dissatisfaction on job rescheduling. This enables the EMS
to self-initiate jobs and allows the consumer to initiate more
flexible requests.

A mixed integer nonlinear optimization model is proposed
on the basis of ToU pricing tariff in [2]. Residential DR is
analyzed by home appliances scheduling to minimize elec-
tricity cost. Consumers achieve more than 25% cost saving
just by shifting their energy consumption in response to
changing price. These relative incentives attract consumers
to participate in DR programs. Electricity consumption cost
minimization and efficient management of load consumption
in on-peak hours is achieved.

Sherazi and Jadid proposed a HEM system with dis-
tributed energy resources along with thermal and Electrical
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appliance scheduling (HEMDAS) [3]. They use dynamic
pricing scheme to schedule the controllable appliances in
off-peak hours and avoid on-peak hours in order to min-
imize electricity consumption cost. The energy manage-
ment problem is modeled as MINLP using dynamic pricing
scheme. 24 h time horizon is divided into 48 slots, 30 mins
each. Thermal resources are used during peak hours; conse-
quently, minimizing the electricity consumption cost during
on-peak hours and off-peak hours up to 22.2% and 11.7%,
respectively.

Rahim et al. [4] evaluate the performance of HEM con-
troller, based on three heuristic algorithms; genetic algo-
rithm (GA), binary particle swarm optimization (BPSO) and
ant colony optimization (ACO). They also propose a generic
architecture for DSM, to integrate residential area domain
with smart area domain. Problem formulation is done by
using multiple knapsack problem (MKP). ToU with IBR
pricing tariffs are used to evaluate the energy consumption
cost and PAR. Results validate successful achievement of
objectives; electricity consumption cost minimization and
user comfort maximization. Trade-off between the electricity
consumption cost and consumer comfort is there.

Mesari and Krajcar in [5], focus on the proper integration
of renewable energy sources (RES) in a home. Electric vehi-
cles (EVs) can give stability to micro grid and decrease grid
dependency. In order to reach maximum amount of the RES,
mixed integer programming (MIP) is designed to optimally
schedule the appliances and energy storage system (ESS).

In [6], a model is proposed based on ToU pricing signal
to manage and control appliances for multiple consumers
in a home. An algorithm is proposed which manages and
schedules the appliances based on the preference of mul-
tiple consumers. Two scenarios are implemented based on
multiple consumers and their priorities to evaluate the per-
formance parameters. Results show reduction in electricity
consumption cost and PAR by efficiently managing energy
consumption pattern.

Azar and Jacobsen in [7], proposed a local power
scheduling algorithm to schedule appliance power request
accordingly. Single objective optimization (SOO) and multi
objective optimization (MOO) are also implemented in this
research article having some trade-offs. Peak demand thresh-
old (PDT) is imposed to shift appliances, they analyze the
behaviour based on changing thresholds. Distributed sys-
tem operators ensure that total power consumption always
remains below PDT. DR system is developed to maximize
consumers participation in order to optimize overall net-
work performance. Appliances are categorized based on their
shiftable and interruptable characteristics. 0 − 1 knapsack
problem is used to formulate the scheduling problem. They
achieve significant reduction in aggregated consumption cost,
CO2 emissions and maximizing consumers satisfaction level.
Authors proposed an efficient scheduling method for home

power usage and also introduced a general architecture of
EMS in a home area network (HAN) in [8]. They adopt com-
bined RTP and IBR pricing tariffs to automatically schedule

all appliances in an optimal way. This adaptation results in
minimal load and keeps PAR under control. In order to obtain
an optimal solution, GA is incorporated to solve optimization
problem due to its wide acceptance in solving non-linear
problems. Additionally, the PAR is controlled efficiently to
make the entire electricity system more stable.

In [9], an optimized HEM (OHEM) system is pro-
posed, which incorporates the RES and ESS into the res-
idential sector. They formulate constrained optimization
problem as MKP and solve it by implementing heuristic
algorithms: GA, BPSO, WDO, BFO and also proposed
hybrid GA-PSO (HGPO) algorithms. HGPO based HEMS
outperformed all other scheduling algorithms and achieved
40.05% and 41.07% reduction in electricity consumption
cost and PAR, respectively. Integration of RES and ESS also
minimize the electricity bill and PAR by 19.94% and 21.55%,
respectively. Reduction in PAR enhances the power system
stability and also ensures the stable and reliable grid opera-
tion. On the other hand, consumer comfort is not considered
and also their is no coordination between renewable and
sustainable energy resources.

Various scheduling algorithms for residential DR under
RTP pricing environment along with RES are proposed
in [10]. Authors categorized appliances and consumers on
the basis of energy demand and consumer preferences. Elec-
tricity cost minimization problem is formulated as an opti-
mization problem and solved by using optimal stopping
rule (OSR) based algorithms. Appliances follow first come
first serve (FCFS) scheduling scheme in the absences of
EMC. FCFS scheme achieves 65.92% cost saving, how-
ever, violates the load constraint. Modified FCFS (MFCFS)
scheduling algorithm is proposed to overcome aforemen-
tioned problem, it achieved 42.58% reduction in cost. Priority
enable early deadline first (PEEDF) scheduling algorithm is
proposed for consumer comfort maximization. This scheme
achieves 48.28% cost reduction. They also implement total
capacity constraint Q, for grid stability. Moreover, renewable
energy is utilized during high peak hours. However, installa-
tion cost and investment benefits of RES are not analyzed.

Ma et al. [11], proposed a flexible power scheduling strat-
egy to achieve a desired trade-off between the electricity
consumption cost and consumer discomfort. They formulated
power scheduling as an optimization problem and by solv-
ing optimization problem an optimal scheduling strategy is
obtained. Two types of consumer appliances are considered
in this article. In the first type, appliance’s operations can
be delayed and in second type, power levels of appliance
operation can be reduced. Results validate that the schedul-
ing strategy efficiently achieved an equilibrium between the
electricity bill reduction and consumer discomfort. However,
computational complexity of this scheme is very high.

Marzband et al. in [12], presented a multi-layer ant colony
optimization (EMS-MACO) for energy management system.
The main focus of this article is to figure out the optimum
micro-source operation to minimize electricity production
cost. Technical and economic time dependent constraints
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are also analyzed. Performance of MACO is compared with
modified conventional EMS (MCEMS) and particle swarm
optimization (PSO) based EMS. Results verify that the sys-
tem performance is improved by applyingMACO. Reduction
in energy cost is achieved in comparison with MCEMS and
PSO; 20% and 5%, respectively. Furthermore, the plug and
play capability in real time applications is also investigated.

Improved PSO (IPSO) based HEMS under ToU with IBR
environment is proposed to solve the cost minimization prob-
lem in [13], results show that IPSO algorithm brings the
consumer load curve near to the objective curve. Electric-
ity price and objective curve have an inverse relationship.
Power system stability is achieved by reducing the PAR.
However, the consumer comfort is scarified by rejecting the
load demand request in peak hours.

Hong et al. [14] proposed an approach for load allocation
problem. Allocation of electricity resources are done on the
basis of demand, priority, fairness and price. Higher-priority
appliances operate without interruption even in high price
and low price hours, than the energy resources are given
to remaining appliances. They also integrate ESSs to store
energy during low-price hours. The algorithm proposed in
this article has ability to reduce peak demand and maximize
system efficiency.

Adika and Wang et al. [17] proposed an intelligent energy
management framework to implement both energy storage
and appliance scheduling schemes. Consumers can achieve
electricity cost minimization by shifting their load to the off-
peak hours. They purchase power during the off-peak hours
when electricity prices are low and use batteries to fulfill their
demand during high peak hour. Electricity storage also lowers
the peak to average ratio of the grid and is therefore beneficial
to electricity suppliers too. However, for efficient cost saving
constant monitoring is required, uncoordinated charging and
discharging of batteries could compromise the grid’s stability.

Jovanovic et al. [18] proposed a model for the schedul-
ing problem focusing on consumers satisfaction levels. MIP
is used for defining a MOO problem. The Pareto front is
mapped on problem instances based on the real-world house-
hold usage data and real-world electricity prices, in order to
analyze the relation between two objectives. Authors divide
households into five groups; family with children (FWC) and
without children (FNC), multiple pensioners (MP), single
pensioner (SP) and single non-pensioner (SNP). Energy con-
sumption of each household and each individual appliance is
monitored for every 10 mins. Trade-off between the produc-
tion cost and consumer comfort is observed. In order to min-
imize the consumption cost, consumers have to compromise
their satisfaction level.

Roh and Lee [19] study an electricity load scheduling prob-
lem in a residence. They classify various appliances into five
sets on the basis of energy consumption and operation char-
acteristics, and derive a mathematical models for them. They
proposed an electricity load scheduling algorithm, it con-
trols the operation time and energy consumption level of
each appliance. The optimization problem is formulated as

a MINLP problem and solved it by using the generalized
Benders decomposition approach. This algorithm gives the
optimal electricity load scheduling of various appliances with
different energy consumption and operational characteristics.

Samadi et al. [20] adopt approximate DP approach to
schedule the operation of different types of appliances.
A game theoretic approach is adopted tomodel the interaction
between users with excess generation. The excess generation
locally reduces the load on utility and enhance the stability
of the system. Simulation results show that the proposed
algorithm reduces the electricity bill of the users and also
encourages the user to efficiently utilize the RESs.

Logenthiran [21] proposed a day-ahead load shifting tech-
nique and mathematically formulated it as a minimization
problem. A heuristic-based Evolutionary Algorithm (EA) is
developed for solving this minimization problem for all three
areas (industrial, commercial and residential). Results illus-
trate that the proposed DSM strategy achieves substantial cost
savings and reduce the peak load demand of the SG.However,
consumer satisfaction level is compromised in this research
work.

An efficient heuristic approach is proposed in [22] to
schedule smart home appliances in residential area. This algo-
rithm follow greedy strategy to schedule consumer appliances
under variable pricing model. The start time of appliances are
optimized to achieve economic cost benefits while satisfying
operational and peak power constraints. Results show that
electricity cost obtained from heuristic algorithm is within
5% range of the optimal cost of the exact algorithm.

It is observed from the literature analysis that most of the
researchers target two or more contradictory multi-objective
problems. A trade-off always exists, if they are able tomanage
electricity bill and PAR. In that case, they have to compro-
mise the comfort of the end users. Whereas, some of the
researchers have considered the consumer comfort alongwith
the electricity consumption cost by compromising the utility
stability in off-peak hours.

The state of the art literature review has been summarized
in table.1.

III. PROBLEM DESCRIPTION
Minimization of energy consumption cost, PAR reduction
and maximization of consumers satisfaction levels are some
of the major challenging tasks in SG. However, consumers
satisfaction is compromised in order to reduce the electricity
consumption cost and PAR. To cope with the aforementioned
problems, numerous strategies are proposed in past years.
In [8], an efficient scheduling method for home power usage
and a general architecture of EMS in a HAN is proposed.
GA is used to solve optimization problem due to its wide
acceptance in solving non-linear problems. Combined RTP
and IBR price tariffs are used to automatically schedule all
appliances in an optimal way. They achieve optimal results
in minimizing electricity consumption cost and PAR. How-
ever, there is no mechanism in their scheduling method to
facilitate consumers preferences. Ma et al. [11] formulate
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TABLE 1. Summarized state of the art literature review.

power scheduling as an optimization problem. Two types
of appliances are considered: i) delay tolerant appliances,
ii) appliances that can be operated with reduced power levels.
They efficiently achieved a balance between the energy
consumption cost and consumers discomfort. However, this
strategy has very high computational time and complexity.
EMS-MACO is presented in [12], to figure out an opti-
mum micro-source operation to minimize electricity pro-
duction cost. They also analyzed technical and economical
time-dependent constraints. Performance of MACO is com-
pared with modified conventional EMS (MCEMS) and PSO
based EMS. The performance of the system is improved by
applying MACO. The proposed system achieved reduction in
energy consumption cost, in comparison with MCEMS and
PSO. However, consumers satisfaction level is not consid-
ered. Authors proposed a load allocation approach in [14].
This approach allocate electricity resources on the basis
of demand, priority, fairness and price. Appliances having
higher priorities operate without interruption even in high
price hours. Energy resources are then allocated to as many
appliances as possible in low price hours. Integration of ESSs
is also considered to store energy during low-price hours.
However, the maintenance and installation costs of ESS are
not considered.

Though, in literature, many popular techniques are avail-
able such as GA, BFA, HSA, PSO, etc., to solve the optimiza-
tion problems. However, in this article, we propose a hybrid
of two well known optimization techniques (BFA and HSA).

BFA possesses effective local search abilities with inherent
limitations in its global search procedure [15].Whereas, HSA
has a simple searching process and robust global search-
ing abilities [16]. Both techniques have some limitations.
To cope with these limitations, HBH is proposed. It achieves
the local search by using chemotactic operator of BFA and
search globally by usingHSA operators. This maintains a bal-
ance between exploration and exploitation and provides the
optimal results.

HEMSs proposed in [8], [11], and [12] deal with the single
home, whereas, [4], [23], and [24] deal with multiple homes
with in a residential area. However, [4], [23], and [24] did
not discuss the situation when data get bigger (Big Data)
due to increasing number of homes and appliances. This
continuous increase in volume induces lot of challenges in
data processing. The main purpose of scheduling in Big Data
processing is to plan and complete the process in proficient
way [25]. Different scheduling methods in paper [1]– [24] are
preferred for resource allocation. However, dealing with Big
Data is a challenging task.

IV. PROPOSED SYSTEM MODEL
In our proposed work, basic objectives are the minimization
of electricity consumption cost and PAR, while considering
consumer’s comfort. Pictorial representation of proposed sys-
temmodel is represented in Fig.1. A residential area, a gener-
ation unit and the transmission line is shown in Figure. In the
residential area, a IoT based smart home is considered with
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FIGURE 1. Proposed system model.

n number of appliances. Appliances’ PRs and LoTs are taken
from the consumers, and stored in centralize unit. The HAN
is used to provide the communication among the appliances,
smart meter and EMC. EMC in embedded with a scheduler
that schedule appliances according to user LoTs. The Zigbee,
Zwave and wifi are widely adopted in HAN to provide cost
effective communication. Further, we implement the coordi-
nation among the appliances with in smart buildings, while
incorporating the real-time demand by making the system
flexible.

In our proposed system, appliances are scheduled by using
metaheuristic techniques BFA, HSA and HBH algorithms.
The purpose of scheduling is to minimize the electricity con-
sumption cost for consumers. The total time horizon is 24 h,
each time-slot is of 1 h.

In this proposed solution, system flexibility depends upon
the sudden changes in user demand. Where, on user demand
EMC switches OFF an appliance, and then coordination
among appliances is established to allocate that empty slot to
priority appliance(s) at run-time. In this scenario, in order to
incorporate the coordination at run-time, problem is formu-
lated as knapsack problem. Where empty slot is considered
as the knapsack capacity limit. This give consumers authority
over schedular, they can assign priorities to the set of appli-
ances according to their needs. This enables the consumer
to switch appliances at run-time according to their prefer-
ence. The scheduler generates a new schedule for appliances
including consumer preferred appliances, without affecting
the load profile of other appliances whenever an interrupt

is generated in schedule. The length of operation of these
preferred appliances are in minutes and do not need a com-
plete 1 h time slot. When a consumer generates an interrupt,
the schedular halts all scheduling operations and checks for
running interruptable appliances in that particular time slot
where interrupt is generated. Immediately, after finding a
running interruptable appliance, operations of that particular
interruptable appliance are stopped as this appliance is no
longer needed. The schedular calculate the remaining time
in that particular time slot and allocate the remaining time to
the preferred appliances. This helps in effectively managing
the load in order to maximize consumer’s satisfaction level.
DP is used to tackle this complex knapsack based scheduling
problem, as it is highly suitable in handling decision making
problems.

In this paper, we have proposed the system model for
single home as well as for multiple homes. It is worth
mentioned that dealing with IoT based multiple homes is
a challenging task. Specially, when system manages Big
Data in real time environment. The success of such system
depends on the efficient coordination between the different
entities (users, smart homes, smart appliances, etc.). Deal-
ing with all entities is a challenging task, however, in this
proposed system we implement the coordination among the
appliances as an example scenario with in smart buildings.
Scheduling Big Data is a problematic task due to large
search space and it takes a long time to search out opti-
mal solution. Though there are no specific algorithms which
can help in finding optimal solution in polynomial time for
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aforementioned problem. Although it is preferable to find
suboptimal solution, however, this approach is preferable
in short time period. While dealing with the Big Data,
meta-heuristic optimization techniques proved to be optimal
one [26].

A. SCENARIOS
Lets assume that in Summer season, [A1,A2...An] is a set of
priority appliances and [a1, a2...am] is a set of interruptable
appliances. A consumer generates an interrupt to switch on
a priority appliance, schedular check for running interrupt-
able appliances in that particular hour and stop its work-
ing and allocate the remaining time slot to the emergency
appliances. As knapsack problem is incorporated for coor-
dination, the remaining time after an interrupt is generated is
considered as knapsack capacity, working time of appliance
is considered as weight and the electricity consumption cost
is considered as value of knapsack problem. In this research,
Winter season is also considered, coordination among the
appliances and schedular is achieved in similar way as
explained earlier. Note that, consumers appliance preference
and their PR are different in Summer and Winter seasons.
For relative performance analysis, number of appliances to
be scheduled, their power rating and length of operation are
kept same for all three aforementioned algorithms in Summer
and Winter seasons, respectively.

Major focus of this scheme is to efficiently manage energy
consumption throughout a day in order to achieve desired
objectives of electricity consumption cost minimization and
PAR reduction. DSM manages energy consumption and con-
trols demand side activities for the end consumers. It per-
suades consumers to shift their load from on-peak hours and
promote them to use energy during off-peak hours. This shift-
ing of the load from on-peak to off-peak hours help the con-
sumers to minimize their electricity consumption cost while
compromising their comfort levels. Resulting in an efficient
and reliable grid operations. Different incentive based pricing
tariffs are established by utilities such as, dynamic based
(RTP, CPP, DAP, IBR) and time based ToU, etc.. Because of
tentative behavior of optimization techniques we considering
both Summer andWinter seasons, because on-peak hours and
off-peak hours are different for both seasons. In Summer sea-
son, 11 am to 5 pm are on-peak hours in weekdays. Whereas
in Winter season, 7 am to 8 am and 5 pm to 7 pm are the
on-peak hours in weekdays [27].

B. PROPOSED SCHEME
In the literature, numerous kinds of optimization algorithms
are proposed, which vary in terms of solving the problems
according to the requirements of the environment. Some
of the popular algorithms GA, PSO, BFA, HSA, etc., are
used to solve the problem of scheduling in SGs. However,
there always exists a trade-off in exploring the search space.
For instance, BFA possesses excellent local search capa-
bilities [15], while HSA proves to be effective in global
search space [16]. Now, a dire need emerges to focus on the

parallel exploitation and exploration of both the search
spaces. In order to maximize the benefits of scheduling,
a hybrid approach HBH is proposed for comparative perfor-
mance analysis of the system based on performance param-
eters. Merging these aforementioned techniques provides
better optimal results. All three heuristic algorithms imple-
mented in this scheme are discussed in coming subsections.

1) BFA
Kevin M. Passino in 2000, introduced a bio-inspired algo-
rithm BFA for distributed optimization problems [2] which
is based on foraging behavior of E.coli bacteria. In nature,
animals having better foraging strategies tend to survive more
than the animals having weak foraging strategies. In BFA,
healthy bacterium splits and produce their clones and replace
the weak bacterium to keep population size constant [29]. The
swarm of bacterium stochastically move towards the optimal
solution. This algorithm follow three basic steps:

1) Chemotaxis: This phase describes the movement of an
E.coli cell. The E.coli bacterium can move in two alter-
nate ways, either it can swim in the same direction for a
period of time or it may tumble. Bacterium follow these
twoways for their entire lifespan. The lifespan of bacte-
ria depend upon the number of chemotactic steps. Let’s
assume, (j, k, l) represents ith bacterium at jth chemo-
tactic, kth reproductive and lth elimination-dispersal
step. C(i) is the step size taken in the random direction
specified by the tumble. The movement of bacterium is
represented by the following equation [29]:

θi[j, k, l] = θi[j− 1, k, l]+ C(i)
1(i)

√
(1t (i)1(i))

(1)

where, 1 represents a vector in random direction and
its elements lie in [−1, 1] range.

2) Reproduction: This phase deals with the elimination of
the weak bacteria based on the fitness values and simul-
taneously spilt the healthy ones into two and replace
them in place of weak bacterium to keep the swarm size
constant, so that they contribute in the next generation.

3) Elimination dispersal: In this phase, new random sam-
ples with low probability are inserted to compensate the
discarded cells. At the end of the aforementioned steps,
best bacterium is selected based on the fitness function
representing the schedule of an appliance, as given in
equation [29]:

ji[j, k, l] = ji[j, k, l]+ jcc(θi[j, k, l],PoP[j, k, l]) (2)

where, jcc is computed as:

jcc =
d−1∑
d=1

(100× (θ (i, d + 1)− (θ (i, d))2)2

+ (θ (i, d)− 1)2) (3)

We adopt BFA foraging strategy to find optimal
energy consumption patterns for consumers in SG.
This algorithm has exceptional attributes such as less
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computational burden, global convergence, require less
computational time and also suitable for handling mul-
tiple objective functions. Basic idea and working of
HSA is given in the upcoming subsection.

2) HSA
This subsection presents an overview of the basic HSA. This
algorithm is proposed by Yang and Geem [30] and it is
inspired by the natural musical process, which searches for
an ideal state of harmony just like optimization process tries
to find an optimal solution for a particular problem. The HSA
uses a stochastic random search and it does not require an
initial value for decision variables. HSA considers all existing
vectors and then generates a new vector. General working of
the algorithm is given as follows:

Step 1. Define the decision variables and objective
function: Initiate the system parameters. The optimization
problem can be defined as follows [31]:

Minimize f (x)
subject to: xiL ≤ xi ≤ xiU (4)

where xiL and xiU are the lower and upper bounds for
decision variables. It has following parameters: i) harmony
memory size (HMS) or the number of solution vectors in
harmony memory (HM), ii) HM consideration rate (HMCR),
iii) distance bandwidth (bw), iv) pitch adjusting rate (PA) and
v) number of improvisations (k) or stopping criterion.Where,
k is same as the total number of iterations.

Step 2. HM is initialized, this memory stores all solution
vectors (sets of decision variables). Initially, this memory is
randomly generated based on the following equation [31]:

x ji = xiL + rand()× (xiU − xiL) j = 1, 2 . . .HMS (5)

where, rand() is a random number function which give uni-
form distribution of [0, 1].

Step 3. Improvise a new harmony from the HM. Gener-
ating a new harmony xnew is called improvisation and it is
based on 3 rules; memory consideration, pitch adjustment,
and random selection. Initially, a uniform random number r
is generated in the range [0, 1]. If r is less than the HMCR,
the decision variable xnewi is generated by thememory consid-
eration; or else, xnewi is produced by a random selection. Then,
each decision variable xnewi will undergo a pitch adjustment
with a probability of PA rate, if it is produced by the memory
consideration. The PA is given as follows [31]:

xnewi = xnewi ± r × bw (6)

Step 4. Update HM: After generating a new harmony vec-
tor xnewi , the memory will be updated. If the fitness of the new
harmony vector xnewi = (xnewi +x

new
2 ...xnewn ) is better than that

of the worst harmony, then xnew replace worst harmony in the
memory.

Step 5. Repeat Steps 3 − 4 until the stopping criterion is
met. This algorithm proves to be very successful for optimiza-
tion processes [32].

3) HBH
In this subsection, our proposed technique HBH is dis-
cussed. In order to explore and exploit the entire search
space, a hybridization of BFA and HSA is performed. Both
techniques are very effective and well known in handling
optimization problems. However, some limitations are still
needed to be addressed. BFA retains optimal results from
local search space while it has limitations in exploring the
search space globally [15] and [33]. In this regard, HSA
proves itself to be effective and efficient. HSA has efficient
global search abilities. It considers all vectors in the memory
for generating a new solution. The structure of HSA is rel-
atively easy. This makes it flexible to integrate it with other
algorithms. However, it has weak local search ability. In order
to obtain the optimal results, the complete search space needs
to be explored both locally and globally. On the other hand,
the proposed HBH follows the initial steps of BFA, exploiting
the local search space by using the chemotactic operators.
In HBH, the elimination and dispersal step of BFA is replaced
by integrating the steps of improvising new harmony of HSA.
In Algorithm 1, the working procedure of HBH is provided to
understand the sequence of hybridization process. The tuned
parameters of proposed algorithm are flexible which can be
modified as per the requirement of the application.

Algorithm 1 HBH Algorithm
1: initialize all input parameters
2: for l = 1 : Ne do
3: for k = 1 : Nr do
4: for j = 1 : Nc do
5: for i = 1 : Np do
6: Find new position θi[j,k,l] for pop
7: Evaluate the fitness of population
8: for s = 1 : Ns do
9: if ji < jlast then
10: jlast ← Jlast
11: goto 4.
12: else
13: Tumble direction
14: goto 4.
15: end if
16: end for
17: end for
18: end for
19: Evaluate the population by objective function
20: select the best pattern
21: end for
22: HM ← bestpattern
23: if cost(HM ) ≤ cost(worst(harmonies)) then
24: worst(harmonies)← HM
25: end if
26: goto 2.
27: end for
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FIGURE 2. Feasible region for electricity cost and load consumption in Summer season (Single home). (a) Feasible region for electricity cost
without coordination. (b) Feasible region for electricity cost with coordination.

FIGURE 3. Feasible region for electricity cost and load consumption in Summer season (Multiple homes). (a) Feasible region for electricity cost
without coordination. (b) Feasible region for electricity cost with coordination.

V. FEASIBLE REGION
Feasible regions are calculated to verify the results for per-
formance parameters such as electricity consumption cost
and consumer satisfaction level in term of waiting time
for single and multiple homes, considering both Summer
and Winter seasons. In Fig.2(a) and (b), P1(1.198, 9.568),
P2(1.198, 21.528), P3(10.776, 193.968) and P4(10.776,
86.208) represent the overall region of electricity bill before
and after coordination in the Summer season for a single
home. In Fig.2(a), P5(6.6, 118.8) and P6(10.776, 118.8)
show the maximum limits for the electricity consump-
tion cost i.e, 118.8 cents after scheduling all appliances
without coordination, all optimal solutions are in the new
region formed by points P1(1.198, 9.568), P2(1.198, 21.528),
P5(6.6, 118.8) and P6(10.776, 118.8). After scheduling with

coordination, feasible region is shown in Fig.2(b), created by
P1(1.198, 9.568),P2(1.198, 21.528),P5(4.4, 114.9264) and
P6(10.776, 114.9264), electricity consumption cost limit is
further reduced to 114.9264 cents. Feasible regions for mul-
tiple homes are calculated with and without coordination
in the Summer season and represented in Fig.3(a) and (b),
P1(14.774, 118.192), P2(14.774, 256.932), P3(93.018,
1674.3) and P4(93.018, 744.144) show the complete region
of electricity bill in unscheduled case. In Fig.3(a), points
P1(14.774, 118.192), P2(14.774, 256.932), P5(56, 1008.5)
and P6(93.018, 1008.5) create a new region after scheduling
without coordination, maximum electricity bill reduces from
1674.3 cents to 1008.5 cents. As coordination is incorporated,
the electricity consumption cost is further minimized to
950.8356 cents as it can be observed from Fig.3(b).
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FIGURE 4. Feasible region for electricity cost with waiting time in Summer season (Single home). (a) Feasible region for waiting time without
coordination. (b) Feasible region for waiting time with coordination.

FIGURE 5. Feasible region for electricity cost with waiting time in Summer season (Multiple homes). (a) Feasible region for waiting time without
coordination. (b) Feasible region for waiting time with coordination.

In this article, feasible regions for consumer’s satisfaction
level in term of waiting time are also evaluated considering
a single and multiple homes. Graphical representation of
feasible region for electricity cost with waiting time is
presented in Fig.4(a) and (b). The area covered by points
P1(0, 10.4052), P2(0, 193.968), P3(5.083, 100.32) and
P4(5.083, 68.84), shows the complete region in unsched-
uled case. Fig.4(a) shows the feasible region for a sin-
gle home scheduled without coordination, points P5(0,
118.8) and P6(4.1, 118.8) represent the maximum cost
limit i.e, 118.8 cents at the minimum and maximum wait-
ing time 0 and 4.1 h, respectively. The desirable mini-
mization in electricity cost with respect to waiting time
is achieved. Similarly, in Fig.4(b), points P1(0, 10.4052),
P2(0, 193.968), P5(0, 114.9264) and P6(0.4767, 114.9264)

show the feasible region after scheduling with coordination.
Points P5(0, 114.9264) and P6(0.4767, 114.9264) represent
the maximum electricity limit equals to 114.9264 cents
at minimum and maximum waiting time 0 and 0.4767 h,
respectively. Incorporating coordination in the system, max-
imizes the consumer’s satisfaction level by reducing the
waiting time. Similarly, in Fig.5(a) and (b), area covered
by points P1(0, 163.0206),P2(0, 1674.3),P3(5.083, 1008.5)
and P4(5.083, 355) show the overall region for multi-
ple homes before and after coordination. In Fig.5(a),
points P5(0, 1008.5) and P6(5.083, 1008.5) represent the
maximum electricity limit at minimum and maximum
waiting time before coordination. While in Fig.5(b),
points P1(0, 163.0206),P2(0, 1674.3),P3(0.4767, 948.838)
and P4(0.4767, 278.5305) show overall region after
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FIGURE 6. Feasible region for electricity cost and load consumption in Winter season (Single home). (a) Feasible region for electricity cost
without coordination. (b) Feasible region for electricity cost with coordination.

FIGURE 7. Feasible region for electricity cost and load consumption in Winter season (Multiple homes). (a) Feasible region for electricity cost
without coordination. (b) Feasible region for electricity cost with coordination.

coordination is incorporated, while points P5(0, 1008.4) and
P6(0.437, 1008.5) show the achieved reduction in waiting
time after coordination is incorporated in the system which
maximizes the consumer’s satisfaction level.

Fig.6(a) and (b), represent the feasible regions for elec-
tricity cost and load consumption in Winter season for a
single home. In Fig.6(a), points P1(1.1, 8.8), P2(1.1, 19.8),
P5(6.3, 113.4) and P6(8.7, 113.4) represent the feasible
region for a single home schedule without coordination.
The maximum electricity cost limit is 113.4 cents as it is
reduced from 156.6 cents. Fig.6(b) represents the feasible
region after coordination is incorporated in the system. Points
P5(5.6, 101.6280) andP6(8.7, 101.6280) show themaximum
electricity limit 101.6280 cents. This shows that by incorpo-
rating coordination, a minimized electricity cost is achieved.
Feasible regions for multiple homes in Winter season are

represented in Fig.7(a) and (b). Area covered by points
P1(12.668, 101.344),P2(12.668, 228.024),P3(74.7, 1344.6)
and P4(74.7, 597.6) represent the overall region before
and after coordination. Fig.7(a) represents the feasible
region before coordination is employed for multiple homes.
P5(45, 806.4) and P6(74.7, 806.4) are points representing
the maximum electricity cost i.e, 806.4 cents, electricity
cost never cross this threshold in any condition. In Fig.7(b),
points P5(74.7, 744.048) and P6(41.1, 744.048) represent the
maximum electricity cost after coordination is incorporated
in scheduling, a clear difference is observed as the elec-
tricity consumption cost further reduced from 806.4 cents
to 744.048 cents.
Fig.8 and Fig.9, represent the feasible regions for elec-

tricity cost with waiting time while considering single
and multiple homes in the Winter season, respectively.
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FIGURE 8. Feasible region for electricity cost with waiting time in Winter season (Single home). (a) Feasible region for waiting time without
coordination. (b) Feasible region for waiting time with coordination.

FIGURE 9. Feasible region for electricity cost with waiting time in Winter season (Multiple homes). (a) Feasible region for waiting time without
coordination. (b) Feasible region for waiting time with coordination.

Fig.8(a) represents the reduction in electricity cost with wait-
ing time without coordination. While Fig.8(b) represents the
reduction in waiting time as coordination is incorporated in
scheduling for a single home. Fig.9(a) and (b), represent
the feasible regions before and after coordination for multi-
ple homes. These figures clearly demonstrate that desirable
reduction in electricity cost is achieved while maximizing the
consumer comfort. Results for Summer and Winter seasons
are discussed in simulation and discussion section in detail.

VI. SIMULATIONS AND RESULTS
In this section, simulation results are evaluated to analyze the
performance of the proposed HEMmodel. In order to validate
our simulation results, extensive simulations are conducted
in Matlab. Heuristic algorithms BFA, HSA and our proposed

HBH are used to find the optimal solution of the speci-
fied problem on the basis of performance parameters, such
as electricity consumption cost, energy consumption, PAR,
and consumer satisfaction levels. ToU price rates for Sum-
mer and Winter seasons are used to analyze the behaviour
of consumers and their electricity consumption patterns in
changing seasons. Fig.10(a) and (b) show the hourly price
rates in Summer and Winter seasons. 24 h time horizon is
divided into three segments off-peak hours, mid-peak hours,
and on-peak hours. We performed simulations for two cases:
i) Single home and ii) multiple homes. A single home with
eleven appliances is considered for the simulations. These
appliances are further categorized into three classes while
keeping in mind the consumer’s need: i) fixed appliances,
ii) shiftable burst appliances and iii) interruptable appliances.
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TABLE 2. Control parameters for summer season.

TABLE 3. Parameters of appliances used in winter season.

TABLE 4. Consumer priority appliances.

Fixed appliances include; light, fan, oven and blender.
Washing machine, cloth dryer and dish washer are in
shiftable burst appliances class. Whereas, interruptable appli-
ances include; AC, refrigerator, iron and vacuum cleaner.
Table.2 and Table.3 represent the appliance classes, their
LoT and PR used in simulations for both Summer and
Winter seasons. Coordination among appliances and sched-
uler is established by incorporating coordination using DP
approach. DP is a method of solving complex problems
by breaking them down into a collection of simpler sub-
problems. These subproblems are solved and the results
are then stored in a memory, this process is called mem-
oization. This is a recursive process, if the same problem
occurs again, instead of computing its solution again one
can simply use the already stored solution by using bot-
tom up approach. Table.4 represents the consumer preferred
appliances, their LoT and PR. In case of multiple homes,
the categorization of appliances remain same as in single
home case. However, we have considered different PR and
LoT of appliances for each home. Results for two cases
are discussed in ‘Summer with and without coordination’
and ‘Winter before and after coordination’ subsections.

A. SUMMER WITH AND WITHOUT COORDINATION
This analysis studies the energy consumption cost under ToU
pricing model for which the data is available online for both
Summer and Winter seasons [27]. ToU price rates are con-
sidered for the evaluation of heuristic algorithms. Fig.10(a)
shows Summer season ToU price rates for a day. In Summer
season, 11 am to 5 pm are on-peak hours, mid-peak hours are
from 7 am to 11 am and 5 pm to 7 pm and the remaining hours
are off-peak hours. Price rates for on-peak hours, mid-peak
hours and off-peak hours are 18 cents/kWh, 13.2 cents/kWh
and 8.7 cents/kWh, respectively. The aim of using ToU price
model is to enables the consumers to make decision con-
sidering both the electricity consumption cost and their own
satisfaction level. The information about ToU model is read-
ily available to consumers having advanced metering infras-
tructure. Electricity consumption patterns with and without
coordination are shown in Fig.11(a) and (b), respectively.
All three algorithms (BFA, HSA and HBH) perform effi-
ciently in managing and minimizing the hourly electricity
consumption after scheduling with and without coordination.
Minimization of consumption cost is achieved by limiting the
appliances on request in on-peak hours.

Electricity consumption cost pattern for each hour using
BFA, HSA, andHBH before and after coordination are shown
in Fig.12(a) and (b), respectively. Electricity consumption
cost is high during off-peak and mid-peak hours, whereas
in the on-peak hours the electricity consumption is com-
paratively less than off-peak and mid peak hours. Fig.13(a)
illustrates the effect on PAR, before and after incorporating
coordination in the model for a single home. Significant
minimization in PAR is achieved for BFA, HSA and HBH
before and after coordination as compared to unscheduled
case as these are designed to avoid peak formation in any
hour. This proves that proposed model effectively handle the
peak formation problem. Bar plots for BFA, HSA and HBH,
shows that the electricity consumption of all appliances are
optimally distributed in 24 h. Fig.13(a) shows the reduction
in PAR achieved by BFA, HSA and HBH which is 49.17%,
47.14% and 49.79%, respectively before and after coordi-
nation 43.25%, 42.08% and 47.97% PAR minimization is
achieved by BFA, HSA and HBH, respectively, for a single
home. HBH outperformed both BFA and HSA in both scenar-
ios; before and after coordination. Peak formation is one of
the major problems in SG. In order to meet the high demand
utility turn on extra peak generators, causing increase in elec-
tricity bills for consumers. Fig.13(b) shows the performance
of the proposed model with respect to PAR when number of
homes are increased. It shows that the proposed system is
scalable as it reduces the PAR effectively. 24.42%, 25.91%
and 24.60% minimization in PAR is achieved by BFA, HSA
and HBH algorithms before coordination. BFA, HSA and
HBH show 23.36%, 28.25% and 23.81% minimization in
PAR after coordination. BFA and HBH after coordination
have high PAR than HSA. Total electricity bill reduction
before and after coordination is shown in Fig.14(a) and (b),
for single and multiple homes, respectively. In both cases,
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FIGURE 10. ToU price rates. (a) ToU in Summer season. (b) ToU in Winter season.

FIGURE 11. Energy consumption per hour (kWh) (Summer season). (a) Energy consumption per hour without coordination. (b) Energy
consumption per hour with coordination.

reduction in electricity bill per day is achieved. Fig.14(a)
represents electricity consumption cost for single home. Bar
plots for BFA, HSA and HBH before coordination show
2.58%, 4.76% and 2.68% reduction in electricity cost per
day. After coordination, 17.30%, 16.00% and 13.39% reduc-
tion in electricity bill is achieved by BFA, HSA and HBH,
respectively. Fig.14(b) illustrates the result for electricity con-
sumption cost per day after coordination for multiple homes.
After coordination is incorporated in the system BFA, HSA
and HBH show 2.83%, 17.15% and 13.27% minimization in
electricity consumption cost per day. It is clear from results
that, HSA show better results as compared to BFA and HBH
for both cases.

BFA, HSA and HBH schedule with coordination show
more reduction than before coordination. As in coordination,
two appliances are set as priority appliances by consumer.

Their LoTs may vary randomly, as per consumer’s need.
A consumer generate an interrupt causing schedular to kill
the running interruptable appliance and allocate that partic-
ular time slot to the consumer preferred appliance without
effecting the operation of rest of the appliances. It reduces the
overall load which consequently reduce consumer electricity
bill per day.

B. WINTER WITH AND WITHOUT COORDINATION
In this section, ToU price rates forWinter season are used [27]
and shown in Fig.10(b). In Winter season, 7 am to 11 am and
5 pm to 7 pm are on-peak hours, 11 am to 5 pm are mid-peak
hours and remaining hours are off-peak hours. Price rates
for on-peak, mid-peak and off-peak hours are 18 cents/kWh,
13.2 cents/kWh and 8.7 cents/kWh. Hourly electricity
consumption patterns before and after coordination are
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FIGURE 12. Electricity cost per hour (cents) (Summer season). (a) Electricity cost per hour without coordination. (b) Electricity cost per hour with
coordination.

FIGURE 13. PAR for Summer season. (a) PAR for single home. (b) PAR for multiple homes.

illustrated in Fig.15(a) and (b). It shows that electric-
ity consumption of all appliances is optimally distributed
within 24 h. Fig.15(a) illustrates that maximum energy
consumption limited to 6.2000 (kWh), 6.3000 (kWh) and
6.0240 (kWh) for BFA, HSA and HBH before coordi-
nation. Fig.15(b) shows the maximum power consump-
tion limits for BFA, HSA and HBH after coordination
are 5.5804 (kWh), 5.6460 (kWh) and 6.0230 (kWh),
respectively. Fig. 16(a) and (b), show the hourly electricity
cost pattern for BFA, HSA and HBH before and after coor-
dination is incorporated in the proposed model for single
home. Reduction in electricity consumption cost is achieved
by efficiently shifting the loads from on-peak hours where
price rates are high to off-peak hour where prices are low.

Performance of the proposed model with respect to PAR
for a single home is shown in Fig.17(a). In comparison to
the unscheduled case, significant minimization in PAR is

achieved for all three algorithms (BFA, HSA and HBH)
before and after coordination. This shows that the proposed
model prevents the peak formation causing due to high
energy demand in certain time periods. The peak forma-
tion is a threat for both utility and consumers. As the con-
sumers have to pay high price for power consumption during
peak hours, whereas utility suffers from high demands that
may cause blackout or load shedding. BFA, HSA and HBH
algorithms efficiently minimize PAR upto 43.23%, 41.83%
and 37.48% before coordination and 46.01%, 41.48% and
35.34% after coordination is incorporated in system for a
single home. Fig.17(b) shows the effects of proposed model
on PAR for multiple homes. The behaviour of the bar
plots are almost same as in the case of single home, all
three algorithms minimize the PAR in comparison to the
unscheduled case. This shows that proposed model is effec-
tively scalable. Fig.17(b) illustrates that proposed algorithms
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FIGURE 14. Electricity price per day (cents) (Summer season). (a) Electricity price per day for single home. (b) Electricity price per day for multiple
homes.

FIGURE 15. Energy consumption per hour (kWh) (Winter season). (a) Energy consumption per hour without coordination. (b) Energy
consumption per hour with coordination.

(BFA, HSA, HBH) achieved 26.05%, 35.11% and 25.86%
reduction in PAR without coordination. Furthermore, BFA,
HSA and HBH schedule with coordination show 25.08%,
33.35% and 24.55%minimization in PAR, in case of multiple
homes. Here, HSA before and after coordination performs
better than BFA and HBH.

Fig.18(a) and (b), illustrate the total electricity consump-
tion cost per day for single and multiple homes before and
after coordination is incorporated in the proposed model.
7.45%, 1.22% and 2.26% reduction in electricity cost per
day is achieved by BFA, HSA and HBHwithout coordination
as shown in Fig.18(a). As coordination is incorporated with
BFA, HSA and HBH electricity cost per day reduces to
13.16%, 13.96% and 11.86%, respectively in case of a single
home. Fig.18(b) represents 14.43%, 13.42% and 14.65%
reduction in electricity cost per day for multiple homes
after coordination is incorporated with BFA, HSA and HBH.

The difference in cost before and after coordination is there
for all three algorithms because in coordination, two appli-
ances are set as priority appliances by the consumers. These
appliances have LoT in minutes, this reduces the overall load
after coordination which consequently reduce the consumers
electricity bill per day. The BFA algorithm in both scenar-
ios, before and after coordination, outperformed both HSA
and HBH.

C. CONSUMER COMFORT
In this research, consumer’s satisfaction level in terms of elec-
tricity bill and waiting time of an appliance is also considered.
Consumers must follow the optimal appliance’s schedule
generated by schedular in order to minimize electricity con-
sumption cost. Generally, there is a trade-off between waiting
time and electricity consumption cost. Fig.19(a) and (b),
illustrate that appliances scheduled before coordination have
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FIGURE 16. Electricity cost per hour (cents) (Winter season). (a) Electricity cost per hour without coordination. (b) Electricity cost per hour with
coordination.

FIGURE 17. PAR for Winter season. (a) PAR for single home. (b) PAR for multiple homes.

high waiting time as compared to appliances scheduled after
coordination is incorporated in system. BFA and HBH have
less average waiting time as compared to HSA before coordi-
nation. As coordination enables the consumers to generate an
interrupt at any time to operate priority appliance. This incor-
poration of coordination significantly minimize the waiting
time of the appliances as shown in Fig.19(b) for a single
home. Similar results are obtained when simulations are per-
formed for multiple homes. Similarly, Fig.20(a) and (b), show
the average waiting time of appliances before coordination
for a single home. The average waiting time for HBH is less
as compared to BFA and HSA before coordination, where
as, BFA show less average waiting time than HSA and HBH
after coordination. In case of multiple home, similar results
are achieved for average waiting time.

D. PERFORMANCE TRADE-OFF
Figs.13-14 clearly show the trade-off between PAR and elec-
tricity consumption cost for Summer season, respectively.

An inverse relationship between electricity consumption cost
and PAR can be observed from Figs.18-17 in Winter season.
Moreover, Figs.19-20 present the consumer comfort in terms
of waiting time for both Summer and Winter seasons. It is
clear from the figures that the trade-off between the electricity
consumption cost and consumer comfort exists. If consumers
want to minimize their electricity consumption cost then they
have to sacrifice their satisfaction level (more waiting time)
and vice versa.

E. PERFORMANCE ANALYSIS OF PROPOSED ALGORITHM
To analyze the behavior of the proposed algorithm HBH,
two test functions: Rastrigin [34] and Ackley [35] have been
implemented and comparedwith the existing techniquesHSA
and BFA. Figs. 21-22 illustrate the behaviour of all three
algorithms from where it can be envisioned that HSA has
acquired global optimal result, whereas, BFA outperforms
in local search space. Fig. 21 depicts the low convergence
of HSA, even after 100 iterations. It is not converged at
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FIGURE 18. Electricity price per day (cents) (Winter season). (a) Electricity price per day for single home. (b) Electricity price per day for
multiple homes.

FIGURE 19. Consumer comfort for single home (Summer season). (a) Consumer comfort without coordination. (b) Consumer comfort
with coordination.

FIGURE 20. Consumer comfort for single home (Winter season). (a) Consumer comfort without coordination. (b) Consumer comfort
with coordination.

optimal point. On the other hand, BFA has shown significant
amount of improvement towards optimal point after 7th iter-
ation. While, the integration of BFA and HSA operators in

HBH took advantage of both local and global convergence
which is evident from the Figs. 21-22. Hence, it can be
concluded from the results that the problem of local optima in
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FIGURE 21. Analysis of Rastrigin test function.

FIGURE 22. Analysis of Ackley test function.

BFA and global optima in HSA is tackled through hybridiza-
tion of both schemes.

VII. CONCLUSION AND FUTURE WORK
In this paper, seasonal ToU based appliance scheduling
schemes for residential DSM have been proposed. Three
heuristic algorithms: BFA, HSA, and their hybrid: HBH
are used to evaluate the performance parameters; energy
consumption cost, PAR and consumer comfort (in term of
waiting time). Two scenarios are analyzed in this work to
evaluate the consumer’s demand and behaviour of the pro-
posed home energy management system (HEMS) in Summer
and Winter seasons. Control parameters and classification of
appliances are kept the same to comparatively analyze the
performance of all participating algorithms in each season;
however, types of appliance and their power ratings are dif-
ferent in different seasons as per consumers’ need. To achieve
the targeted objectives, the concept of coordination among
appliances is introduced. This gives consumers the ability
to generate an interrupt during the schedule of the running
appliances. Scheduler terminates the operations of running
appliance immediately once an interrupt is generated in the

system, and allocates the remaining time slot to the priority
appliance. DP approach along with the heuristic technique
is used on the larger data for coordination and reschedul-
ing, ultimately increasing the consumers’ comfort and min-
imizing the electricity cost and PAR. Simulation results of
‘with coordination’ and ‘without coordination’ scenarios in
two seasons for single and multiple homes are presented in
‘simulations and results’ section. It is observed from the sim-
ulations that energy consumption cost is further minimized
with coordination, as compared to the ‘without coordination’
scenario. Our proposed scheme is efficiently proved capable
of managing the load in an optimal way to reduce energy
consumption cost, PAR and increase the consumer comfort.
However, a trade-off has been observed between the energy
consumption cost and consumer comfort.

In future, case studies of real-world implementation are
desirable to test the performance of this scheme. In addition,
multi-objective function should be designed and integration
of RES should be considered, in further extension of this
work.
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