
SPECIAL SECTION ON SOFTWARE STANDARDS AND THEIR IMPACT IN REDUCING
SOFTWARE FAILURES

Received December 23, 2017, accepted January 26, 2018, date of publication February 13, 2018, date of current version March 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2805702

Statistical Analysis of the Effects of Heavyweight
and Lightweight Methodologies on the
Six-Pointed Star Model
MUHAMMAD AZEEM AKBAR 1,2, JUN SANG 1,2, ARIF ALI KHAN3, (Senior Member, IEEE),
FAZAL-E-AMIN4, NASRULLAH1,2, SHAHID HUSSAIN3, MOHAMMAD KHALID SOHAIL3,
HONG XIANG1,2 AND BIN CAI1,2
1Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China
2School of Software Engineering, Chongqing University, Chongqing 401331, China
3COMSATS Institute of Information Technology, Islamabad 54700, Pakistan
4Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia

Corresponding author: Jun Sang (jsang@cqu.edu.cn)

This work was supported by the National Key R&D Program of China under Grant 2017YFB0802400.

ABSTRACT Traditionally, software development organizations relied on heavyweight development
methodologies, such as waterfall, V-model, and others. Later, agile development methodologies known as
lightweight methodologies were introduced. Many considered these to be more flexible and more effective
than heavyweight methodologies. Both methodologies are equally important for a software development
life cycle. The purpose of adopting software development methodologies is to optimize the process model
to achieve milestones while concurrently and effectively managing time, budget, and quality. The literature
review reveals that there is a lack of statistical evidence for determining the effect of both methodologies on
the six-pointed star model (schedule, scope, budget, risk, resource, and quality). In this paper, statistical
comparisons were performed for the effects of both methodologies on each factor of the six-pointed
star model and the interdependency among factors. Numerical analyses were conducted based on survey
responses collected from the experienced users of both methodologies. After examining the results of all the
factors of both methodologies, it was determined that lightweight methodologies are suitable for small-scale
projects and that heavyweight methodologies perform better for medium- and large-scale projects.

INDEX TERMS Heavyweight methodologies, lightweight methodologies, software development life cycle,
software requirement specification.

I. INTRODUCTION
Software systems have a great impact on everyday life. In the
beginning of the software development era, the development
activities were performed informally by following the messy
software development activities from requirement gathering
to the maintenance phase. This procedure was considered
to be effective for small projects. Software engineering has
become a growing and emerging field due to the significance
of software systems in every aspect of life. As software
engineering continued its growth, its projects became more
complex. Therefore, the development of formal software
development methodologies became vital for achieving effi-
cient and highly effective software systems.

In the early 1990s, due to the boom in software and
hardware industries, it was realized that project management
methodologies are helpful for achieving excellent results

in the production of both software and hardware products.
Due to the adoption of software development methodologies,
organizations became more efficient when producing high-
quality products within a specified time and budget [1], [2].
It is the priority of every organization to choose low-cost
software development methodologies that could provide best
practices to develop high-quality products and fulfill the orga-
nization requirements [3]. Therefore, software development
methodologies are considered to be key factors for the success
and progression of the organizations. Many methodologies
have been introduced for software projects, which are broadly
categorized as heavyweight and lightweight software devel-
opment methodologies [5].

The initially proposedmethodologies were plan-driven and
document-oriented. In the plan-driven methodologies, the
set of complete software requirements specification (SRS)

8066
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-6880-4991
https://orcid.org/0000-0002-8703-7310


M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

is constructed and followed by high-level design, architec-
tural activities and inspection activities [6]. The plan-driven
methodologies were considered heavyweight methodologies.
Heavyweight methodologies have low change rates [7]–[9].
Several experts have developed their own methodologies and
applied them in order to assess expected outcomes. These
methodologies were iterative and incremental. They were
introduced in 1975 and eventually became the bases for the
modern agile methods [7]–[10]. In 2001, a meeting was held
in which 17 process methodologists and project managers
participated. The motivation of the meeting was to highlight
the future trends of software development. They combined
different methodologies and decided to name these method-
ologies as ‘‘Agile’’, meaning sufficient and light [11]. That
meeting was declared the father of agile process methods.
They are commonly known as lightweight software develop-
ment methodologies and are now considered to be popular
development techniques [2], [7].

Software development methodologies are equally impor-
tant for both organizations and customers [3], [12]. The
software development methodologies are broadly catego-
rized as lightweight and heavyweight methodologies. Both
methodologies have their own importance.When considering
development methodologies, all factors of the project should
be taken into consideration [13]. Hence, the key objective
of this work is to highlight the best software development
methodology based on the size of the project.

The remainder of the paper is organized as follows.
Section II describes the literature, characteristics and com-
parison of heavyweight and lightweight methodologies.
In Section III, the outlines of the research methodology are
provided. Section IV describes the data collection techniques
and respondents’ information. Section V provides the results
and discussions. Lastly, Section VI is where the conclusions
are given.

II. BACKGROUND STUDY
A. CHARACTERISTICS OF HEAVYWEIGHT
METHODOLOGIES
The traditional methodologies are considered heavyweight
methodologies in which the working process is a sequential
series from outlining requirements to deployment [14], [15].
Heavyweight methodologies impose an orderly process to
make the development processmore efficient and predictable.
Heavyweight methodologies are document-oriented (com-
monly known as SRS) and are used throughout the software
development life cycle [16], [17]. At the end of the 1950s,
many methodologies were applied to software project man-
agement. The primary methodologies were used to discover
the best way of collecting requirements, dealing with prob-
lems and developing the solutions for the discovered prob-
lems in systematic ways. Some methodologies were iterative
and some were incremental in nature [10]. The other types
of methodologies were linear or sequential and are called the
Waterfall Model [18]. In the waterfall model, it is assumed

that the engineering team has perfect knowledge about the
project’s requirements at the initial phase. Therefore, on the
basis of the initial gathered requirements, all SDLC steps are
well planned. All steps are followed in a linear sequential
fashion in order to achieve the goal. Changing requirements
is discouraged due to the negative effect on the budget and
time [19]. The V-Model is yet another software development
model, which starts from the user’s requirements and finishes
at the finalized development of the system [20]. This model
has many constrictions on testing and verification. Every
phase of the model must be tested and verified. Development
begins with low-level components and is completed with
high-level components before the entire system is verified.
The iterative model was introduced to develop and deliver the
project in iterations instead of delivering the entire project at
once [21]. The project is sliced into appropriate iterations.
At the start of every iteration, the obligatory requirements for
the imminent iteration are collected. Every delivered iteration
is an addition to the previously delivered system [10].

Heavyweight methodologies are popular due to the
sequential process and its success under certain circum-
stances. There are some criticisms of heavyweight method-
ologies due to their bureaucratic approach in which the pace
of project development is slow [22].

1) PREDICTIVE APPROACH
Heavyweight software development methodology tends to be
a long process due to the scope of the detailed planning at
the beginning. It is followed by an engineering discipline
approach where the development is predictive and repeat-
able. It emphasizes drawing the system requirements and the
effectiveness and efficiency with which these requirements
are met.

2) COMPREHENSIVE DOCUMENTATION
In heavyweight software development methodologies, SRS is
the system that is considered the main part of the documen-
tation. The key tasks in traditional methodologies are the big
upfront design processes. Therefore, it is a must to collect
all the customers’ expectations and the true requirements
and to have the customer sign off prior to writing the code.
Hence, this approach has proved to be very successful in
the engineering disciplines, which makes it attractive to the
software development industry.

3) PROCESS-ORIENTED
The key idea of heavyweight methodologies is to determine
the process that will work best and implement it to achieve
the milestone [22]. The determining process must have some
tasks that are performed by the project managers, software
designers, software coders and testing teams. A well-defined
procedure is used to conduct and operate these tasks.

4) TOOL-ORIENTED
The heavyweight methodologies are tool-oriented for
project management, code editors, compilers, and others.

VOLUME 6, 2018 8067



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

They should be used for the successful completion of the
project.

B. CHARACTERISTICS OF LIGHTWEIGHT
METHODOLOGIES
Due to rigidness, heavy dependency on documentation and
long-term planning from the initial stage, the traditional
methodologies are not very attractive for software develop-
ment organizations [23]. Instead, Agile methodologies are
preferred due to having a people–oriented approach, smaller
planning phases, very light documentation, and quicker
accepted changes. Many agile methodologies exist. Every
agile methodology has the target to develop a friendly,
understandable system and rapidly provide requirements in
a changing environment [24]. A frequently developed release
methodology was introduced by Extreme Programming (XP)
in which developers work in pairs for continuous code review.
This methodology emphasizes test-driven development and
produces very robust, high-quality software. Each iteration
cycle of XP includes design, bug fixing and refactoring [25].
Scrum is a well-known agile methodology based on the
principles of lean manufacturing [23]. In scrum, a project
is planned as a short-term project (usually for 7 to 30 days)
and the requirements are collected and focused by conduct-
ing frequent, short meetings. The scrum board is used for
tracking the tasks. Hence, there is a scrum master tasked
with imposing the rules and shielding the team from distrac-
tions [26], [27]. Rapid Application Development (RAD) is
the simplest adopted agile methodology. This methodology
emphasizes minimizing the planning, focusing the prototyp-
ing and reusing the components. This methodology proved
very effective where the prototyping was enough to serve
as the final product, but experienced team members are
required [28], [29].

Highsmith and Cockburn [30] stated that the agile method-
ologies are not the process. The process is the recognition of
team members acting as the key drivers for the success of the
project. The selected team members act with intense focus
on maneuverability and effectiveness. This yield provides
new principle values that describe a vision of an agile world.
The characteristics of lightweight methodologies are as found
below.

1) PEOPLE-ORIENTED
Lightweight methodologies are considered people- or
customer-oriented. The important success factors in
lightweight methodologies are developers, stakeholders and
end users. The project success rate depends on the agile team
members [30]. According to Highsmith and Cockburns [31],
the most significant impact of the managers is that people
factors are more emphasized, including sociability, skill,
talent and communication.

2) ADAPTIVE
Lightweight methodologies permit changes to requirements
and the status of the project [32]. Today, it is not a challenge to

stop changes. The concentrated focus is on how the changes
are handled in an effective and efficient way. The externally
occurring changes that result from environmental causes are
a critical variation since these types of changes are not
reducible, especially since decreasing the budget is the typical
response [30].

3) CONFORMANCE TO ACTUAL
The lightweight methodologies are opposed to detailed plans
and instead conformance is treated as the actual values.
According to Highsmith, agility is controlled as conformance
to the business values instead of control within the confor-
mance plan [33]. The end user decides the business values
that will be added at every iteration of the development cycle
to the ongoing product.

4) BALANCING FLEXIBILITY AND PLANNING
Planning is very important, but in lightweight methodologies,
the future prediction of the project is challenging. Due to the
consideration of multiple variables, the best way to plan is
a weekly detailed plan, a rough plan for the coming month
and a very crude plan for beyond [11]. Therefore, the vision
is that, while making decisions, the likelihood of variability
should be taken into account at every stage [29].

5) EMPIRICAL PROCESS
When using lightweight methodologies, software is devel-
oped in an empirical way. In engineering, methods are either
empirical or defined. Therefore, the defined processes are not
considered due to the demanding changes and the adoption of
required changes during development. According to Laurie
Williams, defined processes are unlikely due to the non-
acceptance of required changes since, when requirements
change, technology will also be changed [30].

6) DECENTRALIZED APPROACH
Lightweight methodologies that use a decentralized man-
agement style have a positive impact on a software project
rather than an autocratic management process. In lightweight
methodologies, decisions are spread out to the developers,
but this does not mean that the developers take part in man-
agement. Instead, developers support the management team
when they are making appropriate technical decisions [7].

7) SIMPLICITY
The heavyweight methodology team always takes the sim-
plest way necessary to achieve its goals. Project teams do not
think about tomorrow’s problems [32]. Due to the simplicity,
it is easy to manage the design changes, never produce more
than what is required and always try to develop the appropri-
ate project [34].

8) COLLABORATION
The customer is closely involved throughout the SDLC. This
has proven helpful for the development team in receiving

8068 VOLUME 6, 2018



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

regular feedback from the customer [32]. The decentral-
ized approach of the lightweight methodologies encourages
collaborative discussions.

9) SMALL SELF-ORGANIZED TEAMS
The teams in lightweight methodologies are self-organized.
All aspects of the project are communicated to the team and
the team chooses the best way to achieve them. Lightweight
methodologies are effective in adopting small development
teams. However, a large team is difficult to manage and the
ideas used to achieve the milestone are dispersed [31].

C. BRIEF COMPARISON OF LIGHTWEIGHT AND
HEAVYWEIGHT METHODOLOGIES
Traditional software development methodologies were intro-
duced a long time ago. In 1970, Royce presented a sequential
methodology for software development named the water-
fall model, which has proven very useful [38]. Despite the
project success, it has had many limitations, such as linearity
and inflexible requirements a formal process of development
with respect to the project size. Hence, the drawbacks were
addressed by Kent Beck when he launched Extreme pro-
gramming [39]. This became the first agile methodology and
proved very effective in software development. The agile
methodology dealt with volatile and unstable requirements by
supporting a number of techniques and focusing the collab-
oration among customers and developers that support early
product deployment. A brief comparison of both methodolo-
gies is illustrated in Table 1.

TABLE 1. Comparison of heavyweight and lightweight methodologies.

III. RESEARCH METHODOLOGY
Both methodologies have similarities and differences, as pre-
viously discussed. The existing analyses are not based on the
numerical data but rather depend upon the user’s implemen-
tation, experience and opinions about both methodologies.

FIGURE 1. Six-pointed star model (wikipedia.org/wiki/File:
TripleConstraint.jpg.)

FIGURE 2. First triangle of the six-pointed star.

To the contrary, our analysis is based on the six-pointed
star model of project management (Fig. 2) rather than tradi-
tional project input/output and process factors. Traditionally,
the considered factors for successful software development
are time, costs and scope [35]. The project management
body of knowledge (PMBOK 4.0) provides an updated triple
constraints model based on six factors that include sched-
ule, scope, budget, risk, resources, and quality. Every fac-
tor has its own importance for the success of the software
project [36], [37]. The presented six-pointed star model
is divided into two triangles in which the first one con-
tains input/output factors of schedule, scope, and budget
(Fig. 3), while the other triangle contains risk, resources and
quality (Fig. 4).

The schedule factor is responsible for the on-time
completion of the project. Scope focuses on the goals and
mission of the project and the requirements. Budget is respon-
sible for meeting the requirements of the project within the
declared budget and achieving the targeted return on invest-
ment. Risk identifies the causes of risk and manages them.
Resources are responsible for the assurance of the availability

VOLUME 6, 2018 8069



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

FIGURE 3. Second triangle of the six-pointed star.

of both the personnel and material needed for the project.
Quality is related to the inclusive success of the project.
Hence, we check the statistical effects of both the method-
ologies on each factor of the six-pointed star model.

IV. DATA COLLECTION
A survey was used to collect the numerical responses from
the subjects. For this purpose, the developed questionnaire
was categorized into three sections. The first section contains
the general information about the respondent and their orga-
nization. The second section contains questions related to the
factors of the six-pointed star model (as shown in Table 1).
The third section contains queries to check the relationship
of one factor of the six-pointed star to other factors. The
survey was conducted from January to April (2017) and
twenty organizations participated in this survey. To assess the
survey questions, a five-point Likert scale was used (strongly
disagree, disagree, neutral, agree and strongly agree). The
collected data was summarized and statistical graphical tech-
niques were applied by using well known statistical tools.

According to general information, approximately 57%
of the respondents belong to a software organization,
18% belong to an educational organization (Doctoral
student), 13% belong to telecommunications, and the remain-
ing 12% are from other fields. Furthermore, 43% of the
organizations have a range of 50 – 100 staff members, 37%
have a range of 20 – 50 staff members, and 20% have a range
of 100 – 300 staff members. Approximately 52% of
the respondents used capability quality standards. Accord-
ing to the respondents, 70% adopted new methodologies\
technologies from the market leader. For lightweight method-
ologies, 60% of the respondents stated that they have average
knowledge and 23% of the respondents stated that they have
extensive knowledge of the methodologies. For knowledge of
heavyweight methodologies, 52% of the respondents stated
that they have very extensive knowledge, 43% of the respon-
dents stated that they have extensive knowledge and the
remaining 5% have average knowledge. Additionally, 52% of
the participants responded that the most appealing element of
lightweight methodology was people orientation versus pro-
cess orientation and 36% stated that it was working with code

TABLE 2. Queries related to the six-pointed star model for both
methodologies.

versus documentation. According to general views of respon-
dents, lightweight methodologies provide better results for
small- and medium-scale projects and heavyweight method-
ologies provide better results for large-scale projects.

V. RESULTS AND DISCUSSIONS
According to the second part of the survey questionnaire,
wide data were collected and results were finalized. The Lik-
ert scale was categorized into three phases. The phases are as
follows: a) strongly agree + agree, b) neutral, and c) strongly
disagree + disagree. For presenting the results, only part ‘‘a’’
will be used, which shows the respondents’ opinions about
each factor. For more specific opinions, projects are catego-
rized as small-scale, medium-scale and large-scale projects.

A. SCHEDULE FACTOR
The results of the schedule factors are presented
in figure 4. It shows that in small-scale projects, collecting
requirements is more significant in lightweight than in heavy-
weight methodologies. It also shows that in-time delivery
is equal in both methodologies, but work flow is more sig-
nificant in heavyweight than in lightweight methodologies.
Furthermore, by determining the results of medium- and
large-scale projects, it is shown that increasing the project size
decreases the significance of the lightweight methodology.
Therefore, lightweight methodologies are more effective for
small-scale projects, and the schedule factor is more effective
for heavyweight methodologies.

8070 VOLUME 6, 2018



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

FIGURE 4. Effect of heavyweight and lightweight methodologies on the
schedule factor.

FIGURE 5. Effect of heavyweight and lightweight methodologies on the
scope factor.

B. SCOPE FACTOR
Figure 5 shows a graphical representation of the scope factor.
By using lightweight methodologies for small-scale projects,
the project scope is well defined and clearer compared to
the heavyweight methodologies. For medium scale projects,
both methodologies are equally efficient for defining and
understanding the project scope. Furthermore, for large-scale
projects, heavyweight methodologies are much better for
both variables than lightweight methodologies.

C. BUDGET FACTOR
Figure 6 illustrates the results for the budget factor.
Lightweight methodologies lead to more satisfactory project
completions within budget and returns on investment in
small-scale projects as opposed to using heavyweight
methodologies. For medium-scale projects, the return on
investment is the same in both methodologies, but the com-
pletion within budget is better using heavyweight method-
ologies rather than lightweight. For large-scale projects,
heavyweight methodologies are much more significant in
both queries as opposed to lightweight methodologies.

FIGURE 6. Effect of heavyweight and lightweight methodologies on the
budget factor.

Hence, the graph shows that the budget factor in lightweight
methodologies is the best for small- and medium-scale
projects, but heavyweight methodologies are more satisfac-
tory in large-scale projects.

FIGURE 7. Effect of heavyweight and lightweight methodologies on the
risk factor.

D. RISK FACTOR
The risk factor is key in software project management.
Figure 7 provides a graphical representation that shows
the results of the risk factor. Lightweight methodolo-
gies are poorer than heavyweight methodologies for man-
aging project risk and opportunities for all scales of
projects. Successfully meeting the objectives of the busi-
ness requires lightweight methodologies to be superior in
small-scale projects, whereas bothmethodologies are equal in
medium-scale projects. For large-scale projects, heavyweight
methodologies are much more significant than lightweight
methodologies.

E. RESOURCE FACTOR
Figure 8 shows the graphical representation of the concluded
results of resource factor. Lightweight methodologies are of
greater significance for the availability and better utilization

VOLUME 6, 2018 8071



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

FIGURE 8. Effect of heavyweight and lightweight methodologies on the
resource factor.

of resources than heavyweight methodologies in small-scale
projects. Inmedium-scale projects, resource availability is the
same in both methodologies but the utilization of resources
is the best in heavyweight methodologies. For large-scale
projects, the availability and utilization of resources have
better results using heavyweight methodologies compared to
the lightweight methodologies.

FIGURE 9. Effect of heavyweight and lightweight methodologies on the
quality factor.

F. QUALITY FACTOR
Figure 9 illustrates the graphical representation of the qual-
ity factor. Lightweight methodologies are of greater sig-
nificance in small-scale projects rather than heavyweight
methodologies. Lightweight methodologies have greater
client satisfaction and project success scores and an equiv-
alent quality requirement score as heavyweight methodolo-
gies. For medium-scale projects, quality requirements are
equal in both methodologies, whereas client satisfaction is
better with lightweight methodologies. However, the project
success rate is much better with heavyweight rather than
lightweight methodologies. For the development of large-
scale projects, heavyweight methodologies are appreciably
better in all quality factor variables

FIGURE 10. Effect on risk, resource and quality factors with respect to
budget.

FIGURE 11. Effect on quality factor with respect to schedule factor.

FIGURE 12. Effect on quality factor with respect to project size and
experience of the team.

G. EFFECT ON RISK, RESOURCE AND QUALITY
FACTORS WITH RESPECT TO BUDGET
Budget is a sensitive factor. Therefore, the budget affects the
different factors of the six-pointed star model differently. The
graphical representation in figure 10 presents the effects of
the budget factor on risk, resource and quality factors under
both methodologies. For small-scale projects, heavyweight
methodologies are more effective than lightweight method-
ologies for the three variables. For medium-scale projects,
the effects on quality factors are the same in both method-
ologies, but risk and resource factors are more affected in
heavyweight methodologies due to the changing budget.

8072 VOLUME 6, 2018



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

VOLUME 6, 2018 8073



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

8074 VOLUME 6, 2018



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

VOLUME 6, 2018 8075



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

8076 VOLUME 6, 2018



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

For large-scale projects, the effects on the risk factor are
the same in both methodologies, but resource and quality
factors are more effective in heavyweight methodologies
rather than lightweight methodologies. Therefore, it is deter-
mined that heavyweight methodologies are more sensitive
than lightweight methodologies with respect to the budget
factor.

H. EFFECT ON THE QUALITY FACTOR WITH RESPECT
TO THE SCHEDULE FACTOR
Figure 11 shows the graphical representation of the effect
on quality factors with respect to the schedule factor.
Heavyweight methodologies are more affected by schedule
changes. Therefore, the analyzed results show that heavy-
weight methodologies are very rigid. The schedule factor
plays a significant role in the success of the project using
heavyweight methodologies.

I. EFFECT ON THE QUALITY FACTOR WITH RESPECT TO
PROJECT SIZE AND THE EXPERIENCE OF THE TEAM
According to the summarized results shown in figure 12,
project size and the expertise of the project team mem-
bers affect the lightweight methodologies more than the
heavyweight methodologies for all types of projects. Hence,
the quality of the projects using lightweight methodologies
highly depends on the project size and the expertise of the
team members.

VI. CONCLUSIONS
The analyses were conducted in order to define the char-
acteristics of the software development methodologies and
determine the best methodology according to the project and
organizational requirements. According to the summarized
results in the factors of the six-pointed star model, it is proven
that almost all factors favor lightweight methodologies for
small-scale projects. When testing medium-scale projects,
there is a huge fluctuation between the variables of all factors
for both methodologies, but it appears that both methodolo-
gies are quite similar in this case. Nonetheless, heavyweight
methodologies are better in some measures to some extent.
The concluded results of both methodologies for large-scale
projects show that heavyweight methodologies are much
more satisfactory for all factors of the six-pointed star model.
When examining the effect of the budget factor on risk,
resource and quality factors, heavyweight methodologies are
much more sensitive than lightweight methodologies for all
sized projects. When analyzing the effect of the schedule
factor on the quality factor, it is determined that heavyweight
methodologies are largely affected in all scale projects. While
examining the effect of project size and developer expertise, it
is determined that lightweight methodologies are much more
sensitive.

Therefore, it is concluded that quality of the product
and success rate depends upon team size and developer
experience by adopting lightweight methodologies. In con-
clusion, after examining the results of all factors upon both

methodologies, it is determined that lightweight methodolo-
gies are the best for small-scale projects and that heavy-
weight methodologies are better for medium- and large-scale
projects.

In the future, we plan to analyze the effect of software
development methodologies on the six-pointed star model in
global software development.

APPENDIX
See Questionnaire.

REFERENCES
[1] L. R. Vijayasarathy and C. W. Butler, ‘‘Choice of software development

methodologies: Do organizational, project, and team characteristics mat-
ter?’’ IEEE Softw., vol. 33, no. 5, pp. 86–94, Sep./Oct. 2016.

[2] H. Lei, F. Ganjeizadeh, P. K. Jayachandran, and P. Ozcan, ‘‘A statistical
analysis of the effects of Scrum and Kanban on software development
projects,’’ Robot. Comput.-Integr. Manuf., vol. 43, pp. 59–67, Feb. 2015.

[3] M. Niazi et al., ‘‘Challenges of project management in global software
development: A client-vendor analysis,’’ Inf. Softw. Technol., vol. 80,
pp. 1–19, Dec. 2016.

[4] N. M. A. Munassar and A. Govardhan, ‘‘A comparison between five
models of software engineering,’’ Int. J. Comput. Sci. Issues, vol. 7, no. 5,
pp. 95–101, 2010.

[5] A. I. Khan, R. J. Qurashi, and U. A. Khan. (2011). ‘‘A comprehensive study
of commonly practiced heavy and light weight software methodologies.’’
[Online]. Available: https://arxiv.org/abs/1111.3001

[6] A. Aitken and V. Ilango, ‘‘A comparative analysis of traditional software
engineering and agile software development,’’ in Proc. 46th Hawaii Int.
Conf. IEEE Syst. Sci. (HICSS), Jan. 2013, pp. 4751–4760.

[7] M. A. Awad, ‘‘A comparison between agile and traditional software devel-
opment methodologies,’’ School Comput. Sci. Softw. Eng., Univ. Western
Australia, Perth, WA, Australia, Tech. Rep., 2005, pp. 1–38.

[8] A. Gunasekaran, ‘‘Agile manufacturing: A framework for research and
development,’’ Int. J. Prod. Econ., vol. 62, nos. 1–2, pp. 87–105, 1999.

[9] R. T. Futrell, D. F. Shafer, and L. Shafer, Selecting Software Devel-
opment Life Cycles, Quality Software Project Management, 1st ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002, pp. 101–161.

[10] C. Larman and V. R. Basili, ‘‘Iterative and incremental developments:
A brief history,’’ IEEE Comput., vol. 36, no. 6, pp. 47–56, Jun. 2003.
[Online]. Available: http://dx.doi.org/10.1109/ MC.2003.1204375

[11] J. A. Highsmith, Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems. Reading, MA, USA: Addison-
Wesley. 2000.

[12] S. Faraj and L. Sproull, ‘‘Coordinating expertise in software development
teams,’’ Manage. Sci., vol. 46, no. 12, pp. 1554–1568, 2000.

[13] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, ‘‘Agile software
development methods: Review and analysis,’’ VTT Pub. 478, Espoo,
Finland, Tech. Rep., 2002, p. 107.

[14] P. Meso and R. Jain, ‘‘Agile software development: Adaptive systems
principles and best practices,’’ Inf. Syst. Manage., vol. 23, no. 3, pp. 19–30,
2006.

[15] J. Erickson, K. Lyytinen, and K. Siau, ‘‘Agile modeling, agile soft-
ware development, and extreme programming: The state of research,’’
J. Database Manage., vol. 16, no. 4, pp. 88–100, 2005.

[16] S. Kuppuswami, K. Vivekanandan, P. Ramaswamy, and P. Rodrigues,
‘‘The effects of individual XP practices on software development effort,’’
ACM SIGSOFT Softw. Eng. Notes, vol. 28, no. 6, p. 6, 2003.

[17] B. Boehm, ‘‘Get ready for agile methods, with care,’’ Computer, vol. 35,
no. 1, pp. 64–69, Jan. 2002.

[18] H. D. Benington, ‘‘Production of large computer programs,’’ in Proc.
Navy Symp. Adv. Programm. Methods Digit. Comput. Office Naval Res.,
Washington, DC, USA, 1956, pp. 15–28.

[19] R. T. Futrell, D. F. Shafer, and L. Shafer, Selecting Software Devel-
opment Life Cycles, Quality Software Project Management, 1st ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002, pp. 101-161.

[20] B. Blanchard and W. Fabrycky, Systems Engineering and Analysis, 4th ed.
Upper Saddle River, NJ, USA: Prentice Hall, 2011.

[21] V. R. Basil and A. J. Turner, ‘‘Iterative enhancement: A practical technique
for software development,’’ IEEE Trans. Softw. Eng., vol. SE-1, no. 4,
pp. 390–396, Dec. 1975.

VOLUME 6, 2018 8077



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

[22] M. Fowler. The New Methodology. Accessed: Dec. 12, 2004. [Online].
Available: http://www.martinfowler.com/articles/newMethodology.html

[23] M. James. (2009). Scrum Methodology. Accessed: Apr. 8, 2015. [Online].
Available: http://scrummethodology.com?

[24] K. Beck, ‘‘Embracing changewith extreme programming,’’ IEEEComput.,
vol. 32, no. 10, pp. 70–77, Oct. 1999.

[25] M. Alshayeb and W. Li, ‘‘An empirical study of system design instability
metric and design evolution in an agile software process,’’ J. Syst. Softw.,
vol. 74, no. 3, pp. 269–274, 2005.

[26] K. Schwaber and J. Sutherland. (2011). The Scrum Guide, the Definitive
Guide to Scrum: The Rules of the Game. Accessed: Jun. 14, 2012.
[Online]. Available: http://www.scrum.org/Portals/0/Documents/
ScrumGuides/Scrum_Guide.pdf?

[27] L. Rising and N. S. Janoff, ‘‘The Scrum software development process for
small teams,’’ IEEE Softw., vol. 17, no. 4, pp. 26–32, Aug. 2000.

[28] J. Highsmith, Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems. Reading, MA, USA: Addison-Wesley,
2013.

[29] J. Feller and B. Fitzgerald, ‘‘A framework analysis of the open source
software development paradigm,’’ in Proc. 21st Int. Conf. Inf. Syst., 2000,
pp. 58–69.

[30] J. Highsmith andA. Cockburn, ‘‘Agile software development: The business
of innovation,’’ IEEE Comput., vol. 34, no. 9, pp. 120–127, Sep. 2001,
accessed: Oct. 10, 2004. [Online]. Available: http://www.jimhighsmith.
com/articles/IEEEArticle1Final.pdf

[31] J. Highsmith and A. Cockburn, ‘‘Agile software development, the peo-
ple factor,’’ IEEE Comput., vol. 34, no. 11, pp. 131–133, Nov. 2001,
accessed: Oct. 10, 2005. [Online]. Available: http://www.jimhighsmith.
com/articles/IEEEArticle2Final.pdf

[32] M. Fowler. The New Methodology. Accessed: Dec. 12, 2004. [Online].
Available: http://www.martinfowler.com/articles/newMethodology.html

[33] J. Highsmith, Agile Software Development Ecosystem. Reading, MA,
USA: Addison-Wesley, 2002.

[34] P. Wendorff, An Essential Distinction of Agile Software Development Pro-
cesses Based on Systems Thinking in Software Engineering Management.
Reading, MA, USA: Addison-Wesley, 2000, p. 218.

[35] C. Chatfield and T. Johnson. (2007). Microsoft Office Project
2007 Step by Step. Accessed: Jul. 14, 2012. [Online]. Available:
http://office.microsoft.com/en-us/project-help/a-short-course-in-project-
management-HA010235482.aspx#BMtime?

[36] W. R. Duncan, ‘‘A guide to the project management body of knowledge,’’
Project Manage. Inst., Upper Darby, PA, USA, Tech. Rep., 1996.

[37] K. Schwaber, Agile Project Management With Scrum. Redmond, WA,
USA: Microsoft Press, 2004.

[38] W. Royce, ‘‘CMM vs. CMMI: From conventional to modern software
management,’’ Rational Edge., pp. 2–9, Feb. 2002.

[39] J. Grenning, ‘‘Launching extreme programming at a process-intensive
company,’’ IEEE Softw., vol. 18, no. 6, pp. 27–33, Nov. 2001.

MUHAMMAD AZEEM AKBAR received the
M.Sc. and M.S. degrees in computer science from
the University of Agriculture Faisalabad, Faisal-
abad, Pakistan. He is currently pursuing the Ph.D.
degree with the Department of Software Engi-
neering, Chongqing University, China. He has
an Outstanding Academic Carrier. His research
interests are global software development life
cycle, requirements engineering, empirical stud-
ies, global software requirements change manage-

ment, software defect prediction, and software risk management.

JUN SANG received the B.Sc. degree from Shang-
hai Jiao Tong University, China, in 1990, the M.E.
degree and the Ph.D. degree in computer science
from Chongqing University, China, in 1993 and
2005, respectively. He is currently a Professor with
the School of Software Engineering, Chongqing
University. His research interests include software
engineering, digital imagewatermarking, informa-
tion security, and image processing.

ARIF ALI KHAN (SM’17) received the B.S.
degree in software engineering from the Univer-
sity of Science and Technology, Bannu, Pakistan,
in 2010, the M.Sc. degree in information tech-
nology from Universiti Teknologi PETRONAS,
Malaysia, and the Ph.D. degree in software
engineering from the Department of Computer
Science, City University of Hong Kong. He is cur-
rently an Active Researcher in the field of empir-
ical software engineering. He has participated in

and managed several software engineering related research projects. He is
interested in software process improvement, 3C’s (communication, coor-
dination, and control), global software development and evidence-based
software engineering. He is a Student Member of ACM.

FAZAL-E-AMIN received the B.S. degree in com-
puter science from Hamdard University in 2003,
the master’s degree in information technology
from Quid-i-Azam University in 2005, the mas-
ter’s degree in software engineering from Inter-
national Islamic University in 2008, and the
Ph.D. degree from the Department of Computer
and Information Sciences, Universiti Teknologi
PETRONAS, in 2012. He is currently serving as an
Assistant Professor with the Department of Soft-

ware Engineering, College of Computer and Information Sciences, King
Saud University. His research interest includes open source software, soft-
ware usability, software quality, and global software development.

NASRULLAH received the M.S. degree in com-
puter engineering from the University of Engi-
neering and Technology, Taxila, Pakistan, in 2009.
He is currently pursuing the Ph.D. degree in soft-
ware engineering from the Chongqing University
of China. His research interests are in image com-
pression, image encryption, data hiding, machine
learning, and deep learning.

SHAHID HUSSAIN received the M.Sc. degree
in computer science from Gomal University, Dera
Ismail Khan, and theM.S. degree in software engi-
neering from the City University of Science and
Information Technology, Peshawar, Pakistan, and
the Ph.D. degree in software engineering from the
Department of Computer Science, City University
of Hong Kong. His research interests include the
software design patterns and metrics, text min-
ing, empirical studies, data science, and software

defect prediction. He was a recipient of the Outstanding Academic Perfor-
mance Award from City University of Hong Kong.

MOHAMMAD KHALID SOHAIL received the
Ph.D. degree fromMohammad Ali Jinnah Univer-
sity. He is currently an Assistant Professor with the
COMSATS Institute of Information Technology,
Islamabad. He had a great teaching, research, and
publication experience. He has published several
high impact research journal papers. His current
research interest is to target the financial issues and
strategies in the industries and the role of software
engineering practices.

8078 VOLUME 6, 2018



M. A. Akbar et al.: Statistical Analysis of the Effects of Heavyweight and Lightweight Methodologies

HONG XIANG received the B.Sc. degree in math-
ematics from Sichuan Normal University, China,
in 1984, theM.Sc. degree inmathematics and com-
puter science from Lakehead University, Canada,
in 1992, and the Ph.D. degree in mathematics from
the University of Alberta, Canada, in 1998. He is
currently a Professor with the School of Software
Engineering, Chongqing University. His research
interests include software engineering, informa-
tion security, and cryptography.

BIN CAI received the B.Sc. degree from South-
west Normal University, China, in 2002, and the
M.Sc. degree and the Ph.D. degree in mechanical
engineering from Chongqing University, China,
in 2005 and 2012, respectively. He is currently an
Associate Professor with the School of Software
Engineering, Chongqing University. His research
interests include software engineering, optimiza-
tion method, and cryptography.

VOLUME 6, 2018 8079


	INTRODUCTION
	BACKGROUND STUDY
	CHARACTERISTICS OF HEAVYWEIGHT METHODOLOGIES
	PREDICTIVE APPROACH
	COMPREHENSIVE DOCUMENTATION
	PROCESS-ORIENTED
	TOOL-ORIENTED

	CHARACTERISTICS OF LIGHTWEIGHT METHODOLOGIES
	PEOPLE-ORIENTED
	ADAPTIVE
	CONFORMANCE TO ACTUAL
	BALANCING FLEXIBILITY AND PLANNING
	EMPIRICAL PROCESS
	DECENTRALIZED APPROACH
	SIMPLICITY
	COLLABORATION
	SMALL SELF-ORGANIZED TEAMS

	BRIEF COMPARISON OF LIGHTWEIGHT AND HEAVYWEIGHT METHODOLOGIES

	RESEARCH METHODOLOGY
	DATA COLLECTION
	RESULTS AND DISCUSSIONS
	SCHEDULE FACTOR
	SCOPE FACTOR
	BUDGET FACTOR
	RISK FACTOR
	RESOURCE FACTOR
	QUALITY FACTOR
	EFFECT ON RISK, RESOURCE AND QUALITY FACTORS WITH RESPECT TO BUDGET
	EFFECT ON THE QUALITY FACTOR WITH RESPECT TO THE SCHEDULE FACTOR
	EFFECT ON THE QUALITY FACTOR WITH RESPECT TO PROJECT SIZE AND THE EXPERIENCE OF THE TEAM

	CONCLUSIONS
	REFERENCES
	Biographies
	MUHAMMAD AZEEM AKBAR
	JUN SANG
	ARIF ALI KHAN
	FAZAL-E-AMIN
	NASRULLAH
	SHAHID HUSSAIN
	MOHAMMAD KHALID SOHAIL
	HONG XIANG
	BIN CAI


