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ABSTRACT We propose a machine learning approach, based on analytical inference in Gaussian process
regression (GP), to locate users from their uplink received signal strength (RSS) data in a distributed
massive multiple-input-multiple-output setup. The training RSS data is considered noise-free, while the
test RSS data is assumed to be noisy due to shadowing effects of the wireless channel. We first apply an
analytical moment matching-based GP method, namely, the Gaussian approximation GP (GaGP), and make
the necessary extensions to suit the problem under study. The GaGP method learns from the stochastic
nature of the test RSS data to provide more realistic 2σ error-bars on the estimated locations than the
conventional GP (CGP) method. Despite the improvement in 2σ error-bars, simulation studies reveal that
the GaGP method achieves similar root-mean-squared estimation error (RMSE) performance as the CGP
method. To address this concern, we propose a new GP method, namely the reconstruction-cum-Gaussian-
approximation GP (RecGaGP) method. RecGaGP not only achieves lower RMSE values than the CGP and
GaGP methods, but also provides realistic 2σ error-bars on the estimated locations. This ability is achieved
by first reconstructing the test RSS from a low-dimensional principal subspace of the noise-free training
RSS and then learning from the statistical properties of the residual noise present. For both the GaGP and
RecGaGP methods, closed-form expressions are derived for the estimated user locations and the associated
2σ error-bars. Numerical studies reveal that the GaGP and RecGaGP methods indeed provide realistic 2σ
error-bars on the estimated user locations and their RMSE performances are very close to the Cramer–Rao
lower bounds. Also, their RMSE performances saturate beyond a certain point when the number of BS
antennas and/or the number of training locations are increased.

INDEX TERMS Machine learning, Gaussian process regression, massive MIMO, user positioning.

I. INTRODUCTION
The ability to position cellular users from their radio signal
information can be useful for telecommunication operators
because a variety of context-aware services become pos-
sible, for example, delivering custom-made advertisements
and offloading data to nearby Wi-Fi hotspots. Traditionally,
global positioning systems (GPSs) are used to locate users
remotely, but the GPS estimates are unreliable for users in
cluttered environments [1]. Also, GPS sensors can quickly
drain the user’s battery. Other positioning techniques rely
on radio signal information from the users, such as the

angle-of-arrival (AOA), time-of-arrival (ToA), and/or
received signal strength (RSS) [2]. AoA methods provide
coarse estimates under non-line-of-sight conditions. ToA
methods require expensive hardware at the base station (BS)
because they rely on tight timing synchronization. Whereas,
the RSS information can be readily measured using existing
hardware at the BSs and is therefore chosen in our work as
the signal property for user positioning.

The massive multiple-input multiple-output (MIMO) [3]
technology allows us to employ supervised machine learn-
ing (ML) to estimate user locations from their uplink RSS
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data. Whenever a user transmits on the uplink, we can obtain
a vector comprising RSS values measured at each base
station (BS) antenna. An ML model can then be trained with
a database comprising RSS vectors at several known user
locations. The trained ML model, when input with the RSS
vector of a test user, provides the user’s location coordinates
as the output.

In this work, we propose a machine learning approach
based on Gaussian process regression (GP) to estimate user
locations from their uplink RSS vectors in a distributed mas-
sive MIMO system. Our approach is built on the Gaussian
process regression (GP) framework, so as to obtain both the
location estimates and their 2σ error-bars in closed-form.
A challenging aspect of using RSS vectors for user posi-
tioning is that the recorded RSS values may be noisy due
to channel impairments in the form of small-scale fading
and shadowing. For the training phase, we consider noise-
free RSS vectors because they are easy to generate. For this,
we would only require knowledge of the training users’ trans-
mission power, their location coordinates, the BS antenna
locations, and the path-loss exponent. For the test phase,
we consider the RSS data as noisy due to shadowing. This is
because (i) the small-scale fading effects can be temporally
averaged out [4] and (ii) the shadowing effects need to be
spatially averaged out, but this is not possible due to unknown
test user locations.

It is known that the conventional GP (CGP) method treats
the noisy test RSS vectors as noise-free and therefore pro-
vides unrealistically small 2σ error-bars on the estimated
locations [6]. To address this concern, we first consider the
use of an analytical moment-matching based GP method,
namely, the Gaussian approximation GP (GaGP) method,
for user positioning. In the GaGP method, we first derive
the true predictive distribution of the test user locations by
taking the stochastic nature of the test RSS vectors into
account. Since the derived distribution cannot be obtained
in a closed-form, we approximate it analytically as a Gaus-
sian with the same first and second order moments. Despite
the improvement in 2σ error-bars, we find through simu-
lations that the GaGP method achieves similar root-mean-
squared prediction error (RMSE) performance as the CGP
method. To address this concern, we propose a new GP
method, namely, the reconstruction-cum-Gaussian approx-
imation GP (RecGaGP) method. RecGaGP estimates the
test user locations by firstly reconstructing their RSS data
from a low-dimensional principal subspace of the noise-free
training RSS and then learning from the statistical properties
of the noise present in the reconstructed RSS. While the
reconstruction step allows the RecGaGP method to achieve
better RMSE performance than the CGP and GaGP methods,
the statistical learning step allows it to provide realistic 2σ
error-bars on the estimated locations. Below are the main
contributions of this work.
(i) For the specific machine learning problem of posi-

tioning users in distributed massive MIMO with their
uplink RSS, ours is the first work to derive analytical

expressions for the mean and 2σ error-bars of the test
user locations. We do so by applying an analytical
moment-matching based GP method, namely, the GaGP
method. A similar method was proposed earlier in [29]
for time-series analysis when a squared exponential GP
covariance function is used. We make the necessary
extensions here to accommodate our weighted-sum GP
covariance model of squared exponential, inner product,
and delta terms.

(ii) When the GaGPmethod is employed with the weighted-
sum GP covariance model mentioned above, we derive
closed-form expressions for the mean and variance of
the test user locations and derive two key insights. First,
by making the necessary mathematical abstractions,
we show that the derived mean and variance expressions
in GaGP are similar in structure to those obtained from
the conventional GP method, but with several additive
and multiplicative correction factors that account for the
noisy nature of the test RSS data. Second, for the special
case where the test RSS data is noise-free, we show
that the mean and variance expressions from the GaGP
and the conventional GP methods are exactly the
same.

(iii) We propose a new GP method, namely, the RecGaGP,
which achieves better RMSE performance than the
GaGP method, and also provides realistic 2σ error-bars
on the estimated locations. The superior RMSE perfor-
mance is because the test RSS vectors are reconstructed
from a principal subspace of the noise-free training
RSS, before being used as inputs for location prediction.
Realistic 2σ error-bars are obtained for the estimated
locations because RecGaGP learns from the statisti-
cal properties of the noise present in the reconstructed
test RSS.

(iv) We also present a comprehensive analysis of the com-
putational complexities of the two GP methods under
study. Our analysis shows that both the GaGP and Rec-
GaGP methods incur similar cost in providing the loca-
tion estimates as the conventional GP method and that
they are suitable for operation in the massive MIMO
regime.

(v) We provide insights on the impact of the number of
training locations and the number of BS antennas on the
root-mean-squared-error (RMSE) performance of the
GaGP and RecGaGP methods. For both the GP meth-
ods, we observe that the RMSE performance improves
initially, followed by saturation beyond a certain point,
when the number of training locations or BS antennas is
increased.

Following is the outline for the rest of the paper. We present
the literature review in Section II, the system model and the
machine learning setup in Section III, the GaGP method in
Section IV, the RecGaGP method in Section V, the compu-
tational complexities of GaGP and RecGaGP in Section VI,
numerical studies in Section VII, and few concluding remarks
in Section VIII.
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II. RELATED WORK
A. MACHINE LEARNING TECHNIQUES FOR
USER POSITIONING
Ranging-based location prediction techniques [4]–[7] have
been widely investigated in the wireless networks literature.
These techniques use TOA or RSS measurements to esti-
mate the position of a user by firstly estimating the range to
three or more base stations (BSs) and then applying trilater-
ation. While the TOA-based ranging methods require tight
synchronization and high signal bandwidth for accurate posi-
tioning, the RSS-based ranging methods typically provide
coarse estimates due to non-line-of-sight (NLoS) effects. Few
papers, such as [8]–[10], first identify and mitigate non-line-
of-sight (NLoS) effects in the wireless signals and then apply
ranging methods for user positioning. These methods rely
on the comparison of certain statistical features of the signal
measurements, such as the mean, variance, and skewness, for
NLoS identification. Consequently, accurate estimates of the
statistical distributions are required, which may not always
be possible because a large number of measurements would
be required for different distances. With these shortcomings
in mind, we focus on the use of machine learning for user
positioning.

Both unsupervised machine learning techniques, for
example k-nearest neighbors [11], [12], and supervised
machine learning techniques, for example, support vector
machines [13], [14], GPmethods [5], [18], and more recently,
deep learning methods [15], [16], have been explored in the
literature for user positioning applications. We choose to
work with GP methods for two reasons. First, GP methods
can provide us with closed-form expressions for the esti-
mated user locations and also their 2σ error-bars. Second, GP
methods lend themselves to Cramer-Rao type lower bounds
on the prediction performance. This is unlike most other
machine learning methods, including the recently popular
deep learning methods [17].

B. GP METHODS FOR USER POSITIONING
Most of the existing GP works [18]–[21] obtain user loca-
tions in an inverse fashion. During the training phase, GP
models are trained with location estimates as input and their
RSS values as output. During the test phase, the location
estimates are obtained via maximum-likelihood of the RSS
values. Schwaighofer et al. [18] consider RSS from multiple
BSs and pursue the above approach for indoor user posi-
tioning. In [19], a smoothing approach is proposed to over-
come the highly-peaked nature of the joint likelihood of the
RSSs. In [20], additional GPs are trained in order to provide
coarse position estimates for initializing the RSS likelihood-
maximization problem. In [21], Cramer-Rao lower bounds
are derived for the hyperparameter estimation error resulting
from the GP training procedure.

The above works adopt the conventional GP method for
user positioning, which provides unrealistically small 2σ
error-bars on the location estimates. Also, since the focus is

on the downlink, the users are required to compute their own
locations. In contrast, we consider the use of an analytical
moment-matching GP method, namely, the GaGP method,
for user positioning. GaGP learns from the statistical prop-
erties of the noise present in the RSS inputs to derive realistic
2σ error-bars on the estimated locations. We also propose
a new GP method, namely RecGaGP, which achieves lower
prediction error than both the conventional GP and GaGP
methods. Moreover, we make use of the uplink RSS for user
positioning and are thus able to offload the computational cost
of location prediction to the BS.

C. USER POSITIONING IN MASSIVE MIMO
Recent works have investigated the problem of positioning
users from their radio signal information in massive MIMO
systems. In [22], signals received at multiple massive MIMO
BSs are directly used to estimate the user locations via com-
pressed sensing. A convex search space is first obtained from
coarse TOA estimates at each BS and then, an optimization
problem is solved over this search space to obtain the location
estimates. The works in [23] and [24] use AoA information
at the BSs to position users, while [25] jointly uses the time
delay, angle of departure (AoD), and AoA information to
position a user. In [26], necessary conditions are derived to
position users in a millimeter wave massive MIMO system
from the AoD and AoA information of uplink LoS signals.
The conventional GP method is employed in [5] to posi-
tion users from their uplink RSS in a distributed massive
MIMO setup. Themethod in [5] considers noisy RSS for both
training and prediction, whereas in this work, we consider
noise-free training RSS and noisy test RSS. A reconstruction
GP method was proposed in [27] to achieve lower RMSE
performance than the conventional GP method, but similar
to the conventional GP method, the method in [27] provides
unrealistically small 2σ error-bars on the estimated user
locations.

Realistic 2σ error-bars are derived in [28] using a numer-
ical approximation technique which does not lend itself to
any analytical insights on the derived location estimates and
their 2σ error-bars.We improve upon [28] in twomajor ways.
First, by employing GaGP, we take an analytical approxima-
tion approach to estimate the test user locations and their
2σ error-bars. The derived expressions lend themselves to
the following analytical insights: (i) the mean and variance
expressions in GaGP are similar in structure to those from
the conventional GP and (ii) for the special case of the test
RSS being noise-free, the mean and variance expressions
for the GaGP and the conventional GP methods turn out
to be the same. Second, the proposed RecGaGP method
achieves lower RMSE performance than the method in [28],
while also providing realistic 2σ error-bars on the estimated
locations.

D. GP METHODS WITH NOISY INPUTS
The GP method proposed recently in [29]–[36] and refer-
ences therein have considered noisy inputs, but for both the
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training and prediction phases. The GP methods proposed
in [29]–[31] provide realistic 2σ error-bars on time series
data. These methods have been extended in [32]–[35] for
channel prediction in wireless networks. Closed-form expres-
sions are derived in [29] and [30] for the mean and variance
of the predicted parameter when the true predictive distribu-
tion is analytically approximated as a Gaussian and the GP
covariance function is modeled as a squared exponential.

However, for location prediction with uplink RSS in dis-
tributed massive MIMO, ours is the first work to employ
an analytical moment-matching based GP method, namely,
the GaGP, to derive and approximate the true predictive dis-
tribution as a Gaussian. When GaGP is employed and the
GP covariance function is modeled as a weighted sum of
squared exponential, inner product, and delta terms, we derive
analytical closed-form expressions for the location estimates
and their realistic 2σ error-bars. Moreover, we propose a
new GP method, namely, the RecGaGP, which achieves
lower RMSE than the conventional GP and the GaGP
methods.
General Notation: Scalars, vectors, and matrices are

denoted using regular font small letters (e.g., a), boldface
small letters (e.g., a), and boldface capital letters for matri-
ces (e.g. A), respectively. Element i in vector a is referred
to as [a]i, column i in matrix A as [A]i, and the element in
row i and column j of A as [A]ij, respectively. We use the
overhead symbols (̃.) and (̂.) to refer to the training data and
test data, respectively. An extra superscript (.)∗ is added to the
overhead symbols to refer to the noise-free components in the
data. The notations ∇a(.) and ∇2

a (.) refer to the gradient and
the Hessian with respect to the vector a. Also, ∇[a]i (.) refers
to the partial derivative with respect to the element i of vector
a. The symbol ≈ denotes approximation of the p.d.f. The
trace of the matrix A is denoted as Tr(A). Tables 1-2 present
additional notation pertaining to the system model and the
GP methods.

III. SYSTEM DESCRIPTION
We study user positioning in a distributed multiuser massive
MIMO system comprised of M single-antenna remote radio
heads (RRHs) which serve K single-antenna users (UEs)
simultaneously on the same time-frequency resource. High-
speed fronthaul links connect the RRHs to a central comput-
ing unit (CU) (c.f. Fig. 1). The CU collects the RSS values
from each RRH and forms an M × 1 RSS vector, whenever
the users transmit on the uplink. The CU is also equipped
with a machine learning model which takes the uplink RSS
vectors as input and provides the location coordinates of the
K transmitting users as the output.

A. UPLINK TRANSMISSIONS AND CHANNEL MODEL
Let ωk be the symbol vector transmitted by the user k , with a
transmission power of ρ. When hmk is the flat-fading channel
gain between user k and RRH m, the sum symbol vector rm

TABLE 1. Mathematical notations: System model.

received at the RRH m is given by

rm =
√
ρ

K∑
k=1

hmkωk + ϑm,

where

hmk = qmk
√
gmk . (1)
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TABLE 2. Mathematical notations: GP methods.

FIGURE 1. System model for location prediction in distributed massive
MIMO: during any scheduled timeslot, the M RRHs receive uplink
transmissions from K users on the same time-frequency resource. The
high-speed fronthaul links forward the RSS values recorded at each RRH
to the central unit, which then extracts the per-user RSS values and forms
an M × 1 RSS vector for each user. A supervised machine learning model,
hosted at the CU, takes the RSS vector of each user as input and yields
the user’s location coordinates as output.

In (1), qmk and gmk are the small-scale and large-scale fading
coefficients and ϑm ∼ N (0, σ 2

ϑ I) represents the additive
white Gaussian noise. Let η be the path-loss exponent, dmk be
the distance between user k and RRH m, b0 be the path-loss
at a reference distance d0, zmk be the log-normal shadowing
noise coefficient, and σ 2

z be the shadowing noise variance.
We then model the large-scale fading coefficients gmk as

gmk = b0 d
−η
mk 10

zmk
10 , where zmk ∼ N (0, σ 2

z ). (2)

The small-scale fading coefficients qmk are modeled as inde-
pendent and identically distributed (i.i.d) complex Gaussian
variables with zero mean and unit variance, i.e., qmk ∼
CN (0, 1).

B. PRE-PROCESSING MULTIUSER RSS FOR
PER-USER RSS VALUES
From (1), we note that the RSS ||rm||2 at RRHm corresponds
to themultiuser RSS because the received vector rm is the sum
of symbol vectors received from all the K users. We cannot
directly use the multiuser RSS ||rm||2 to position any given
user k because we would then be unable to distinguish among
the K users that are transmitting simultaneously. Instead,
the RRHm should extract the per-user RSS pmk of each user k
from rm and use it for positioning the user k . This can be
done if the symbol vectors {ωk} in (1) aremutually orthogonal
and are already known at the RRH. For example, {ωk} can
be mutually orthogonal pilot vectors transmitted during the
channel estimation phase [38]. The RRH m can then project
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its received vector rm onto the pilot vector ωk of user k
to obtain ωHk rm =

√
ρhmk + ωHk ϑm, which only contains

the received component from user k and an additional noise
term. By setting a sensitivity threshold to distinguish between
the signal and noise components, the RSS pmk of user k is
obtained from ωHk rm as

pmk = ρgmk |qmk |2. (3)

Observe from (3) that the extracted per-user RSS values
can be noisy due to small-scale fading and shadowing
effects of the wireless channel. The small-scale fading effects
are assumed to be averaged out over multiple time slots.1

In contrast, the shadowing effect is assumed to exist because
spatial averaging, which requires a priori access to the user
location, needs to be employed to mitigate it. Taking these
assumptions into account, the RSS obtained from (2) and (3),
when converted to dB scale, is given by

pdBmk = pdB0 − 10η log10(dmk )+ zmk , (4)

where pdB0 = 10 log10(ρb0) is the uplink RSS at the refer-
ence distance d0. Once the per-user RSS values pmk , ∀m =
1, . . . ,M , and k = 1, . . . ,K , are extracted as above, the CU
accumulates the M RSS values of each user k into an M × 1
uplink RSS vector pk such that [pk ]m = pdBmk , i.e.,

pk = [pdB1k pdB2k . . . pdBMk ]
T . (5)

C. MACHINE LEARNING SETUP
1) MATHEMATICAL MODEL
We wish to learn the functions fx(.) and fy(.) which take
the uplink RSS vector pk of a given user k as input and
provide the user’s location coordinates xk and yk as output
respectively, i.e.,

xk = fx(pk ) and yk = fy(pk ) ∀xk , yk . (6)

We follow a supervised machine learning approach, with a
training phase and a test phase, to learn fx(.) and fy(.). During
the training phase, a machine learning model is trained with
a database comprising uplink RSS vectors at several known
user locations. During the test phase, we feed as input to the
trained machine learning model, the RSS vector of a test user
whose location coordinates are unknown. The trained model
provides as output, an estimate of the test user’s location
coordinates, along with the associated 2σ error-bars. Unlike
previous works [5], we consider noise-free RSS vectors for
training purposes because they are easy to generate. For this,
we would only need prior knowledge of the RRH locations,
the training user locations, the uplink transmission power ρ,
and the path loss exponent η. In contrast, the test RSS vectors
are assumed to contain shadowing noise because we are
unable to employ spatial averaging on the test RSS vectors
(this is in turn, because we do not have knowledge of the test
users’ locations).

1Fading due to signal self-interference may be space-dependent, but it can
be averaged out over multiple subcarriers [4].

First, we employ the Gaussian approximation GP (GaGP)
method as the machine learning method to estimate the test
user locations and their 2σ error-bars. Next, we build on
the underlying principles of the GaGP method to propose a
new GP method, namely, the reconstruction-cum-Gaussian
approximation GP (RecGaGP) method. Both the GPmethods
follow the same procedure in the training phase, but are
different in their approaches in the test phase. We will now
present the details on the training phase with focus on the
x−coordinates.2

2) TRAINING PHASE
Both the GP methods under study are built on the standard
assumption in Gaussian process regression [37]. That is, any
finite set of realizations of the function to be learned (e.g.
fx(.) in the case of x−coordinates) is Gaussian distributed
with mean zero and covariance matrix 8, the entries of
which are given by a user-defined function φ(. , .). We model
φ(. , .) as a weighted-sum of squared-exponential (SE),
inner product (IP) and delta terms, defined for any two
users k and k ′ with RSS vectors pk and pk ′ , respectively,
as

φ(pk ,pk ′ ) = αe−
1
2 (pk−pk′ )

TB−1(pk−pk′ ) + γpTk pk ′ + σ
2
erδkk ′ ,

where B = diag{βm}, m = 1, . . . ,M , and

δkk ′ = {1 if k = k ′, 0 if otherwise}. (7)

The SE term αe−
1
2 (pk−pk′ )

TB−1(pk−pk′ ) serves as the stationary
component because it captures the correlation between the
x−coordinates of the users k and k ′ as a function of the
distance between their RSS vectors. The IP term γpTk pk ′
serves as the non-stationary component because it captures
the correlation among x−coordinates as a function of the
actual RSS vectors. The delta term σ 2

erδkk ′ serves as the mea-
surement error component. For notational ease, we transform
the covariance model in (7) as follows:

φ(pk ,pk ′ ) = α′N (pk ;pk ′ ,B)+ γpTk pk ′ + σ
2
erδkk ′ ,

∀pk ,pk ′ , (8)

where we introduce a new parameter α′ = α(2π )M/2|B|1/2

to convert the SE term in (7) into a Gaussian term.
The free parametersα,β1, . . . ,βM , and γ introduced by the

covariance model in (7) are to be learned during the training
phase. We accumulate them into an (M + 2) × 1 vector θ
defined such that

θ = [α β1 . . . βM γ ]T . (9)

In order to learn the vector θ , we specify the training database
as follows. Let there be a total of L̃ training user locations,
whose x−coordinates are accumulated into an L̃× 1 vector x̃

2The proposed methods can be extended in a straightforward manner for
the y−coordinates as well.
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and their noise-free training RSS vectors into an L̃ × M
matrix P̃, defined such that

x̃ = [̃x1 x̃2 . . . x̃L̃]
T ,

P̃ = [̃p1 p̃2 . . . p̃L̃]
T . (10)

Note from (10) that the RSS vector p̃l in P̃ corresponds to the
training x−coordinate x̃l in x̃, ∀ l = 1, . . . , L̃. The vector θ
can then be obtained via maximum-likelihood of the training
x−coordinate vector x̃ as

θ̄ = argmax
θ

log(p(̃x|̃P, θ )),

(a)
= argmax

θ

log(N (̃x; 0, 8̃)), (11)

where θ̄ is the learned parameter vector, (a) follows from the
standard GP assumption, i.e., the training x−coordinates are
jointly Gaussian with mean zero and covariance 8̃, whose
elements are given by

[8̃]ll′ = φ (̃pl, p̃l′ ), ∀ l, l ′ = 1, . . . , L̃. (12)

The optimization problem in (11), to be solved during the
training phase, is well-known to be non-convex in the GP
literature [18]–[21], [37]. Nevertheless, we can obtain the
first-order gradients with respect to θ in a closed-form and
can, therefore, employ gradient ascent methods, such as the
conjugate gradient [41], to obtain a local optimum. The train-
ing phase is complete upon obtaining the optimum vector θ̄ .

3) PREDICTION PHASE
Let us say that we need to predict the locations of L̂ test users
from their noisy RSS vectors. The test users’ x−coordinates
are accumulated into an L̂× 1 vector x̂ and their RSS vectors
are accumulated into an L̂ ×M matrix P̂ such that

P̂ = [̂p1 p̂2 . . . p̂L̂]
T ,

x̂ = [̂x1 x̂2 . . . x̂L̂]
T . (13)

Note from (13) that the test RSS vector p̂l belongs to the test
user l with x−coordinate [̂x]l = x̂l , ∀ = 1, . . . , L̂.
The conventional GP method [28], [37] naively treats the

noisy test RSS vectors as noise-free and makes use of the
standard GP assumption to give the following predictive dis-
tribution for the test x−coordinate [̂x]l

[̂x]l |̃x, P̃, p̂l ∼ N ([µ̂(CGP)
x ]l, [Ĉ

(CGP)
x ]ll),

where

[µ̂(CGP)
x ]l =

L̃∑
i=1

φ (̂pl, p̃i)[8̃
−1x̃]i,

[Ĉ(CGP)
x ]ll = φ(̂pl, p̂l)−

L̃∑
i=1

L̃∑
j=1

φ (̂pl, p̃i)[(8̃)−1]ijφ (̃pj, p̂l).

(14)

Since the predictive distribution in (14) is Gaussian, the term
[µ̂(CGP)

x ]l denotes the maximum-a-posteriori (MAP) estimate

of the test x−coordinate [̂x]l . The term [Ĉ(CGP)
x ]ll denotes the

associated variance, with ±2
√
[Ĉ(CGP)

x ]ll being the 2σ error-

bars on viewing [µ̂(CGP)
x ]l as the estimate of [̂x]l .

The conventional GPmethod provides unrealistically small
2σ error-bars on the estimated locations because it naively
treats the noisy test RSS data as noise-free. To address this
concern, we now present two GP methods, namely, the GaGP
and the RecGaGP methods. Both the methods provide realis-
tic 2σ error-bars on the estimated locations by accounting for
the noisy nature of the test RSS data.

IV. LOCATION PREDICTION WITH GAUSSIAN
APPROXIMATION GP (GaGP) METHOD
The Gaussian approximation GP (GaGP) method is a GP
method based on analytical moment-matching. For each test
user l, GaGP firstly derives the true predictive distribution
p([̂x]l |̃x, P̃, p̂l) by taking the noisy nature of the test RSS
p̂l into account. The derived predictive distribution cannot
be expressed in closed-form and is therefore approximated
analytically as Gaussian with the same first and second order
moments. Specifics are given below.

We begin with the observation from (4) that any noisy RSS
value recorded at the RRHs can be expressed as the sum of
a noise-free component and a shadowing noise component.
Any noisy test RSS vector p̂l can, therefore, be expressed as

p̂l = p̂∗l + ẑl, such that ẑl ∼ N (0, 6̂l), (15)

where p̂∗l is the noise-free component in p̂l and ẑl is the
shadowing noise. 6̂l is the covariance of ẑl . We assume for
simplicity that the shadowing noise terms in the M uplink
channels of the test user l are mutually independent and that
their variances are known at the CU through prior propaga-
tion studies. In other words, we assume that the shadowing
covariance matrix 6̂l is diagonal in nature and that its M
diagonal elements are known to the CU.We can then use (15)
to express the conditional distribution of the noise-free com-
ponent p̂∗l as

p̂∗l |̂pl, 6̂l ∼ N (̂pl, 6̂l). (16)

The GaGP method first treats p̂∗l as a latent variable and
makes use of the conventional GP method (c.f. (14)) to obtain
an initial estimate of the test user location [̂x]l in terms of p̂∗l .
The conditional distribution of the latent variable p̂∗l , obtained
from (16), is then used to obtain the true predictive distribu-
tion of [̂x]l in terms of the noisy test RSS p̂l as follows3:

p([̂x]l |̃x, P̃, p̂l) =
∫
p([̂x]l |̃x, P̃, p̂∗l )p(̂p

∗
l |̂pl, 6̂l)d p̂∗l .

(17)

In (17), the term p([̂x]l |̃x, P̃, p̂∗l ) is obtained from (14) and the
term p(̂p∗l |̂pl, 6̂l) from (16), respectively.

3For notational convenience, all the integrals from here on are expressed
as indefinite integrals. In reality, all the integrals are definite over appropriate
sets.
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Remark 1: The predictive distribution p([̂x]l |̃x, P̃, p̂l)
in (17) is non-Gaussian and cannot be obtained in closed-
form because the integral on the right hand side is intractable.

Proof: See Appendix A. �
As a consequence of Remark 1, we can only obtain an

approximation to the predictive distribution p([̂x]l |̃x, P̃, p̂l),
using either numerical or analytical approximation proce-
dures. While the numerical approximation is possible (c.f. [6]
for an example based on Monte-Carlo sampling), we take an
analytical approximation approach here because it allows us
to obtain analytical insights on how the resulting mean and
variance compare against those obtained from the conven-
tional GP method.

The GaGP method analytically approximates the true
predictive distribution p([̂x]l |̃x, P̃, p̂l) in (17) as a Gaussian
distribution with the same first and second order moments,
as follows:

p([̂x]l |̃x, P̃, p̂l) ≈ N ([̂x]l; [µ̂(GaGP)
x ]l, [Ĉ

(GaGP)
x ]ll),

where

[µ̂(GaGP)
x ]l = E[̂x]l ([̂x]l |̃x, P̃, p̂l)

and

[Ĉ(GaGP)
x ]ll = E[̂x]l (([̂x]l |̃x, P̃, p̂l)

2)− ([µ̂(GaGP)
x ]l)2. (18)

In (18), [µ̂(GaGP)
x ]l and [Ĉ

(GaGP)
x ]ll are the estimated mean and

variance of the test x−coordinate [̂x]l .
Previous works on time-series forecasting [29], [30] and

system identification [31] have derived closed-form expres-
sions for the GaGP mean and variance when the GP covari-
ance function φ( ., .) is modeled as a squared exponential.
However, the expressions in [29]–[31] do not extend in
a straightforward manner to the weighted-sum covariance
model (7) used in our work. We make the necessary exten-
sions here and provide closed-form expressions for the GaGP
mean and variance, [µ̂(GaGP)

x ]l and [Ĉ(GaGP)
x ]ll , in Lemma 1

below.
Lemma 1: When the weighted-sum covariance model

given in (7) is employed, the GaGP method yields the follow-
ing closed-form expressions for the predictedmean [µ̂(GaGP)

x ]l
and variance [Ĉ(GaGP)

x ]ll of the x−coordinate [̂x]l of the test
user l with the RSS vector p̂l:

[µ̂(GaGP)
x ]l =

L̃∑
i=1

α′[ψ]iN (̂pl; p̃i,B+ 6̂l)+ γ [ψ]îpTl p̃i,

and

[Ĉ(GaGP)
x ]ll

= σ 2
er + α + γ p̂

T
l p̂l + γ Tr(6̂l)−

L̃∑
i=1

L̃∑
j=1

[ξ ]ij

×

{
(α′)2 N (̃pi; p̃j, 2B)N (̂pl;

p̃i + p̃j
2

,
B
2
+ 6̂l)+ [ϒ]Tj p̃i

+ (̃pj)T [ϒ]i + γ 2p̂Tl p̃i (̃pj)
T p̂l + γ 2 Tr(̃pi (̃pj)T 6̂l)

}
− ([µ̂(GaGP)

x ]l)2, (19)

respectively, where the vector ψ ∈ RL̃ and the matrices ϒ ∈
RM×L̃ and ξ ∈ RL̃×L̃ are defined such that

ψ = 8̃
−1x̃,

[ϒ]i = α′γN (̂pl; p̃i,B+ 6̂l)

× (6̂lB−1 + I)−16̂l(B−1p̃i + 6̂
−1
l p̂l),

and

[ξ ]ij = [8̃−1]ij − [ψ]i[ψ]j, ∀i, j = 1, . . . , L̃. (20)
Proof: See Appendix B. �

Besides obtaining closed-form expressions for the predicted
mean and variance of the test users’ x−coordinates, we are
also able to derive few analytical insights from these expres-
sions, as summarized in Remark 2 below.
Remark 2: Although not obvious from an initial observa-

tion, [µ̂(GaGP)
x ]l and [Ĉ

(GaGP)
x ]ll obtained from (19) are similar

in structure as the [µ̂(CGP)
x ]l and [Ĉ(CGP)

x ]ll terms obtained
from (14), but with several multiplicative and additive correc-
tion factors. The GaGP method introduces these correction
factors so as to account for the stochastic nature of the test
RSS p̂l . In addition, if the test RSS vectors are noise free, i.e., if
6̂l = 0, we can verify that [µ̂(GaGP)

x ]l and [Ĉ(GaGP)
x ]ll are

exactly the same as [µ̂(CGP)
x ]l and [Ĉ

(CGP)
x ]ll , respectively.

Proof: See Appendix C and Appendix D. �
Observe from (17)-(19) that, unlike the conventional GP

method, theGaGPmethod accounts for the noisy nature of the
test RSS. GaGP handles the noise-free terms in the test RSS
vectors as latent variables and integrates them out using the
statistical properties of the shadowing noise in the test RSS.
This allows the GaGP method to provide realistic 2σ error-
bars on the estimated locations. Despite this improvement in
the 2σ error-bars, we find through simulations in Section VII
that the RMSE performance of the GaGP method is similar
to that of the conventional GP method. Improvements in the
RMSE may be possible if, in addition to learning from the
noise present in test RSS, we reduce the amount of noise
present. We make use of this idea to develop the RecGaGP
method in the next section.

V. LOCATION PREDICTION WITH RECONSTRUCTION-
CUM-GAUSSIAN APPROXIMATION GP (RecGaGP)
We now propose RecGaGP - a reconstruction-cum-Gaussian
approximation GP method which (i) reconstructs the noisy
test RSS vectors from a low-dimensional principal subspace
of the noise-free training RSS, and (ii) applies the Gaussian
approximation procedure followed in GaGP to the recon-
structed test RSS vectors for estimating the test user locations.
While the reconstruction step reduces the amount of noise
in the test RSS vectors to lower the RMSE, the Gaussian
approximation procedure learns from statistical properties of
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the residual noise to derive realistic 2σ error-bars on the
estimated locations.

We know from [27] that the noise-free uplink RSS in a
distributed massive MIMO system spans a low-dimensional
principal subspace. Since our training matrix P̃ comprises of
noise-free uplink RSS vectors, we then know that P̃ spans
a low-dimensional principal subspace. Keeping this property
in mind, we can reconstruct the noisy test RSS vectors from
a subspace spanned by the first M0 (M0 ≤ M ) principal
components (PCs) of P̃ as follows [39], [40]:

P̂(rec)
= P̂V[M0](V[M0])T , (21)

where P̂(rec) is the reconstructed test RSS matrix, P̂ is the
original test RSSmatrix, andV[M0] is amatrix whose columns
are the first M0 right singular vectors of P̃. Since the recon-
struction step in (21) is a linear algebraic operation, we can
derive the statistical properties of the noise present in P̂(rec)

from that of the original test RSSmatrix P̂ as described below.
Observe from (21) that any reconstructed test RSS vector

p̂recl in P̂(rec) can be expressed in terms of its original coun-
terpart p̂l in P̂ as

p̂(rec)l = (̂pTl V
[M0](V[M0])T )T ∀l = 1, . . . L̂,

= (̂p∗Tl V[M0](V[M0])T )T

+ (̂zTl V
[M0](V[M0])T )T , (from (15))

= p̂(rec)∗l + ẑ(rec)l , (22)

where we have defined p̂(rec)∗l = (̂p∗Tl V[M0](V[M0])T )T as the
noise-free component and ẑ(rec)l = (̂zTl V

[M0](V[M0])T )T as
the residual noise in p̂(rec)l respectively. Statistical properties
of ẑ(rec)l are given by Lemma 2 below.
Lemma 2: The residual noise ẑ(rec)l in the reconstructed

RSS vector p̂(rec)l is Gaussian distributed with mean zero and
covariance 6̂(rec)

l , whose elements are given by

[6̂(rec)
l ]ij =

M∑
m=1

[6̂l]mm(
M0∑
m′=1

[V[M0]]mm′ [(V[M0])T ]m′i)

×(
M0∑
m′=1

[V[M0]]mm′ [(V[M0])T ]m′j)

∀i, j = 1, . . . , L̂. (23)

Consequently, the noise-free component p̂(rec)∗l in p̂(rec)l is
conditionally Gaussian and is distributed as (̂p(rec)∗l |̂p(rec)l ,

6̂l) ∼ N (̂p(rec)l , 6̂
(rec)
l ).

Proof: See Appendix E. �
Lemma 2 gives us the probability distribution of the resid-

ual noise present in the reconstructed test RSS vectors, along
with the conditional distribution of the noise-free components
in the reconstructed test RSS. In order to estimate the test
user locations, we can use this statistical knowledge to apply
the Gaussian approximation procedure followed in GaGP
(c.f. (15), (18)) to the reconstructed test RSS vectors. Doing

so gives us closed-form expressions for the predicted mean
and variance of the test users’ x−coordinates, as stated in
Theorem 1 below.
Theorem 1: Using the weighted-sum covariance model

in (8), the RecGaGP method provides the following closed-
form expressions for the predicted mean [µ̂(RGP)

x ]l and vari-
ance [Ĉ(RGP)

x ]ll of the x−coordinate [̂x]l of the test user n
whose reconstructed RSS vector is p̂(rec)l :

[µ̂(RGP)
x ]l =

L̃∑
i=1

α′[ψ]iN (̂p(rec)l ; p̃i,B+ 6̂
(rec)
l )

+ γ [ψ]i (̂p
(rec)
l )T p̃i,

and

[Ĉ(RGP)
x ]ll

= σ 2
er + (α + γ (̂p(rec)l )T p̂(rec)l + γ Tr(6̂(rec)

l ))

−

L̃∑
i=1

L̃∑
j=1

[ξ ]ij

{
(α′)2 N (̃pi; p̃j, 2B)N (̂p(rec)l ;

p̃i + p̃j
2

,
B
2

+ 6̂
(rec)
l )+ [ϒ(rec)]Tj p̃i + (̃pj)T [ϒ(rec)]i + γ 2(̂p(rec)l )T p̃i

×(̃pj)T p̂
(rec)
l + γ 2 Tr(̃pi (̃pj)T 6̂

(rec)
l )

}
− ([µ̂(RGP)

x ]l)2,

(24)

respectively, where the matrix ϒ(rec)
∈ RM×L̃ is defined such

that, ∀i = 1, . . . , L̃

[ϒ(rec)]i = α′γN (̂p(rec)l ; p̃i,B+ 6̂
(rec)
l )

× (B−1 + (6̂(rec)
l )−1)−1(B−1p̃i

+ (6̂(rec)
l )−1p̂(rec)l ). (25)

The vectorψ and the matrix ξ are the same as defined in (20).
Proof: (Sketch) We apply the Gaussian approxima-

tion procedure followed in (17) and (18) to predict the test
user l’s x−coordinate [̂x]l from its reconstructed RSS vec-
tor p̂(rec)l , as summarized here. We treat the noise-free com-
ponent p̂(rec)∗l in p̂(rec)l as a hidden variable and use (14)
to obtain expressions for the mean and variance of [̂x]l in
terms of p̂(rec)∗l . The hidden variable p̂(rec)∗l is then integrated
out, using the conditional distribution (̂p(rec)∗l |̂p(rec)l , 6̂l) ∼
N (̂p(rec)l , 6̂

(rec)
l ) from Lemma 2, by following the steps

(17) and (18), so as to obtain the closed-form expressions
for [µ̂(RGP)

x ]l and [Ĉ(RGP)
x ]ll in terms of p̂(rec)l , as given

by (24)-(25). Notice that [µ̂(RGP)
x ]l and [Ĉ

(RGP)
x ]ll in (24)-(25)

are the same as given by GaGP in (19), but with p̂l and 6̂l

replaced by p̂(rec)l and 6̂(rec)
l , respectively. This is because the

RecGaGP method applies the Gaussian approximation tech-
nique (c.f. (17) and (18)) to the reconstructed test RSS p̂(rec)l ,
while the GaGP method does so to the original test RSS p̂l ,
for location prediction. �

Location estimates obtained from the RecGaGP method,
as given by Theorem 1, yield lower RMSE values than the
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conventional GP and GaGP methods because the reconstruc-
tion step reduces the amount of noise present in the test RSS
vectors. Also, the RecGaGP method provides realistic 2σ
error-bars on the estimated locations because, similar to the
GaGP method, the RecGaGP method learns from the noise
present in the input test RSS vectors. Simulation studies in
Section VII confirm this superior prediction performance of
the RecGaGP method.

VI. COMPLEXITY ANALYSIS
We now investigate the computational cost associated with
the presented GP methods.Appendix H presents an overview
of (i) how some frequently-occurring matrix operations in the
presented GP methods can be implemented in a numerically
stable manner, and (ii) the computational complexity of such
numerically stable implementations. Below, we make use of
the overview in Appendix H to present a detailed analysis of
the complexity of each GP method under study.

Before analyzing the complexity of the prediction phase
of each GP method, we make the Remark 3 below about
predicting multiple test user locations simultaneously.
Remark 3: A common attribute of the proposed GP meth-

ods is that they allow us to predict multiple test user locations
simultaneously, without affecting the localization accuracy
for any given test user. Also, for cost savings, we can pre-
compute certain terms and reuse them when calculating the
location estimates in parallel.

Proof: See Appendix F. �

A. CONVENTIONAL GP METHOD
Observe from (14) that the predictive mean µ̂(CGP)

x requires
computation of (i) 8̃−1x̃, which needs O(̃L3) operations
to obtain the Cholesky factor of 8̃ and O(̃L2) operations
to obtain the product 8̃−1x̃, and (ii) L̃ evaluations of the
covariance function φ (̂pl, p̃i) for each test user, amounting
to O(̂LL̃M ) operations for the L̂ test users. In total, since we
generally have L̂ << L̃ and M << L̃, calculating µ̂(CGP)

x
incurs a complexity of O(̃L3).
To calculate the predictive variance [Ĉ(CGP)

x ]ll , ∀l =
1, . . . , L̂, observe from (14) that we need to calculate∑L̃

i=1
∑L̃

j=1 φ (̂pl, p̃i)[(8̃)
−1]ijφ (̃pj, p̂l). The φ (̂pl, p̃i) terms

are obtained in O(̂LM ) operations. Since the matrix 8̃ and
its Cholesky factor are already known from the µ̂(CGP)

x cal-
culation, the product [(8̃)−1]ijφ (̃pj, p̂l) requires O(̃LL̂M )
operations to obtain the φ (̃pj, p̂l) terms andO(̃L2L̂) to obtain
the product. Once these terms are available, evaluating the
sum

∑L̃
i=1

∑L̃
j=1 φ (̂pl, p̃i)[(8̃)

−1]ijφ (̃pj, p̂l) requires another
O(̃LL̂) operations. In total, since we generally have L̂ << L̃
andM << L̃, calculating the [Ĉ(CGP)

x ]ll for all the L̂ test users
incurs complexity of O(̃L2L̂).

B. GaGP METHOD
Observe from (19) that the calculation of [µ̂(GaGP)

x ]l for
the L̂ users requires one computation of ψ = 8̃

−1x̃, L̂L̃
computations of α′N (̂pl; p̃i,B + 6̂l) and L̂L̃ computations

of γ p̂Tl p̃i. Calculating 8̃
−1x̃ requires O(̃L3) operations. The

L̂L̃ computations of α′N (̂pl; p̃i,B + 6̂l) require a total of
O(̂LL̃M ) operations if the {6̂l} are diagonal matrices and
a total of O(̂LM3

+ L̂L̃M2) operations otherwise. The L̂L̃
computations of γ p̂Tl p̃i require a total of O(̂LL̃M ) opera-
tions. Therefore, considering non-diagonal {6̂l}, L̂ << L̃,
M << L̃, and L̂M2 < L̃2, the calculation of [µ̂(GaGP)

x ]l for
the L̂ users incurs a total of O(̃L3) complexity.

Next, observe from (19) that the calculation of [Ĉ(GaGP)
x ]ll

for the L̂ test users requires L̂ computations of Tr(6l)
and p̂Tl p̂l , one computation of ξ , L̃2 computations of
N (̃pi; p̃j, 2B), L̂L̃2 computations of N (̂pl;

p̃i+p̃j
2 , B2 + 6̂l),

L̂L̃ computations of {[ϒ]j}, L̂L̃2 computations of [ϒ]Tj p̃i, L̂L̃
computations of γ p̂Tl p̃i, L̂L̃

2 computations of Tr(̃pi (̃pj)T 6̂l),
and L̂ computations of the [µ̂(GaGP)

x ]l values. The L̂ compu-
tations of Tr(6l) and p̂Tl p̂l require O(̂LM ) operations. The
computation of ξ requiresO(̃L3) operations for the Cholesky
decomposition of 8̃, O(̃L2) operations to obtain ψ , and
another O(̃L2) operations to obtain the products [ψ]i[ψ]j.
The L̃2 computations of N (̃pi; p̃j, 2B) require O(̃L2 M )
operations. If the matrices {6̂l} are diagonal, the L̂L̃2

computations of N (̂pl;
p̃i+p̃j
2 , B2 + 6̂l) requireO(̂LM3) oper-

ations to obtain the Cholesky factors of {B2 + 6̂l} and
another O(̂LL̃2 M2) operations to obtain the Gaussian
terms. Otherwise, the L̂L̃2 computations of N (̂pl;

p̃i+p̃j
2 , B2 +

6̂l) would require O(̂LL̃2M ) operations. When comput-
ing {[ϒ]j}, we know that the Gaussian terms (c.f. (20)) are
already available from the µ̂(GaGP)

x calculations (c.f. (19)).
Therefore, if the {6̂l} are non-diagonal matrices, the L̂L̃
computations of {[ϒ]j} would require O(̂LM3) operations
for Cholesky decomposition of 6̂l and 6̂lB + I and another
O(̂LL̃M2) operations for the matrix-vector products in [ϒ]i
(c.f. (20)). If the {6̂l} are diagonal matrices, the L̂L̃ com-
putations of [ϒ]j require a total of O(̃LL̂M ) operations.
When all the [ϒ]j are available, the L̂L̃2 computations of
[ϒ]Tj p̃i require O(̃L2 M ) operations. The L̂L̃ computations
of γ p̂Tl p̃i require O(̂LL̃M ) operations. The L̂L̃2 computa-
tions of Tr(̃pi (̃pj)T 6̂l) requireO(̂LL̃2 M2) operations if {6̂l}

are non-diagonal and O(̂LL̃2 M ) otherwise. Lastly, from
our earlier discussion, calculation of µ̂(GaGP)

x requires O(̃L3)
operations. In total, considering non-diagonal {6̂l}, L̂ << L̃,
and M << L̃, calculation of Ĉ(GaGP)

x incurs complexity of
O(̃L3 + L̃2L̂M2).

C. RecGaGP METHOD
The computational cost of RecGaGP method can be obtained
as the sum cost of the reconstruction step in (21) and the
GaGP method. The reconstruction step (21) incurs com-
plexity of O(̃L3) because we require (i) O(̃L3) operations
to obtain the right singular matrix V via singular value
decomposition, (ii)O(M2 M0) operations to obtain the prod-
uct V[M0](V[M0])T , (iii) O(̂LM2) operations to obtain the
product P̂V[M0](V[M0])T , and another O(̂LM ) operations to
obtain the residual noise covariances 6̂(rec)

l (c.f. Lemma 2).

18440 VOLUME 6, 2018



K. N. R. S. V. Prasad et al.: Analytical Approximation-Based Machine Learning Methods for User Positioning

Consequently, similar to the GaGP method, calculation of
µ̂
(RGP)
x and Ĉ(RGP)

x in the RecGaGPmethod incurs complexity
of O(̃L3) and O(̃L3 + L̃2L̂M2), respectively.
Remark 4: We may note from the discussion in Section VI

that the location estimates from the GaGP and RecGaGP
methods can be obtained in O(̃L3) computations, which is
also the case with the conventional GP method. Since we
have in general that the number of training locations is much
higher than the number of RRHs, i.e., L̃ >> M, we know
that the complexity would still remain O(̃L3) when we
increase M. Also note that the 2σ error-bars from the GaGP
and RecGaGP methods can be obtained in O(̃L3 + L̃2L̂M2)
operations, i.e., the complexity only increases quadratically
with M. These observations reveal that the proposed GP
methods are indeed suitable for operation in the massive
MIMO regime, as long as the number of RRHs used for
localization is not excessively large. This is also confirmed in
Section VII, where numerical examples demonstrate that we
do not really need an excessively large number of RRHs for
user positioning because the RMSE performance decreases
initially and saturates beyond a certain point when M is
increased.

VII. NUMERICAL EXAMPLES AND DISCUSSIONS
We now present numerical examples to evaluate the perfor-
mance of the GaGP and RecGaGP methods in estimating
the test user locations. We study the estimation performance
under different shadowing variance σ 2

z , number of remote
radio headsM , number of principal components of the train-
ing RSS M0, and the number of training points L̃.

A. PARAMETERS AND SETUP
We consider a simulation setup in which there are M = 30
RRHs and L̃ = 1024 training locations, both placed uni-
formly in a service area of 200m× 200m.Wewish to estimate
the x and y coordinates of L̂ = 10 test users which are
uniformly distributed across the setup area. We assume that
both the training and test user locations have a measurement
error variance σ 2

er of 1dB. A noise-free training RSS matrix P̃
is generated from (4) by setting σ 2

z = 0 and other parameters
as listed in Table 3.

The entries of Table 3 are chosen as follows. The path-
loss parameters l0, d0, and η are chosen as per the 3GPP
Urban Micro model [42]. The user transmit power is chosen
as per LTE standards to be 21dBm [44]. Total noise power in
the system comprises of the receiver noise figure, which we
set at 2.2dB, and the thermal noise power, which we set at
−109.7dB (corresponding to 15 LTE resource blocks of size
180kHz allocated on the uplink). Sincewe extract the per-user
RSS values during the channel estimation phase, we should
take the minimum required signal-to-noise ratio (SNR) for
channel estimation into account. In practice, the minimum
required SNR is determined from the acceptable level of the
normalized mean squared error of the channel estimates [45].
For our simulations, we set the minimum required SNR to
1dB. The receiver sensitivity, computed as the sum of the

TABLE 3. Parameters for simulation studies.

minimum required SNR and the noise power in the system,
is the minimum detection threshold for the receiver.

During the training phase, the free parameter vector θ
in the GP model is learned by solving the maximum-
likelihood problem in (11) through conjugate gradient (CG)
method [41]. We run multiple instances of the CG method
with randomly chosen starting points, so as to avoid conver-
gence to a bad local optimum. The convergence properties
of the CG method are not discussed here because they are
well-known [41]. The same vector θ̄ is used to evaluate the
performance of both the GaGP and the RecGaGP methods
because both the methods share the same training procedure.

B. BASELINE SCHEMES
Our first baseline is the conventional GP (CGP) method,
which provides location estimates and their 2σ error-bars
by naively treating the noisy test RSS vectors as noise-free
(c.f. (14)). As the second baseline, we consider the NaGP
method proposed in [6]. The NaGP method is similar to the
GaGP method in that it provides realistic 2σ error-bars on
the estimated locations, but unlike GaGP, the NaGP method
takes a numerical approach to approximate the true predictive
distribution as Gaussian with the same first and second order
moments. As the third baseline, we consider the RecGP
method proposed in [27]. Similar to RecGaGP, the RecGP
method reconstructs the test RSS from a low-dimensional
principal subspace of the noise-free training RSS, as done
in (21). However, unlike the RecGaGP method, the RecGP
method naively treats the reconstructed test RSS vectors as
noise-free (as done in CGP) to estimate the test user locations.

C. PERFORMANCE METRICS AND BOUNDS
Location prediction performance is measured in terms of
two metrics, namely, (i) the root-mean-squared estimation
error (RMSE) and (ii) the log-predictive density (LPD).

4When temperature is 290K and 15 LTE resource blocks of size 180 kHz
are allocated on the uplink.
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Mathematically, the RMSE and LPD are defined as

RMSE =

√√√√√ L̂∑
l=1

([̂x]l − [µ̂(.)
x ]l)2 + ([̂y]l − [µ̂(.)

y ]l)2

L̂
,

and

LPD =
1

L̂
(log(p(̂x|̃x, P̃, P̂))+ log(p(̂y|̃y, P̃, P̂))),

= − log(2π )−
1

2L̂

L̂∑
l=1

{
log([Ĉ(.)

x ]ll)+ log([Ĉ(.)
y ]ll)

+
([̂x]l − [µ̂(.)

x ]l)2

[Ĉ(.)
x ]ll

+
([̂y]l − [µ̂(.)

y ]l)2

[Ĉ(.)
y ]ll

}
, (26)

where [̂x]l and [̂y]l denote the x and y coordinates of the test
user l, [µ̂(.)

x ]l and [µ̂(.)
y ]l are the estimates of [̂x]l and [̂y]l

given by the chosenGPmethod (for example, if we choose the
GaGPmethod, [µ̂(.)

x ]l = [µ̂(GaGP)
x ]l and [µ̂

(.)
y ]l = [µ̂(GaGP)

y ]l),
and [Ĉ(.)

x ]ll and [Ĉ(.)
y ]ll are the variances associated with the

estimates [µ̂(.)
x ]l and [µ̂

(.)
y ]l , respectively. Note from (26) that

the RMSE only takes the location estimates [µ̂(.)
x ]l and [µ̂

(.)
y ]l

into account. The uncertainties [Ĉ(.)
x ]ll and [Ĉ(.)

y ]ll around
these estimates are ignored. On the other hand, LPD utilizes
the entire predictive distribution - it penalizes overconfident
estimates by allocating larger weights to the estimation errors
([̂x]l − [µ̂(.)

x ]l) and ([̂y]l − [µ̂(.)
y ]l) when the corresponding

uncertainties [Ĉ(.)
x ]ll and [Ĉ(.)

y ]ll are small. We say that the
prediction performance is better when the RMSE values are
lower and/or the LPD values are higher.

As a performance bound on the RMSE performance of
the two GP methods under study, we utilize the following
Bayesian Cramer Rao lower bound (BCRLB) [28]:

BCRLB(RMSE)
=

√
1

L̂
Tr(Ĉ(.)

x + Ĉ(.)
y ), (27)

where [Ĉ(.)
x ]ll and [Ĉ(.)

y ]ll are the variances associated with
the x and y coordinate estimates provided by the chosen GP
method and L̂ is the number of test users.
We generate 200 Monte-Carlo test RSS matrices each for

shadowing variance σ 2
z ranging from 1dB to 5dB, using (4)

with relevant system parameters as listed in Table 3. During
simulations, any instantaneous test RSS value that is lower
than the receiver sensitivity is replaced with the noise power
in the system. The RMSE and LPD values averaged over
the Monte-Carlo realizations are reported. For the NaGP
method [6], we set the number of Monte-Carlo samples to 10.
For the RecGaGP and RecGP methods, the number of PCs
M0 of the noise-free training RSS matrix P̃ is chosen as the
M0 which most frequently gives the lowest RMSE among the
Monte-Carlo datasets.

D. RMSE PERFORMANCE
In Fig. 2, we plot the average RMSE achieved by the two
GP methods under study, for shadowing variance σ 2

z =

FIGURE 2. Plots of the RMSE performance of the proposed GP methods
and the three baseline GP methods for different shadowing noise levels,
when M = 10, 30. (a) RMSE vs σ2

z for M = 10. (b) RMSE vs σ2
z for M = 30.

1, . . . , 5dB and for M = 10, 30. For comparison, we also
plot the RMSE performance of the three baseline schemes,
namely the CGP, NaGP, and the RecGP methods. Firstly,
we observe that the RMSE of all five GP methods increases
with the noise level in the test RSS. This is expected because
we train the GP models with noise-free RSS data - all the five
GPmethods, therefore, tend to project the noise present in the
test RSS onto the output location coordinate space. Secondly,
we observe that the CGP, NaGP, and GaGP methods provide
higher RMSE values than the RecGP and RecGaGPmethods.
This is because the first three methods utilize the original test
RSS vectors for location estimation, whereas the latter two
utilize the reconstructed test RSS vectors for the same. The
reconstruction procedure reduces the shadowing noise levels
in the test RSS, hence the lower RMSE levels for RecGP
and RecGaGP. Thirdly, we note that the NaGP and GaGP
methods do not provide much improvement in the RMSE
over CGP. This is because of an inherent bias introduced
by the integration procedure in (17), as is also confirmed in
prior works on approximate inference GP methods for time-
series analysis [29], [30]. The RecGaGP and RecGP methods
achieve similar RMSE performance for the same reason as
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FIGURE 3. RMSE performance of the GaGP and RecGaGP methods, along
with their BCRLBs, for different shadowing noise levels in the test RSS
vectors.

the GaGP and CGPmethods achieving similar RMSE perfor-
mance. Lastly, when the number of RRHs is increased from
M = 10 to M = 30, we observe significant improvements
in the RMSE performance of all the five GP methods. This
demonstrates the advantage of employing massive MIMO
over conventional MIMO for positioning users with their
uplink RSS data.

In Fig. 3, we plot the Bayesian Cramer-Rao lower
bounds (BCRLBs) on the RMSE performance of the two
GP methods under study, for shadowing noise level σ 2

z =

1, . . . , 5dB and for the number of RRHs M = 10, 30.
We observe that the achieved RMSE performances are very
close to the theoretical BCRLBs for both M = 10 and
M = 30. We also note that the BCRLBs are tighter for
larger M . This is expected because with larger M , there is a
smaller chance of errors introduced by the receiver sensitivity
threshold, i.e., a smaller fraction of the total number of RRHs
would experience test RSS values that are below the receiver
sensitivity level. We also note that the BCRLBs are looser
for the RecGaGP method because of the small amount of
information loss in the test RSS from the reconstruction
procedure (21).

E. LPD PERFORMANCE
In Fig. 4, we plot the LPD performance of the five GP meth-
ods under study, for shadowing variance σ 2

z = 1, . . . , 5dB
and for M = 10, 30. Fig. 5 plots the average 2σ error-bars

2
√
[Ĉ(.)

x ]ll and 2
√
[Ĉ(.)

y ]ll on the estimated x and y coordinates
of the test users. Fig. 6 plots the average fraction of true
test user locations that are within the 2σ confidence range

([µ̂(.)
x ]l ± 2

√
[Ĉ(.)

x ]ll, [µ̂
(.)
y ]l ± 2

√
[Ĉ(.)

y ]ll) of the estimated
locations. We observe that the CGP method achieves very
low LPD values because it provides unrealistically small
[Ĉ(.)

x ]ll and [Ĉ(.)
y ]ll values (c.f. Fig. 5), with less than 30%

(when M = 10) and 5% (when M = 30) of the true
user locations falling inside the 2σ confidence range of the
estimated locations (c.f. Fig. 6). Note from (26) that the LPD

FIGURE 4. Plots of the average LPD performance of the five GP methods
under study for different shadowing noise levels. The CGP and RecGP
methods achieve very low LPD values because they provide unrealistically
small 2σ error-bars over the location estimates (c.f. Fig. 5), with less than
30% (for M = 10) and 5% (for M = 30) of the true user locations within
the 2σ confidence range of the estimated locations (c.f. Fig. 6). The GaGP,
NaGP, and RecGaGP methods achieve much higher LPD values because
they provide more realistic 2σ error-bars on the location estimates
(c.f. Fig. 5), with more than 90% of the true user locations within the 2σ
confidence range of the estimated locations (c.f. Fig. 6). (a) LPD vs σ2

z
performance for M = 10. (b) LPD vs σ2

z performance for M = 30.

metric penalizes such overconfident estimates by allocating
bigger weights to the estimation error. The RecGP method
also provides very low LPD values for the same reason as
CGP because RecGP applies conventional GP principles to
the reconstructed test RSS for location prediction [27]. The
GaGP, NaGP and RecGaGP methods achieve much higher
LPD values than the CGP and RecGP methods because they
provide realistic [Ĉx]ll and [Ĉy]ll values (c.f. Fig. 5), with
more than 90% of the true user locations falling inside the 2σ
confidence range of estimated locations (c.f. Fig. 6).

Taking both the RMSE and LPD performance into per-
spective, we observe that the RecGaGP method consistently
achieves the best prediction performance. While the superior
RMSE performance is because the RecGaGPmethod reduces
noise in the test RSS vectors through the reconstruction
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FIGURE 5. Plots of the average 2σ error-bars on the estimated locations,
as provided by the five GP methods under study. The CGP and RecGP
methods provide unrealistically small 2σ error-bars, with less than 30%
(for M = 10) and 5% (for M = 30) of the true user locations within the 2σ
confidence range of the predicted locations (c.f. Fig. 6). The GaGP, NaGP,
and RecGaGP methods provide more realistic 2σ error-bars on the
location estimates, with more than 90% of the true user locations within
the 2σ confidence range of the estimated locations (c.f. Fig. 6).
(a) Average 2σ error-bars on the estimated x and y coordinates of the test
user locations when M = 10. (b) Average 2σ error-bars on the estimated
x and y coordinates of the test user locations when M = 30.

procedure, the superior LPD performance is because Rec-
GaGP learns from statistical properties of the residual noise
present in the reconstructed RSS to provide realistic 2σ error-
bars on the estimated locations.

F. CHOOSING THE NUMBER OF
PRINCIPAL COMPONENTS
Observe from (21) that increasing the number of princi-
pal components (M0) increases the amount of information
retained in the test RSS upon reconstruction. Also, observe
from (23) in Lemma 2 that increasing M0 increases the
amount of residual noise present in the reconstructed test
RSS. Consequently, we expect that the RMSE performance
of the RecGaGP (and RecGP) method would vary with M0.
In Fig. 7a, we plot the average RMSE values obtained from
RecGaGP when M = 30, for M0 ranging from 1 to 30. For
low M0, we observe very high RMSE values because most
of the information contained in the test RSS P̂ is lost in the

FIGURE 6. Plots of the average number of test users within the 2σ

confidence range ([µ̂(.)
x ]l ± 2

√
[Ĉ

(.)
x ]ll , [µ̂(.)

y ]l ± 2
√

[Ĉ
(.)
y ]ll ) of the location

estimates, as given by the five GP methods under study. For the CGP and
RecGP methods, less than 30% (when M = 10) and 5% (when M = 30) of
the true user locations fall within the 2σ confidence range of the location
estimates. For the GaGP and RecGaGP methods, more than 90% (for both
M = 10,30) of the true user locations fall within the 2σ confidence range
of the estimated locations. (a) True locations (%) within the 2σ confidence
range of the location estimates when M = 10. (b) True locations (%)
within the 2σ confidence range of the location estimates when M = 30.

reconstruction step (21). When M0 is increased, the RMSE
values decrease initially because of the increase in the infor-
mation retained in the test RSS upon reconstruction. This
trend ceases at a certain M0 and the RMSE values attain
a minimum level, followed by a gradual increase with M0.
This is because the noise-free training RSS spans a low-
dimensional principal subspace and any further increase in
M0 would not increase the amount of information retained
in the test RSS but would increase the amount of residual
noise. The increase with M0 is more prominent for higher
noise levels because the amount of residual noise 6̂(rec)

l in
the reconstructed test RSS increases with the amount of noise
6̂l in the original test RSS (c.f. (23)). Lastly, we observe
that the RMSE-minimizingM0 is different for different noise
levels. Choosing an appropriateM0 is, therefore, an important
decision which we make as follows.

We plot histograms of the RMSE-minimizingM0 over 200
Monte-Carlo realizations of the test RSS matrices, as shown
in Fig. 7b for σ 2

z = 1dB and 5dB. We observe that the
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FIGURE 7. Average RMSE performance of the RecGaGP method against
the number of principal components M0 of the training RSS and the
histogram of RMSE-minimizing M0 values for σ2

z = 1dB and σ2
z = 5dB.

In Fig. 7a, we observe that the RMSE decreases with M0 initially, attains a
minimum, followed by a gradual increase. In Fig. 7b, we observe that the
histograms have one to three peak values. (a) Average RMSE vs. M0 in
RecGaGP. (b) Histogram of the RMSE-minimizing M0 over 200
Monte-Carlo realizations of the test RSS dataset.

histograms have one to three peak values. We, therefore,
resort to a heuristic method to choose an appropriate M0:
for a given noise level, we select the top three most-frequent
RMSE-minimizingM0 values from the histogram and choose
the one which gives the best average RMSE and LPD perfor-
mance as the appropriate number of principal components.
When reporting the average RMSE and LPD performance
of RecGaGP in Fig. 2-4, we follow this heuristic approach
and choose M0 to be 11, 11, 7, 7 and 7 for noise levels
σ 2
z = 1, 2, 3, 4, and 5dB, respectively. For a fair comparison,

the same set of M0 values are chosen for the RecGP method
as well.

G. IMPACT OF THE NUMBER OF RRHs M ON
THE RMSE PERFORMANCE
In Fig. 8, we plot the RMSE performance of the GaGP and
RecGaGP methods when the number of RRHs M is varied
from 10 to 100. We observe that the RMSE performance

FIGURE 8. RMSE performance of the GaGP and RecGaGP methods when
the number of RRHs M is varied.

decreases initially, followed by saturation beyond a cer-
tainM . Similar behavior is observed for different shadowing
noise levels in the test RSS. Consequently, while we have
noticed from Fig. 2 that moving from conventional MIMO to
massive MIMO is beneficial from the user positioning point
of view, we also note from Fig. 8 that the benefit becomes
incremental after a certain value of M . Therefore, when
operating with an excessively large number of RRHs (for
spectral and/or energy efficiency gains [3], [43]), we would
only experience minor losses in the RMSE performance if
we choose a subset of the total number of RRHs for user
positioning.

H. IMPACT OF THE NUMBER OF TRAINING LOCATIONS L̃
ON THE RMSE PERFORMANCE
In the training phase, a general rule of thumb is that we
train the GP model with as much data as possible so as
to allow the GP model to learn all hidden features in the
relationship between the input RSS space and the output
location coordinate space. However, as may be noted from
Section VI, the complexities of both GaGP and RecGaGP
methods increase in the cubic order with the number of
training locations L̃. Therefore, it is important for us to choose
L̃ that is sufficient for learning the free parameter vector θ
and is also not excessively large. For insights on choosing L̃,
in Fig. 9, we plot the RMSE performance of the GaGP
and RecGaGP methods when L̃ is varied from 100 to 1600.
Similar to the case with increasing M , we observe that the
RMSE performance decreases initially, followed by satura-
tion beyond a certain L̃. Same is the case for different levels
of shadowing noise in the test RSS. To choose the number of
training locations L̃, we therefore recommend observing the
saturation regions in the RMSE vs. L̃ plots. For example, from
Fig. 9, we note that L̃ = 1000 is sufficient for the numerical
example under study. As a side note, we emphasize that
when building the training RSS matrix P̃, we should choose
training user locations that are spread across the service area.
Doing so would allow the proposed GP methods to capture
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FIGURE 9. RMSE performance of the GaGP and RecGaGP methods when
the number of training user locations L̃ is varied.

the relationship between the RSS vectors and the location
coordinate vectors in a more effective manner than when the
training locations span a small portion of the service area.

VIII. CONCLUSION
We have proposed a supervised machine learning approach
based on Gaussian process regression (GP) for localiz-
ing users in a distributed massive multiple-input multiple-
output (MIMO) system. Our focus has been on the scenario
where noise-free RSS is available for training a GPmodel but
only noisy RSS of the test user is available for estimating its
location. First, we have applied the Gaussian approximation
GP (GaGP) method and made the necessary extensions to
suit the localization problem under study. The GaGP method
provides similar root-mean-squared prediction error (RMSE)
as the conventional GP method, but with more realistic 2σ
error-bars on the estimated locations. Second, we have pro-
posed RecGaGP, a GP method which not only achieves lower
RMSE than the GaGP and the conventional GP methods, but
also provides realistic 2σ error-bars on the estimated loca-
tions. While the lower RMSE values are achieved through
a reconstruction procedure which performs noise reduction
in the test RSS, the realistic 2σ error-bars are obtained by
learning from the statistical properties of the residual noise
present in the reconstructed test RSS. For the two GP meth-
ods, we have derived closed-form expressions for the location
estimates and the associated 2σ error-bars, in terms of the
training user locations, training RSS, and the test RSS data.

Numerical examples have validated the prediction perfor-
mance of the proposed GP methods in terms of two metrics:
(i) the RMSE, which measures the prediction accuracy and
(ii) the log-predictive density (LPD), which weighs predic-
tion accuracy against the uncertainty in predictions to penal-
ize overconfident estimates. We observe that (i) the GaGP
method performs better than the conventional GP in terms
of the LPD, (ii) the RecGaGP method performs better than
the conventional GP in terms of both the RMSE and the
LPD, (iii) the RMSE performances of both the GaGP and

RecGaGP methods are very close to the theoretical Bayesian
Cramer-Rao lower bounds, and (iv) when the number of
BS antennas or the number of training points is increased,
the RMSE performances of both the GP methods decrease
initially, followed by saturation beyond a certain point.

The presented study opens up several exciting research
directions for future work. First, practical experimentations
need to be conducted to investigate the robustness of the
proposed GP methods. This would be an important step in
analyzing the impact of realistic aspects such as colored
noise and hardware impairments. Second, multi-output GP
methods, which account for the correlation between x and y
coordinates of the mobile users, need to be designed. Since
the x and y coordinates generally bear some correlation with
each other, we expect that the localization performancewould
improve if this correlation is captured by themachine learning
model. This work can also be extended to account for time-
variations in the test RSS data and for thresholding errors
introduced by the receiver sensitivity.

APPENDIX
A. PROOF OF REMARK 1
The predictive distribution p([̂x]l |̃x, P̃, p̂l) in (17) is non-
Gaussian and cannot be obtained in a closed-form because
the integral in (17) is analytically intractable. This is in turn
because, as explained below, the first term p([̂x]l |̃x, P̃, p̂∗l )
inside the integral in (17) is a complicated non-linear function
of the Gaussian random vector p̂∗l , over which we integrate.
Observe from (14) that p([̂x]l |̃x, P̃, p̂∗l ) is given by

p([̂x]l |̃x, P̃, p̂∗l ) = N ([̂x]l;
L̃∑
i=1

φ(̂p∗l , p̃i)[8̃
−1x̃]i,

φ (̂p∗l , p̂
∗
l )−

L̃∑
i=1

L̃∑
j=1

φ (̂p∗l , p̃i)[(8̃)
−1]ijφ (̃pj, p̂∗l )), (28)

where the training covariance matrix 8̃ is defined as in (12).
From (28), we note that p([̂x]l |̃x, P̃, p̂∗l ) is a complicated non-
linear function of p̂∗l for two reasons: (i) any Gaussian distri-
bution is non-linear in its mean and covariance, and (ii) the
mean and covariance of theGaussian distribution in the R.H.S
of (28) are both non-linear functions of p̂∗l (c.f. (7)). This not
only makes the integral in (17) analytically intractable, but
also renders the predictive distribution p([̂x]l |̃x, P̃, p̂l) in (17)
as non-Gaussian.

B. PROOF OF LEMMA 1
Closed-form expression for [µ̂(GaGP)

x ]l can be obtained as
follows:

[µ̂(GaGP)
x ]l

(a)
= E[̂x]l ([̂x]l |̃x, P̃, p̂l)
(b)
= Ep̂∗l (E[̂x]l ([̂x]l |̃x, P̃, p̂

∗
l ))
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(c)
= Ep̂∗l (

L̃∑
i=1

[ψ]iφ (̂p∗l , p̃i))

(d)
=

L̃∑
i=1

[ψ]i

∫
(α′N (̂p∗l ; p̃i,B)+ γ p̂

∗T
l p̃i + σ 2

e δli)

×N (̂p∗l ; p̂l, 6̂l) d p̂∗l

(e)
=

L̃∑
i=1

[ψ]i

{
α′N (̂pl; p̃i,B+ 6̂l)

∫
(N (̂p∗l ; (B

−1
+ 6̂

−1
l )−1

× (B−1p̃i + 6̂
−1
l p̂l), (B−1 + 6̂

−1
l )−1))d p̂∗l + γ p̂

T
l p̃i

}

=

L̃∑
i=1

α′[ψ]iN (̂pl; p̃i,B+ 6̂l)+ γ [ψ]îpTl p̃i, (29)

where (a) is obtained from (18), (b) from the law of iter-
ated expectations (c) by substituting E[̂x]l ([̂x]l |̃x, P̃, p̂

∗
l ) =∑L̃

i=1 φ (̂p
∗
l , p̃i)[ψ]i from (14), (d) by substituting covariance

model from (8), and (e) by substituting product of Gaussian
terms from (52).

Similarly, we can derive a closed-form expression for
[Ĉ(GaGP)

x ]ll as follows:

[Ĉ(GaGP)
x ]ll

(a)
= E[̂x]l (([̂x]l |̃x, P̃, p̂l)

2)− ([µ̂(GaGP)
x ]l)2

(b)
= Ep̂∗l (E[̂x]l (([̂x]l |̃x, P̃, p̂

∗
l )

2))− ([µ̂(GaGP)
x ]l)2

(c)
= Ep̂∗l ([Ĉ

(CGP)
x ]ll + (E[̂x]l ([̂x]l |̃x, P̃, p̂

∗
l ))

2)− ([µ̂(GaGP)
x ]l)2

(d)
= Ep̂∗l

{
φ(̂p∗l , p̂

∗
l )−

L̃∑
i=1

L̃∑
j=1

[8̃−1]ijφ (̂p∗l , p̃i)φ (̃pj, p̂
∗
l )

+ (E[̂x]l ([̂x]l |̃x, P̃, p̂
∗
l ))

2
}
− ([µ̂(GaGP)

x ]l)2

(e)
= Ep̂∗l (φ (̂p

∗
l , p̂
∗
l ))− ([µ̂(GaGP)

x ]l)2

−

L̃∑
i=1

L̃∑
j=1

([8̃−1]ij − [ψ]i[ψ]j)Ep̂∗l (φ (̂p
∗
l , p̃i)φ (̃pj, p̂

∗
l ))

(30)

where (a) is obtained from (18), (b) from the law of iter-
ated expectations, (c) from definition of covariance in (53),
(d) by substituting [Ĉ(CGP)

x ]ll from (14), and (e) by substi-
tuting E[̂x]l ([̂x]l |̃x, P̃, p̂

∗
l ) =

∑L̃
i=1 φ (̂p

∗
l , p̃i)[ψ]i from (14).

To proceed further, we require closed-form expressions for
Ep̂∗l (φ(̂p

∗
l , p̂
∗
l )) and Ep̂∗l (φ(̂p

∗
l , p̃i)φ(̃pj, p̂

∗
l )), which we derive

as follows:

Ep̂∗l (φ (̂p
∗
l , p̂
∗
l ))

(a)
= Ep̂∗l (α

′N (̂p∗l ; p̂
∗
l ,B)+ γ p̂

∗T
l p̂∗l + σ

2
e δll)

= σ 2
e +

∫
(α + γ p̂∗Tl p̂∗l )N (̂p∗l ; p̂l, 6̂l) d p̂∗l

(b)
= σ 2

e + α + γ p̂
T
l p̂l + γ Tr(6̂l), (31)

where (a) is obtained by substituting covariance model from

(8) and (b) by applying the integral of quadratic from (54).
Next, we have

Ep̂∗l (φ(̂p
∗
l , p̃i)φ (̃pj, p̂

∗
l ))

=

∫
(α′N (̂p∗l ; p̃i,B)+ γ p̂

∗T
l p̃i + σ 2

e δli)

× (αN (̂p∗l ; p̃j,B)+ γ (̃pj)
T p̂∗l + σ

2
e δjl)N (̂p∗l ; p̂l, 6̂l)d p̂∗l

= I1 + I2 + I3 + I4, (32)

where, for notational convenience, we have defined

I1 = (α′)2
∫
N (̂p∗l ; p̃i,B)N (̂p∗l ; p̃j,B)N (̂p∗l ; p̂l, 6̂l)d p̂∗l

I2 = α′γ
∫

p̂∗Tl p̃iN (̂p∗l ; p̃j,B)N (̂p∗l ; p̂l, 6̂l)d p̂∗l ,

I3 = α′γ
∫
N (̂p∗l ; p̃i,B)(̃pj)

T p̂∗lN (̂p∗l ; p̂l, 6̂l)d p̂∗l ,

I4 = γ 2
∫

p̂∗Tl p̃i (̃pj)T p̂∗lN (̂p∗l ; p̂l, 6̂l)d p̂∗l (33)

Closed-form expressions for I1, I2, I3, and I4 can be
obtained as follows:

I1 = (α′)2
∫
N (̂p∗l ; p̃i,B)N (̂p∗l ; p̃j,B)N (̂p∗l ; p̂l, 6̂l)d p̂∗l

(a)
= (α′)2 N (̃pi; p̃j, 2B)

∫
N (̂p∗l ;

p̃i + p̃j
2

,
B
2
)

×N (̂p∗l ; p̂l, 6̂l)d p̂∗l
(b)
= (α′)2 N (̃pi; p̃j, 2B)N (̂pl;

p̃i + p̃j
2

,
B
2
+ 6̂l),

I2 =
∫
α′γ p̂∗Tl p̃iN (̂p∗l ; p̃j,B)N (̂p∗l ; p̂l, 6̂l)d p̂∗l

(c)
= α′γ

∫
p̂∗Tl p̃iN (̂pl; p̃j,B+ 6̂l)

×N (̂p∗l ; (B
−1
+ 6̂

−1
l )−1(B−1p̃j + 6̂

−1
l p̂l),

× (B−1 + 6̂−1l )−1)d p̂∗l
= α′γN (̂pl; p̃j,B+ 6̂l){(B−1 + 6̂

−1
l )−1

× (B−1p̃j + 6̂
−1
l p̂l)}T p̃i,

I3 =
∫
α′γN (̂p∗l ; p̃i,B)(̃pj)

T p̂∗lN (̂p∗l ; p̂l, 6̂l)d p̂∗l

(d)
= α′γ (̃pj)T

∫
p̂∗l N (̂pl; p̃i,B+ 6̂l)

×N (̂p∗l ; (B
−1
+ 6̂

−1
l )−1(B−1p̃i + 6̂

−1
l p̂l),

× (B−1 + 6̂−1l )−1)d p̂∗l
= α′γN (̂pl; p̃i,B+ 6̂l)(̃pj)T (B−1 + 6̂

−1
l )−1

× (B−1p̃i + 6̂
−1
l p̂l),

I4 =
∫
γ 2p̂∗Tl p̃i (̃pj)T p̂∗lN (̂p∗l ; p̂l, 6̂l)d p̂∗l

(e)
= γ 2p̂Tl p̃i (̃pj)

T p̂l + γ 2 Tr(̃pi (̃pj)T 6̂l), (34)

where (a)-(d) are obtained by applying product of Gaussian
terms from (52) in each step and (e) by applying the integral
of quadratic from (54).
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Substituting (34) into (32) gives us a closed-form expres-
sion for Ep̂∗l (φ (̂p

∗
l , p̃i)φ (̃pj, p̂

∗
l )). We then substitute (31)

and (32) into (30) and define matrices ϒ ∈ RM×L̃ and
ξ ∈ RL̃×L̃ such that [ϒ]i = α′γN (̂pl; p̃i,B + 6̂l)((B−1 +
6̂
−1
l )−1(B−1p̃i + 6̂

−1
l p̂l)), and [ξ ]ij = [8̃−1]ij − [ψ]i[ψ]j,

∀i, j = 1, . . . , L̃, to obtain the expression for [Ĉ(GaGP)
x ]ll as

given by Theorem 1.

C. RELATION BETWEEN [µ̂(GaGP)
x ]l AND [µ̂(CGP)

x ]l
From (14), we know that [µ̂(CGP)

x ]l is given by

[µ̂(CGP)
x ]l =

L̃∑
i=1

α′[ψ]iN (̂pl; p̃i,B)+ γ [ψ]îpTl p̃i. (35)

In order to express the GaGP mean [µ̂(GaGP)
x ]l , given by (19),

in a similar form as (35), let us first express the Gaussian
term N (̂pl; p̃i,B + 6̂l) in [µ̂(GaGP)

x ]l (c.f. (19)) in terms of
N (̂pl; p̃i,B) as follows:

N (̂pl; p̃i,B+ 6̂l)

=
exp(− 1

2 (̂pl − p̃i)T (B+ 6̂l)−1 (̂pl − p̃i))

(2π )M/2|B+ 6̂l |
1/2

(a)
=

exp(− 1
2 (̂pl − p̃i)T (B−1 + (B+ 6̂l)−1 − B−1)(̂pl − p̃i))

(2π )M/2|B+ 6̂l |
1/2

(b)
= N (̂pl; p̃i,B)λi, (36)

where (a) is obtained by adding and subtracting B−1 and (b)
by introducing a new variable λi, defined as,

λi =
exp(− 1

2 (̂pl − p̃i)T ((B+ 6̂l)−1 − B−1)(̂pl − p̃i))

|I+ B−16̂l |
1/2

,

(37)

for notational convenience. Substituting (36) into the expres-
sion for [µ̂(GaGP)

x ]l in (19) gives us

[µ̂(GaGP)
x ]l =

L̃∑
i=1

α′[ψ]iN (̂pl; p̃i,B)λi + γ [ψ]îpTl p̃i. (38)

Observe from (38) and (35) that [µ̂(GaGP)
x ]l is similar in

structure as [µ̂(CGP)
x ]l , but with multiplicative correction fac-

tors {λi} introduced by the GaGP method to the Gaussian
terms in (35). The correction factors account for the stochastic
nature of p̂l . Lastly, we can verify that when the test RSS is
noise-free, i.e., when 6̂l = 0, we get λi = 1. Consequently,
the expressions for [µ̂(GaGP)

x ]l and [µ̂(CGP)
x ]l in (38) and (35)

respectively, turn out to be the exactly the same when the test
RSS is noise-free.

D. RELATIONSHIP BETWEEN [̂C(GaGP)
x ]ll AND [̂C(CGP)

x ]ll
From (14), we know that [Ĉ(CGP)

x ]ll is given by (39) (see the
bottom of this page), where (a) is obtained by substituting the
covariance model from (8) into [Ĉ(CGP)

x ]ll in (14) and (b) by
applying the product of Gaussian terms from (52). In order
to express the GaGP variance [Ĉ(GaGP)

x ]ll given by (19) in a
similar form as (39), we firstly simplify the Gaussian term
N (̂pl;

p̃i+p̃j
2 , B2 + 6̂l) in [Ĉ(GaGP)

x ]ll (c.f. (19)) by following
the same procedure as in (36) to obtain

N (̂pl;
p̃i + p̃j

2
,
B
2
+ 6̂l) = N (̂pl;

p̃i + p̃j
2

,
B
2
)λij,

where,

λij

=
exp(−12 (̂pl−

p̃i+p̃j
2 )T ((B2 + 6̂l)−1−(B2 )

−1)(̂pl −
p̃i+p̃j
2 ))

|I+ (B2 )
−16̂l |

1/2
.

(41)

[Ĉ(CGP)
x ]ll

(a)
= α + γ p̂Tl p̂l + σ

2
er −

L̃∑
i=1

L̃∑
j=1

[(8̃)−1]ij

{
(α′)2 N (̂pl; p̃i,B)N (̃pj; p̂l,B)

+α′γ p̂Tl p̃iN (̃pj; p̂l,B)+ α′γ (̃pj)T p̂lN (̂pl; p̃i,B)+ γ 2p̂Tl p̃i (̃pj)
T p̂l

}
(b)
= α + γ p̂Tl p̂l + σ

2
er −

L̃∑
i=1

L̃∑
j=1

(α′)2[(8̃)−1]ij
{
N (̃pi; p̃j, 2B)N (̂pl;

p̃i + p̃j
2

,
B
2
)
}

+α′γ [(8̃)−1]iĵpTl p̃i
{
N (̃pj; p̂l,B)

}
+ α′γ [(8̃)−1]ij (̃pj)T p̂l

{
N (̂pl; p̃i,B)

}
+ γ 2

{̂
pTl p̃i (̃pj)

T p̂l
}
, (39)

[Ĉ(GaGP)
x ]ll

= α + γ p̂Tl p̂l + σ
2
er + γ Tr(6̂l)−

L̃∑
i=1

L̃∑
j=1

(α′)2([ξ ]ijλij + [ψ]i[ψ]jλiλj)
{
N (̃pi; p̃j, 2B)N (̂pl;

p̃i + p̃j
2

,
B
2
)
}

+α′γ ([ξ ]ijλj(νj + 0p̂l))T p̃i + [ψ]i[ψ]jλĵpTl p̃i)
{
N (̂pl; p̃j,B)

}
+ α′γ ([ξ ]ijλi (̃pj)T (νi + 0p̂l)+ [ψ]i[ψ]jλi (̃pj)T p̂l)

×

{
N (̂pl; p̃i,B)

}
+ γ 2([ξ ]ij + [ψ]i[ψ]j)

{̂
pTl p̃i (̃pj)

T p̂l
}
+ [ξ ]ijγ 2 Tr(̃pi (̃pj)T 6̂l). (40)
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In (41), λij is a multiplicative correction factor introduced by
GaGP. Let us also simplify the expressions for ([µ̂(GaGP)

x ]l)2

in [Ĉ(GaGP)
x ]ll (c.f. (19)), as follows:

([µ̂(GaGP)
x ]l)2

(a)
=

L̃∑
i=1

L̃∑
j=1

(α′[ψ]iN (̂pl; p̃i,B)λi + γ [ψ]îpTl p̃i)

× (α′[ψ]jN (̂pl; p̃j,B)λj + γ [ψ]j (̃pj)T p̂l)

(b)
=

L̃∑
i=1

L̃∑
j=1

[ψ]i[ψ]j
{
(α′)2λiλjN (̃pi; p̃j, 2B)

×N (̂pl;
p̃i + p̃j

2
,
B
2
)+ α′γ λiN (̂pl; p̃i,B)(̃pj)T p̂l

+α′γ λjN (̂pl; p̃j,B)̂pTl p̃i + γ
2p̂Tl p̃i (̃pj)

T p̂l
}
, (42)

where (a) is obtained by substituting (38) and (b) by applying
the product of Gaussian terms from (52). Next, let us simplify
the expression for [ϒ]i in [Ĉ

(GaGP)
x ]ll (c.f. (19)) as follows

[ϒ]i = α′γN (̂pl; p̃i,B+ 6̂l)((B−1 + 6̂
−1
l )−1

× (B−1p̃i + 6̂
−1
l p̂l))

= α′γN (̂pl; p̃i,B+ 6̂l)((6̂lB−1 + I)−16̂l

× 6̂
−1
l (6̂lB−1p̃i + p̂l))

(a)
= α′γ λiN (̂pl; p̃i,B)((6̂lB−1 + I)−1(6̂lB−1p̃i + p̂l))
(b)
= α′γ λiN (̂pl; p̃i,B)(νi + 0p̂l), (43)

where (a) is obtained by substituting (36) and (b) by
introducing the terms νi = (6̂lB−1 + I)−16̂lB−1p̃i and
0 = (6̂lB−1 + I)−1 for notational convenience. Substitut-
ing (41)-(43) into [Ĉ(GaGP)

x ]ll in (19) gives us (40), as shown
at the bottom of the previous page.

Observe from (39) and (40) that the [Ĉ(CGP)
x ]ll and

[Ĉ(GaGP)
x ]ll expressions have a similar structure, with the

GaGP introducing several additive and multiplicative cor-
rection factors to the Gaussian and inner product terms in
[Ĉ(CGP)

x ]ll . When 6̂l = 0, i.e., when the test RSS is noise-
free, we can verify that λi = 1, λij = 1, νi = 0, and
0 = I, ∀ i, j,= 1, . . . , L̃. Substituting these values, along
with [ξ ]ij = [8̃−1]ij− [ψ]i[ψ]j into (40), gives us an expres-
sion for [Ĉ(GaGP)

x ]ll which is exactly the same as [Ĉ(CGP)
x ]ll

given in (39).

E. PROOF OF LEMMA 2
By definition, since we know ẑ(rec)l = (̂zTl V

[M0](V[M0])T )T ,
we can obtain elements of ẑ(rec)l as

[̂z(rec)l ]m =
M∑

m′=1

M0∑
m′′=1

[̂zl]m′ [V[M0]]m′m′′ [(V[M0])T ]m′′m,

∀m = 1, . . . ,M . (44)

We conclude from (44) and (15) that ẑ(rec)l is also Gaus-
sian distributed because each element [̂z(rec)l ]m in ẑ(rec)l is

a weighted sum of MM0 Gaussian random variables. Also,
we can obtain the elements of the mean of ẑ(rec)l as

E([̂z(rec)l ]m) (45)

= E(
M∑

m′=1

M0∑
m′′=1

[̂zl]m′ [V[M0]]m′m′′ [(V[M0])T ]m′′m),

=

M∑
m′=1

M0∑
m′′=1

E([̂zl]m′ )[V[M0]]m′m′′ [(V[M0])T ]m′′m

= 0, ∀m = 1, . . . ,M , (since E([̂zl]) = 0). (46)

Similarly, if 6̂(rec)
l is the covariance matrix of ẑ(rec)l , elements

of 6̂(rec)
l can be obtained as, ∀i, j = 1, . . . , L̂,

[6̂(rec)
l ]ij = [E(̂z(rec)l ẑ(rec)Tl )− E(̂z(rec)l )E(̂z(rec)Tl )]ij,

= [E(̂z(rec)l ẑ(rec)Tl )]ij (since E(̂z(rec)l ) = 0)

(a)
= E

{ M∑
m=1

M0∑
m′′=1

[̂zl]m[V[M0]]mm′′ [(V[M0])T ]m′′i

×

M∑
m′=1

M0∑
m′′=1

[̂zl]m′ [V[M0]]m′m′′ [(V[M0])T ]m′′j

}
(b)
=

M∑
m=1

E([̂zl]2m)
M0∑
m′′=1

[V[M0]]mm′′ [(V[M0])T ]m′′i

×

M0∑
m′′=1

[V[M0]]m′′ [(V[M0])T ]m′′j)

=

M∑
m=1

[6̂l]mm

M0∑
m′′=1

[V[M0]]mm′′ [(V[M0])T ]m′′i (47)

×

M0∑
m′′=1

[V[M0]]mm′′ [(V[M0])T ]m′′j, (48)

where (a) is obtained by substituting (44) and (b) follows from
the mutual independence assumption on the elements of ẑl .
Combining (45) and (47) gives us the probability distribution
ẑ(rec)l ∼ N (0, 6̂(rec)

l ), with elements of 6̂(rec)
l as given by

Lemma 2. In addition, since we also know from (22) that
p̂(rec)l = p̂(rec)∗l + ẑ(rec)l , we know that p̂(rec)∗l is conditionally
distributed as

(̂p(rec)∗l |̂p(rec)l , 6̂l) ∼ N (̂p(rec)l , 6̂
(rec)
l ). (49)

This completes the proof.

F. PROOF OF REMARK 3
The GaGPmethod allows us to parallelize the computation of
test user x−cordinate estimates [µ̂(GaGP)

x ]l and their 2σ error-

bars±2
√
[Ĉ(GaGP)

x ]ll for the L̂ test users. As may be observed
from (19)-(20), this is because the computation of [µ̂(GaGP)

x ]l
and [Ĉ(GaGP)

x ]ll for any user l does not rely on the computation
of [µ̂(GaGP)

x ]l′ and [Ĉ(GaGP)
x ]l′l′ of any other user l ′.
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Also, when the RecGaGP method is employed, we note
from (21) and (23) that we can compute the reconstructed
test RSS vectors {̂p(rec)l } and the residual noise covariances
{6̂

(rec)
l } for the L̂ test users in parallel. Once the p̂(rec)l and

6̂
(rec)
l values are available, we can also parallelize the com-

putation of the [µ̂(RGP)
x ]l and [Ĉ(RGP)

x ]ll values for the L̂ test
users. As may be observed from (24)-(25), this is because the
computation of [µ̂(RGP)

x ]l and [Ĉ(RGP)
x ]ll does not rely on the

computation of [µ̂(RGP)
x ]l′ and [Ĉ

(RGP)
x ]l′l′ , ∀l 6= l ′.

When parallelizing the computation of the location esti-
mates (and their 2σ error-bars), we can also reduce the cost
of each GPmethod by pre-computing few terms which are re-
usable across the L̂ users. For example, we can pre-compute
8̃
−1 and 8̃−1x̃when using (14) to compute the [µ̂(CGP)

x ]l and
[Ĉ(CGP)

x ]ll in the conventional GP method. Similarly, we can
pre-compute the terms α′, ψ , ξ , and N (̃pi; p̃j, 2B) when
using (19)-(20) to calculate the [µ̂(GaGP)

x ]l and [Ĉ(GaGP)
x ]ll in

GaGP andwhen using (24)-(25) to calculate the [µ̂(RGP)
x ]l and

[Ĉ(RGP)
x ]ll in RecGaGP.

G. MATHEMATICAL FORMULAE
(1) [Conditioning a joint Gaussian distribution [37]

(pg. 200)] If a is a W × 1 Gaussian random vector
with a ∼ N (u,A) and the random variables in a are
partitioned into two sets aζ = [[a]1 [a]2, . . . [a]w]T ∈
Rw and aζ ′ = [[a]w+1 [a]w+2, . . . [a]W ]T ∈ RW−w such
that [

aζ
aζ ′

]
∼ N

[(
uζ
uζ ′

)
,

(
Aζ ζ Aζ ζ ′
AT
ζ ζ ′

Aζ ′ζ ′

)]
, (50)

then aζ |aζ ′ and aζ ′ |aζ are also Gaussian such that

aζ |aζ ′ ∼ N (uζ + Aζ ζ ′A
−1
ζ ′ζ ′

(aζ ′ − uζ ′ ),Aζ ζ

−Aζ ζ ′A
−1
ζ ′ζ ′

AT
ζ ζ ′ ),

aζ ′ |aζ ∼ N (uζ ′ + AT
ζ ζ ′A

−1
ζ ζ (aζ − uζ ),Aζ ′ζ ′

−AT
ζ ζ ′A

−1
ζ ζ Aζ ζ ′ ). (51)

(2) [Product of Gaussian expressions] Let us consider three
deterministic W−dimensional vectors a, u and u0, and
two W × W positive definite matrices A and A0.
The product of Gaussian expressions N (a;u,A) and
N (a;u0,A0) is then given by

N (a;u,A)N (a;u0,A0)

= N (u;u0,A+ A0)N (a;u1,A1),

where

A1 = (A−1 + A−10 )−1 and u1 = A1(A−1u+ A−10 u0).

(52)

(3) [Covariance of a random vector] The covariance
matrix A of an W−dimensional vector a has elements
given by

[A]ww = E[a]w (([a]w)
2)− (E[a]w ([a]w))

2,

∀w = 1, . . . ,W . (53)

(4) [Integral of a quadratic expression with respect to a
Gaussian random vector] If u0 is a deterministic W × 1
vector, A0 is a deterministic positive definite matrix of
size W ×W , and a is a W × 1 Gaussian random vector
with mean u and covariance A, i.e., a ∼ N (u,A), then∫

(a− u0)TA−10 (a− u0)N (a;u,A) da

= (u0 − u)TA−10 (u0 − u)+ Tr(A−10 A). (54)

(5) [Derivative of the log-determinant and inverse of a
matrix] If a is a vector of unknown variables, A is a
positive definite matrix whose entries are functions of a,
and ∇a(A) is the matrix of element-wise derivatives of
A with respect to a, then

∇a(log |A|) = Tr(A−1∇a(A)), (55)

and

∇a(A−1) = −A−1∇a(A)A−1. (56)

H. NUMERICALLY STABLE IMPLEMENTATION OF MATRIX
OPERATIONS IN THE STUDIED GP METHODS AND THE
ASSOCIATED COST OF COMPUTATION
Let A be a matrix of size W ×W , χ be the Cholesky factor
of A such that A = χχT , u be a vector of size W × 1, and
∇aA be the matrix of element-wise derivatives of A w.r.t a.
(i) [A−1u]: Thematrix-vectormultiplicationA−1u is stably

calculated asχ−T (χ−1u). Cholesky decomposition ofA
requiresO(W 3) operations and the product χ−T (χ−1u)
requires O(W 2) operations when computed via forward
and backward substitution.

(ii) [Tr(A−1∇aA)]: The matrix product Tr(A−1∇aA) can
be stably implemented as Tr(χ−T (χ−1∇aA)). The
Cholesky factor χ of A can be obtained in O(W 3)
operations. After obtaining χ , the calculation of
Tr(χ−T (χ−1∇aA)) requires another O(W 3) operations.

(iii) [log(|A|)]: The term log(|A|) can be stably calculated as
2
∑W

w=1 log([χ ]ww). This requires O(W 3) operations to
obtain χ and O(W ) operations to calculate the sum.
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