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ABSTRACT To address the problem of detecting malicious codes in malware and extracting the correspond-
ing evidences in mobile devices, we construct a consortium blockchain framework, which is composed of a
detecting consortium chain shared by test members and a public chain shared by users. Specifically, in view
of different malware families in Android-based system, we perform feature modeling by utilizing statistical
analysis method, so as to extract malware family features, including software package feature, permission
and application feature, and function call feature. Moreover, for reducing false-positive rate and improving
the detecting ability of malware variants, we design a multi-feature detection method of Android-based
system for detecting and classifying malware. In addition, we establish a fact-base of distributed Android
malicious codes by blockchain technology. The experimental results show that, comparedwith the previously
published algorithms, the new proposed method can achieve higher detection accuracy in limited time with
lower false-positive and false-negative rates.

INDEX TERMS Consortium Blockchain, malware detection, multi-feature.

I. INTRODUCTION
Malware detection in intelligent mobile devices has always
been a challenging issue, especially on the efficient and open-
source Android platform. Android-based system, as one of
the most popular mobile operating systems, was a palpable
target of malicious developers. In the 2016 Mobile Malware
Evolution Report [1], Kaspersky lab detected 8,526,221mali-
cious installation packages, 128,886 mobile banking Trojans,
and 261,214 mobile ransomware Trojans, which have been
significantly increased compared with those of the previous
year. During the whole 2016, Kaspersky’s lab has recorded
nearly 40 million mobile malware attacks and protected
4,018,234 users’ Android devices. Although Google has
developed Bouncer tool to performmalice detection on appli-
cations of Google Play, attackers could still bypass Bouncer
to send malware into Google Play [2]. On the other hand,
due to many third-party software and active software forums,
the open source of Android-based system provides basis for
the spread of malware and makes it difficult to monitor the
quality of software.

Thus, the detection of malware and classification of mali-
cious codes have become an important research work. Gener-
ally, the existing malware detecting technologies for Android

devices could be divided into two categories: static-based
analysis and dynamic-based analysis. The static-based anal-
ysis method used the decompiler technology or performance
analysis of the control flow and data flow in the smali inter-
mediate code, which was applicable for automatic analysis
through a large amount of software samples. But it could not
solve the problems of code obfuscation, encryption, and other
issues, which could only be performed in dynamic execu-
tion [3], [4]. The dynamic-based analysis method stimulated
the execution of software to avoid the code obfuscation and
encryption problems. However, the coverage of its dynamic
testing code always is not enough. Besides, some malicious
programs might camouflage themselves when running under
simulators [5], [6]. Moreover, there were a variety of mal-
ware in different families with various features, which also
increased the difficulty of detection. At the same time, the
extraction of some features in the existing methods required
high time cost. Therefore, we need to continue to delve into
the research of malicious code or malware detecting technol-
ogy in Android-based devices.

Recently, the blockchain technology, as a new type of dis-
tributed computing paradigm, has gained much importance
due to its high efficiency, high data security, high credibility
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and low cost. The core characteristic of the blockchain tech-
nology is ‘‘de-centration’’, which can effectively build pro-
grammable currency and energy [7]. On the basis of it, we can
develop certificate store, digital property protection andmany
other applications. Thus, it is a key technology to lead the con-
version from the information Internet to the value Internet [8].
The research of the blockchain technology can be divided into
three categories: the public blockchain, the private blockchain
and the consortium blockchain [9]. Differing from the former
two, the consortium blockchainmay allow eachmember to be
read, be limited to participants, and take a mixed route. Thus,
the consortium blockchain can be regarded as ‘‘partially
de-centralized’’ [10].

A. RELATED WORKS
It is always a hot issue for the related security problem in
mobile devices and wireless network, which has been studied
by many researchers [11]–[15]. Nowadays, one of the typical
methods in malware detection is the feature extraction like
signature and permission information [16]–[18]. For instance,
the Ensemble Learning (EL) extended the feature set of
detection and proposed the classification way of 179 fea-
tures, including API calls, instructions and authorities for
detecting zero-day Android malicious code [16]. In litera-
ture [17], the selected benign software in Android system
was first analyzed, and then used to obtain the API call flow
and build the trigger metric of the API users. The mobile
malware detection method ANNCMDroid [18] was based on
co-occurrence matrices and artificial neural networks, which
took into account the relations among sequences of system
call. The other common methods in Android-based devices
were some works based on Java code and Soot framework
optimization [19]–[21]. For example, the automated reason-
ing tool StubDroid that studied data flow summarization
information [19]. The static stain analysis tool—DidFail [21]
was developed by combining the inter-component communi-
cation detection engines FlowDroid and Epicc [20].

Generally, the malware detecting technologies for Android
devices can be divided into static-based analysis and
dynamic-based analysis. The static-based analysis method
can implement efficient and automatic analysis in someways.
However, it cannot detect code obfuscation and encryption,
and it is insufficient to decrypt malicious code in dynamic
execution. Also, it uses a coarse-grained detecting approach
of information flows between applications, which is easy
to produce false positive [21]. The dynamic-based analy-
sis method of Android-based software collects applications’
behavior information during its operation. They can solve
the problems such as code obfuscation and encryption. Nev-
ertheless, malware usually have a well-designed triggering
mechanismwhen facing dynamic tests, while somemalicious
programs can detect their own operating environments and
automatic crash behaviors when running under the simulator.

In addition, using a single feature to determine software’s
malice is far below satisfaction [22]. At the same time,
the extraction of some features in the existing methods

requires high time cost [23]. For example, the extraction
of API context with Appcontext requires a lot of time and
memory, and its experiment just dealt with samples whose
software packages were less than 5 MB [24].

Recently, the blockchain technology has gained much
more focus. Its key technology derives from the consensus
mechanism, which is an example of a distributed computing
system with high fault tolerance [7]. The common technolo-
gies are: Proof of Work (PoW), Proof of Stake (PoS), Prac-
tical Byzantine Fault Tolerance (PBFT), Delegated Proof of
Stake (DPOS) and so on [25]. Generally, the research of the
blockchain technology can be divided into three categories:
the public blockchain, the private blockchain and the con-
sortium blockchain [9]. From the public blockchain, anyone
can read and send the transaction, which can be effectively
recognized, and anyone can participate in the consensus pro-
cess. Thus, in the public blockchain, all records are visible
to the public and everyone can participate in the consensus
process. In the private blockchain, only those users from spe-
cific organizations can be allowed to participate in the con-
sensus process. In the consortium blockchain, the consensus
process is controlled by preselected nodes, which maintain
a copy of the distributed data store. That is, only a set of
preselected users can participate in the consensus process.
The consortium blockchain is a community of N member
organizations, each of which runs a node. And in order for
each block to take effect, it requires the confirmation of 2/3 of
the organizations. Thanks to the flexibility, the consortium
blockchain technology has been applied to both financial and
non-financial systems.

B. CONTRIBUTION
• First, we propose a framework of Consortium
Blockchain for Malware Detection and Evidence
Extraction (CB-MDEE) in mobile devices. The frame-
work is composed of two parts of mixed chains: detect-
ing consortium chain by test members and public chain
by users. As is well known, there was no relevant work
using the consortium blockchain for security detection
that has been published before.

• We analyze different malware families on the basis
of Android-based systems and build a corresponding
Multi-Feature Model (MFM ) by adopting a fuzzy com-
parison method. In order to reduce false-positive rate
and improve the detecting ability of malware vari-
ants, we propose multiple marking functions. From this
model, we can extract the features to construct the
feature database, and develop a multi-feature detection
algorithm.

• We establish a fact-base of the Android malicious codes
by the blockchain technology to detect malware infor-
mation, which will be sent to the consortium blockchain
for automatically generating new blocks.

• We perform tests to verify our method on 4486 malware
samples and 2140 benign software samples collected
from real scenario. The experimental results show that
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FIGURE 1. The organization structure of the CB-MDEE.

our method can be applied in malware multi-feature
classification effectively. Compared with the previously
reported algorithms, our CB-MDEE can have better per-
formances on average time cost, detecting accuracy and
recall rate.

II. THE ARCHITECTURE OF CONSORTIUM BLOCKCHAIN
IN MALWARE DETECTION
OurCB-MDEE framework consists of consortium blockchain
and public blockchain, as shown in Fig. 1, where CB rep-
resents the Consortium Blockchain and PB represents the
Public Blockchain. The CB is the core chain, composed of
the members in distributed malware detection organizations.
These members build a fact-base of the distributed malicious
codes. The PB is the application chain, open for any user who
needs to provide detection and evidence services for joining
as a member node.

The overall framework of our CB-MDEE is shown
in Fig. 2, which includes four layers: the network layer,
the storage layer, the support layer, and the application layer.

In the network layer, link nodes can communicate through
a P2P network. The network has the characteristics of de-
centration and dynamic change, which involves ways of net-
working and mechanism of communication between nodes.
The nodes are composed of servers, which are geographically
dispersed. There is no central node, and every node can
freely join or exit the network. When a testing task is com-
pleted, the detecting information and synchronizing block
information are usually sent to all CB nodes by relay-repeater
mode. Each node sends information to its neighbor node,
and the neighbor node forwards the submitted information
to its own neighbor node. In this way, it gradually spreads
throughout the network. The synchronous block information
uses a request-response pattern. The node first sends its own

block height (similar to ID) to the neighbor node. If the
neighbor node’s height is less than this node’s, the block
requires to obtain the missing information. If the height of
the neighbor node is higher, the neighbor node takes reverse
block information. All nodes continuously exchange block
information with their neighbor nodes.

In the storage layer, features of malicious codes are stored.
Factual information is also provided in this layer to form a
distributed malware fact-base in the Consortium Blockchain.
Each block contains a page of malware features and other
information, including block head and block data. Once
these blocks are confirmed, they cannot be modified. The
block head contains information such as timestamp, Pre-
hash, Nonce, etc. Each block uses the hash encryption value
from the previous block for validating information. The block
data includes specific information related to malicious code
features, such as the sensitive behavior set, the permission,
and installation package.

In the support layer, the interface between the users and
the fact-base of malicious codes are provided, including
functions of consensus mechanism, data encryption, digital
signature, key management, identity authentication, access
control, synchronization management, etc. The consensus
mechanism determines the legitimacy of nodes in the Con-
sortium Blockchain, confirms the submitted information, and
ensures the legality and validity of block information in
the fact-base. The data encryption is the basic function of
the security system. The digital signature makes the data
submitted by users undeniable, and makes the blockchain
capable of keeping the user who submits the illegal data.
The key management is used to manage the key information
safely and effectively. The access control prevents malicious
users from illegally manipulating data. The synchronization
management updates the fact-base.

In the application layer, programs and interfaces for
various applications are provided. Users can interact with
various applications without considering details about the
bottom technology of the blockchain. Typical applications
include the malware detection, the malicious event detection,
the evidence tracking and extraction, and the digital stor-
age applications. The detecting consortium members need
to confirm legitimate identities of users. If the test’s results,
records or evidences are uploaded, a new block will be gen-
erated and the related information will be broadcasted.

III. MULTI-FEATURE MODEL OF MALWARE FAMILY
Features of Android-based software can be extracted from
different features [3], such as package structure features,
application and permission features, system call sequence
features, and system call context features.

A. CRITICAL FEATURE REPRESENTATION OF SOFTWARE
The call graph of software function obtained by the static-
based analysis method can reflect behavior features of the
software. In this paper, we use FlowDroid [20] to build the
call graph. The secure sensitive method concerned here has
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FIGURE 2. The overall framework of CB-MDEE.

been extended on the basis of AppContext [23], which is
mainly divided into three parts:

1) Permission-protected: In Android-based systems, some
APIs need to apply for corresponding permissions to
visit secure sensitive resources in the system. For exam-
ple, android.telephony.SmsManager.sendTextMessage
as a typical call method needs the permission of
android. permission.SEND_SMS [25].

2) Source/sink methods of data flows: These methods
may generate or send sensitive information, such as
getDeviceID(). For a detailed information list, please
refer to SuSi [26].

3) Other suspicious methods: Typical methods are
dynamic loading functions, reflection functions,
encryption and decryption functions, execution of
native codes, and call functions, such as invoke() [27].
These methods exist in Android malware and increase
the difficulty of software security analysis.

Due to the Android-based system that is driven by events,
the constructing call relations between different methods can
not only be represented as direct calling codes, but also
used by the intent mechanism to implement Inter-Component
Communication (ICC). Therefore, it is necessary to analyze
software’s ICCs and use them to describe the behavior of
software. In this paper, we make an extension and optimiza-
tion based on the call graph of software functions so as to
enrich the expression ability of nodes. More importantly, we
add supports to ICCs. The definition of a Sensitive Behav-
ior Graph (SBG) is given below. For easy of presentation,
the basic notations used through out this article are presented
in Table 1.
Definition 1: A SBG can be described as a quadruple as

shown in (1).

SBG = (Vd ,Vn,E, µ) (1)

TABLE 1. Basic notations used in CB-MDEE.

Vd and Vn are subsets of the SBG’s node set. Any vd ∈ Vd
is one of the secure sensitive methods. Each vn ∈ Vn is
not secure sensitive but directly or indirectly calling secure
sensitive methods. E ⊆ Vn×Vd is a set of edges of a software
sensitive graph, which has a call relation between different
methods. Each edge e = (vn, vd ) ∈ E indicates that the
non-secure sensitive method vn in the software S directly or
indirectly calls a secure sensitivemethodVd . e also represents
a Vn in component Cs and triggers a method Vd in component
Ct through ICC. µ : Vd → 〈ID,EntryType,Para〉 is a
marking function to mark contents contained in vertices of a
graph, including themethods’ ID, entry point typesEntryType
and parameters Para.

Although the SBG of the software in Android-basedmobile
devices can well describe the behavior features, the software
usually has too many functions to make thousands of edges
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of its function call graph. It has low extraction rate when
directly extracting its common features. Thus, we make fur-
ther processing on the basis of the SBG to extract the Sensitive
Behavior Set (SBS) of Android-based software.
Definition 2: A SBS for an Android-based software can be

described as a set of (2).

SBS = {S1, S2, · · · , Sm} (2)

Where: St = {v|(vt , v) ∈ E ∩ (vt ∈ Vn, v ∈ Vd )} is a set
of secure sensitive methods, which indicates that in a SBG,
the ith non-sensitive secure method directly or indirectly call
the set of all secure sensitivemethods. Here, the length of SBS
set is m = |Vn|.
To a certain extent, the programs’ malice is associated with

attributes in malware installation packages and permission
information of software applications. For example, when a
malware tries to get a root permission, it usually has root
exploiting database files in the installation package, and then
cheat the installation software to set jar files, dex files or apk
files in its packages. In order to avoid the detection, some of
malware usually modify suffix names of malicious loading
files, such as .mp4 and .png, and place them in resource
folders (e.g. assets, res) to act as normal files. We can find
suspicious resource files through comparing file types with
their contents and their suffixes. Permissions of software
applications reflect possible behaviors of software. There-
fore, it can effectively express software features by analyzing
permissions of malware applications.
Definition 3: A Critical Feature Representation (CFR) can

be described as a triple as shown in (3).

CFR = (SBS,F,P) (3)

Where, F is a 0-1 vector of features from the software
installation package. Software features corresponding to the
vector include: whether there is a lib/so file, whether it has
a root exploiting database file, whether it has a subroutine
(jar, dex, or apk), whether there exists an abnormal file (that
is, the file suffix does not match the file type). P is the
permission list of software applications.

B. MULTI-FEATURE MODEL OF MALWARE FAMILY
Here, we extract features of malware families and establish a
Multi-Feature Model (MFM) for mobile devices. Intuitively,
if malware samples are from the same family, critical fea-
tures can be represented as a common structure. However,
malware usually has a large number of variants. Although
their behaviors have certain similarities, the details are quite
different. If selecting common structures of all samples,
we only can extract few features which would lead to a higher
false-positive rate in the test [3]. We build multiple marking
functions and take the probability of certain behaviors in the
sample as weights in the malware family. The definition of
the MFM of a malware family is given below.
Definition 4: AMFM of a malware family for

Android-based mobile devices can be described as a six-tuple

as shown (4).

MFM =
(
SBSc, α,Fc, β,Pc, γ

)
(4)

Where:
1) SBSc =

{
Sc1, S

c
2, · · · , S

c
m
}
is a SBS of the malware

family C , which can be obtained by statistically analyzing
the SBS of samples in the same malware family .

2) Marking function α : Sci → b0, 1c represents the
probability of the sensitive method set in the malware family.

3) Fc is the feature of software installation package of
malware family C .

4) Marking function β : f ∈ Fc → b0, 1c represents the
probability that each feature in the Fc is in the malware family
sample.

5) Pc is the permission list of frequent applications in
the malware family C. It can be obtained by analyzing the
permission list P in the same malware family.

6) Marking function γ :p ∈ Pc → d0, 1e represents the
probability that each permission of Pc is in the malware
family sample.

C. EXTRACTION OF SECURE SENSITIVE FEATURES IN
ANDROID-BASED SYSTEM
Here, we discuss critical features of malware which can be
extracted from the SBS, installation package features and
permission features.

1) SENSITIVE BEHAVIOR SETS
We divide the construction of the SBS into four steps: The
first step is to use FlowDroid [20] tool to analyze Android-
based software samples and construct software call graphs.
In the second step, we use IC3 software [28] to locate ICCs
for getting a complete call graph of the software function.
In the third step, we determine the available secure sensitive
method, seek programs that directly or indirectly call the
method, and constitute the SBS of the software. And in the
fourth step, we build the P from secure sensitive methods
which are called by all non-secure sensitive methods in the
graph.

The three types of secure sensitive methods concerned
here are based on function names or related marks. For the
permission protecting method, please refer to the permission-
mapping table provided by PSout [25]. For the information
flow source method or sinkmethod,v please refer to SuSi [26]
research results. Other suspicious methods are introduced as
follows:

(a) Dynamic loading function – it can load a new
APK or jar package during the software execution, so that the
software can dynamically obtain new functions. The malware
dynamically loads malicious codes, which makes it difficult
to obtain its execution logic for software’s static-based analy-
sis. Methods concerned here include: DexClassLoader() and
PathClassLoader().

(b) Java language – it can dynamically construct and call
objects, which improves the flexibility of malware logic
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TABLE 2. Common root exploit file.

execution. The corresponding function of the reflection
mechanism is java.lang.reflect.Method.invoke() [18].

(c) Encryption and decryption functions – they can pro-
tect software data and improve the security of the software.
However, attackers encrypt malicious loading files in the
malware, which makes it difficult to analyze the security.
Here, we mainly focus on the API function in javax.crypto
package [21].

(d) Native Development Kit (NDK)– it uses Java Native
Interface (JNI) to call native codes. However, the use of native
codes cannot be limited by software application permissions,
and native nodes can use vulnerabilities of the system to per-
form illegal operations, such as trying to get root permissions.
When stating relevant functions, there are native words in
codes to locate native functions.

For each located function, the function ID will be first
recorded, and then the information of secure sensitive is
extracted by using analysis techniques of data flow and con-
trol flow [29], including entry point that triggers a secure
sensitive method, parameters of a method, and a marking
function that constructs a SBG.

2) FEATURES OF INSTALLATION PACKAGES
Except that malware have malicious features in their exe-
cution logic, installation package files and application per-
missions also reflect the malice to some degree. In order
to extract the information to construct the installation pack-
age feature vector F , our work is accomplished as follows:
(a) As the fact that the file type of the APK installation pack-
age in Android-based software is zip compression package,
we use decompression command to decompress the package
file when extracting installation package features. (b) We
traverse all files in the folder, use Apache Tika tool kit [28] to
analyze the file type based on data content, and checkwhether
the file type matches its file suffix. (c) We determine if there
is a .so file, and determine whether the database file is a root
file (as shown in Table 2 [31]) according to the MD5 value.

(d) We determine whether there are subroutines in the file,
including .jar files, .dex files and .apk files. (e) We construct
the feature vector F of the software installation package
according to the above analysis.

3) PERMISSION FEATURES
In order to improve the security of Android systems, Google
provides three major security mechanisms: the permission
mechanism, the signaturemechanism, and the sandboxmech-
anism [32]. The permission mechanism is used to restrict
APIs, resources, and components who have a limited appli-
cation accesses. In order to enable a program component
to access sensitive resources, the program must apply for
the corresponding permissions. All permissions that need
to be applied for are declared in a AndroidManifest.xml
(a Manifest file). When installing a software, the system
will list all permissions for the software application. And
only with authorization, these permissions would allow it
to be installed and use corresponding functions during its
operation.

Permissions of software applications reflect possible
behaviors. Therefore, it can effectively express software
features by analyzing permissions of malware applications.
We can obtain permissions to apply for the software by
analyzing the AndroidManifest.xml file. The file is encrypted
in the installation package, and we can use APKParser [30]
to decrypt it. Here, we use APKParser to process the file and
extract the permission information to form the permission list
P of the software.

By using the way above, it is possible to analyze sample
programs of the malware family, extract the critical features
of each sample, and then construct malware family features
in each sample.

D. CONSTRUCTION OF THE MULTI-FEATURE MODEL OF
ANDROID-BASED MALWARE FAMILY
After extracting critical features of each sample, we construct
the MFM of a malware family. We use the method given in
sub-section 3-A to extract features of training samples from a
malware family. The set constructed by the SBS of all samples
is S = {SBS1, SBS2, · · · , SBSn} , S ∈ SBSi, i = 1, · · · n.
For each set, we calculate its probability of occurrence in

all samples’ SBSs. If it is greater than 50%, the method S is
added to the set SBSc, and the mapping is built between S and
its probabilities in the marking function α. The installation
package feature in the MFM of a malware family consists
of a marking function and a feature vector whose length
is m. The extracted feature vector set of malware samples
is F = {F1,F2, · · · ,Fm}. Here, the installation package
feature is presented as Fc =

{
f c1 , f

c
2 , f

c
3 , f

c
4

}
and the marking

function γ . For the kth feature, we calculate its probability
that appears in F . If its value is greater than 50%, fk is
assigned as a value of 1, and the corresponding probability
is assigned to β

(
f ck
)
.

The permission list applied by the ith sample is Pi =
{p1, p2, · · · , pl}, then the set of the feature list for all samples
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FIGURE 3. Structure of multi-feature detection of Android malware

of the family is P = {p1, p2, · · · , pl}. For the feature whose
probability is greater than 50%, we add it into the permission
feature pc of theMFM , and assign corresponding probability
to γ (Pc). By using the above way, we can extract multiple
features in a malware family to build the feature database of
the malware family for Android-based mobile devices.

IV. MULTI-FEATURE DETECTION OF ANDROID MALWARE
The structure of the multi-feature malware detection on
Android-based mobile devices is shown in Fig.3. For an
Android-based software, first establish the CFR from Def-
inition 3. Second, compare theCFR of the malware family
database, and compare its similarity with each family to
detect the software. If the software is malware, its belonging
family should be given. Third, extract evidence of mali-
cious codes and add the related information to the malware
fact-base.

A. MULTI-FEATURE DETECTION
For improving the detecting ability of malware variants,
we propose a fuzzy comparison method by marking func-
tions (from Definition 4) to detect the multi-feature. When
calculating the similarity during extracting the CFR of
the test software, we adopt three different parts of the
software’s CFR.

1) SBSc =
{
Sc1, S

c
2, · · · , S

c
m
}
is the to-be-matched SBS of

multiple features of the malware family. The corresponding
marking function is α, and the similarity calculation is shown
in (5).

Ssbs = ωsbs
m∑
i=1

α
(
Sci
)
ζ
(
Sci
)
, Sci ∈ SBS

c

ζ
(
Sci
)
=

{
0, if semiContain(SBS, Sci ) = false
1, if semiContain(SBS, Sci ) = true

(5)

Here, semiContain(SBS, Sci ) = true means there is a
set S in SBS, and it has similar elements with the set Sci .
Here, we assume that the proportion of the similar elements

in the two sets is greater than 80%. And the meaning of
semiContain(SBS, Sci ) = false is opposite. In order to prevent
that malware families with more features replace the one
having fewer features, we add a correction factor −ωsbs.
It is equal to the number of all sets Sci , which makes
semiContain(SBS, Sci ) = true in SBS, divided by the length
of the set SBSc.

2) Feature vector of the test software is F = {f1, · · · , fm}.
For the to-be-matched feature vector Fc = {f c1 , · · · , f

c
m} in

the MFM of a malware family, the corresponding tokenize
function is β, and the similarity calculation is shown in (6).

Sf = ωf
m∑
i=1

fif ci β(fi) (6)

We calculate the similarity according to the probability of
each feature. If the value of the feature vector in theMFM of
the malicious family is 0, the similarity is 0. The calculation
of the correction factor ωf is that the number of all features
satisfied with fif ci = 1 in F , divided by the number of features
whose value is 1 in Fc.

3) The permission list of the test software is P. Pc =
{pc1, p

c
2, · · · , p

c
n} is the to be matched permission list in the

MFM , the corresponding marking function is γ, and the
similarity calculation method is shown in (7).

Sp = ωp
n∑
i=1

γ
(
pci
)
ψ
(
pci
)
, pci ∈ P

c

ϕ(pci ) =

{
0, if pci /∈ P
1, if pci ∈ P

(7)

Here, ωp is the correction factor. It equals to the quantity
number, which belongs to pc in the permission set P, divided
by the length of the set pc. Thus, we can calculate the sim-
ilarity between features of a software sample and a certain
malware family as shown in (8).

Sscore = Ssbs + Sf + Sp (8)

We select the maximum value of similarity calculation
results, and determine whether it exceeds the threshold. If it
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FIGURE 4. The partial structure of the blockchain.

exceeds the threshold, it is considered as a malware, and the
corresponding malware family ID is outputted, otherwise,
the test software is regarded as an original software.

B. THE FACT-BASE OF MALICIOUS CODES BASED
ON BLOCKCHAIN
In the case of detecting malicious codes, if a problem is
found in the result of the detection, the related information
about the detection will be collected to constitute a block
data and submit to the fact-base, which can be used as the
evidence of malicious codes and to update the feature base
of the malware family. The information can also be ana-
lyzed to provide support for the new detecting rules. In our
CB-MDEE, each data block includes some testing fact infor-
mation, such as sensitive behavior feature, installation pack-
age feature and permission feature of software. There is some
basic information, including timestamp, hash value of the
previous block, and a random number for verifying hash
values. The data block structure is shown in Fig. 4, where
(1) Pre-Hash is the hash value of the previous block with a
size of 32 bytes. (2) Version number is used to track software /
protocol updates with a size of 4 bytes. (3) Timestamp records
the time that the block produces with a size of 15 bytes.
(4) Transaction_count is the number of test results in the
current block, with a size of 3 bytes. (5) Merkle root is a
hash value calculated by all malicious codes detected in the
block with a size of 32 byte, which is used to check whether
a test result exists in this blocks. (6) Nonce is a random
number before the block, which is recognized as a formal
block. If a block is identified as a formal block, it is filled
with 0000, and the size is 15 bytes. Here, the hash values are
unique to ensure the integrity of the blockchain and to prevent
frauds effectively. They change synchronously because of the
changeable blocks. When the newly generated data blocks
are added to the chain, the information in the blockchain
can no longer be changed for conforming to the evidentiary
requirements.

In each data block, detection result includes: 1) Name:
the name of the malware. 2) FamilyType: indicates which
malicious family the malware belongs to. 4) APK Fea-
ture: the feature of the installation package of the malware.
5) Permission Feature of the malware. 6) Transaction hash
value of the detection result that uniquely identifies the
record.

Each node calculates the hash value of the block when
the block is received from the network, and it is a digital

TABLE 3. Partial features of gappusin family.

fingerprint obtained by the quadratic hash calculation of the
block. Whether the block is uploaded on the network or is
stored on a permanent storage device of a node as part of the
blockchain, the hash value of the block is unique and it clearly
identifies a block.

V. EXPERIMENTAL RESULTS
A. DATA SETS AND EXPERIMENTAL ENVIRONMENT
SETTINGS
We perform our experiments in the CPU– Intel Core
i7-3770, whosemainmemory is 16GB. The operating system
is ubuntu 15.10. The malware data set comes from the
Drebin data set [34]. The benign software data is extracted
by modifying the crawler programing – Google Play [2].
We select 4486 malware samples and 2140 benign software
samples from 24 malware families. For example, a.dex file
in a real-world Android malware, whose MD5 value is
3de513a148400b457dd8d8fa9238804db3ec031a0b526d4a0
4b77e5112aa2dcf [22]. For the benign software, wemanually
perform tests to determine it is not a malware by using
VirusTotal (https://www.virustotal.com/#/home/upload) and
Dr. Web Anti-virus (https://download.drweb.com/?lng=en).
In the malware samples, 75% samples of the 24 malware

families were selected as the feature extraction to construct a
signature database. For example, the partial feature informa-
tion of the malware family Gappusin [34] is obtained after the
analysis as shown in Table 3.

Due to the large number of files and the list of files in the
package, here we give partial features of permission and call
graph features in Table 4, where the methods involved in the
call graph feature are replaced by numbers.

B. EXPERIMENTS OF MALWARE DETECTION
In order to verify our CB-MDEE model, we first classify
and detect the remaining 25% samples by using the con-
structed feature database of the malware family. The results
are shown in Table 5. Due to the limited space, we only
present the results of 10 families. The first column of the table
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TABLE 4. API explanation of partial malware family gappusin.

TABLE 5. Detection results of malware in drebin dataset.

is names of malware families, the second column is numbers
of samples for feature extraction for, and the third column
is numbers of tested samples. The fourth and fifth columns
are numbers of false-negatives (FN) and false-positives (FP)
in test results respectively. FN indicates that a software p
belongs to the malware familyM , but it is judged as a benign
software or classified as the sample number of other families.
FP indicates that a software p does not belong to the malware
familyM , but it is incorrectly classified as the sample number
of theM family. The last column is the overall accuracy of the
current malware family classification, which is calculated by
dividing the numbers of correctly sorted samples in the total
number of the samples.

From Table 6, we can find that CB-MDEE can be well
used for the detection of Android malware families, and the
accuracy is 94.6%. In particular, it can reach a 100% detect-
ing rate for the malware family Gappusin, and can greatly
solve problems that Drebin cannot detect Gappusin. For the
detection of the software in Drebin data set, the time cost
distribution is shown in Fig. 5.

As we can see from Fig.5, in Drebin dataset, 1145 samples
are detected, and more than 1081 (94%) of the sam-
ples are used for the feature extraction and detection.

FIGURE 5. Time vs. detected number software with Drebin dataset.

FIGURE 6. Comparison of different detecting engines.

The total required time is less than 20 seconds. The
average time cost for each sample test is 7.9 seconds.
Although the detecting time is higher than that of Drebin,
the detecting accuracy (94.6%) is slightly higher than that of
Drebin (93.9%).

C. EXPERIMENTS OF UNKNOWN SOFTWARE DETECTION
In order to verify detecting capabilities of our CB-MDEE,
2140 benign software samplesweremixedwith the remaining
25% of the 1145 malware samples as the input data. At the
same time, in order to further verify describing capabilities of
the multi-feature model proposed here, we use the subset of
the multi-feature model as the classification feature. The test
results are shown in Table 6. Here, we use two indicators: the
accuracy and the recall rate to evaluate the detecting results.
In table 6, we set the True Positive (TP) as the number of
samples that are correctly detected as malware in test results,
then the calculating methods of the accuracy and recall rate
in table 7 are: accuracy = TP/(TP + FP), recall rate =
TP/(TP + FN).
As we can see from Table 6, compared with other fea-

tures, the extraction and comparison of the call graph feature
need more time. However, the feature can be effectively
used to classify malware. If the call graph feature is used
to detect malware alone, it can only achieve 79.5% accuracy
and 78.6% recall rate. Meanwhile, the average time cost for
the detection of testing software is 131 seconds, which is
significantly higher than detecting the software in Drebin data
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TABLE 6. Detecting results by different features on unknown software.

set. The number of the software in Drebin data set is smaller.
Of all 5560 samples, only 277 software is larger than 5 MB.
The majority of the software in the benign software data set
is larger than 5 MB, and the majority of the software (1647)
is between 10 MB and 20 MB. The extracted software call
graph features is directly related to the .dex file size.

We can improve the detecting accuracy by detecting dif-
ferent feature sets. For example, we select the permission fea-
tures and call graph features as the basis for the detection, and
the detecting effect is significantly higher than the individual
detection of the permission or the call graph. If the multiple
features proposed here are used for the malware detection,
it can achieve 92.5% detecting accuracy and 94.6% recall
rate.

We submit the hash value (SHA256) of the test dataset
samples used in this paper to VirusTotal, and use the online
detecting engine for the online detection. VirusTotal pro-
vides a total of 58 online detecting engines. In this exper-
iment, 13 kinds of detecting engines with poor detecting
results are removed, including CMC, K7AntiVirus, Malware-
bytes, Panda, SUPERAntiSpyware, TheHacker, TotalDe-
fense, Trustlook, VIPRE, ViRobot, WhiteArmor, nProtect
and Yandex. The reason for their poor detection may be that
they did not provide services during the experiment, or they
did not include the submitted samples. Furthermore, we select
8 detecting engines that have good detecting effects and
compare them with the detecting results. The comparison of
analyzing results is shown in Fig.6.

From Fig.6, we can find that the 8 detecting engines in the
comparison can achieve higher detecting accuracies, but it has
a lower accuracy of malware families. In order to remove the
statistical errors caused by the naming methods of the same
malware family, we deal with the results of the VirusTotal.
Taking the samples of the Goldream family as an example,
this paper examines the detecting results with words like Gol-
dream, Golddrea, Glodream, GoldDream, Golddream and
GDream as correct classifications. The results of the com-
parison show that our method can achieve better accuracies
in different malware families.

VI. CONCLUSION
In this paper, we construct a framework CB-MMDE to
detect and classifymalware onAndroid-basedmobile devices
through Blockchain technology.We analyzemultiple features
of malware families, propose a malware feature model–MFM
for mobile devices based on Android system, and design a
malware detection and classification algorithm. The experi-
mental results of the Drebin data set and the benign software
data set show that CB-MMDE can effectively detect and
classify known malware and perform malice determination
and malware family classification on unknown software with
a higher accuracy and lower time cost.
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