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ABSTRACT Machine learning is one of the most prevailing techniques in computer science, and it has
been widely applied in image processing, natural language processing, pattern recognition, cybersecurity,
and other fields. Regardless of successful applications of machine learning algorithms in many scenarios,
e.g., facial recognition, malware detection, automatic driving, and intrusion detection, these algorithms
and corresponding training data are vulnerable to a variety of security threats, inducing a significant
performance decrease. Hence, it is vital to call for further attention regarding security threats and cor-
responding defensive techniques of machine learning, which motivates a comprehensive survey in this
paper. Until now, researchers from academia and industry have found out many security threats against
a variety of learning algorithms, including naive Bayes, logistic regression, decision tree, support vector
machine (SVM), principle component analysis, clustering, and prevailing deep neural networks. Thus,
we revisit existing security threats and give a systematic survey on them from two aspects, the training
phase and the testing/inferring phase. After that, we categorize current defensive techniques of machine
learning into four groups: security assessment mechanisms, countermeasures in the training phase, those
in the testing or inferring phase, data security, and privacy. Finally, we provide five notable trends in the
research on security threats and defensive techniques of machine learning, which are worth doing in-depth

studies in future.

INDEX TERMS Machine learning, adversarial samples, security threats, defensive techniques.

I. INTRODUCTION

Nowadays, machine learning is one of the most popular
research fields, and its effectiveness has been validated in
various application scenarios, e.g., pattern recognition, image
identification, computer vision, clustering analysis, network
intrusion detection, autonomous driving, etc. The advent of
big data has stimulated broad interests in machine learning
and privacy issues by enabling corresponding algorithms to
disclose more fine-grained patterns and make more accurate
predictions than ever before [1], [2]. Hence, many researchers
devote themselves to review opportunities and challenges of
machine learning in the big data era [3]-[5]. In particular, it is
worth noticing that new intelligent systems mainly focus on
learning from massive amounts of data with the goals of high
efficiency, minimum computational cost and considerable
predictive or classification accuracy [3], [5].

As a fundamental technology of future intelligent society,
machine learning shall continuously expedite its theoretical
study, algorithm design and development. However, the tech-
nology itself would suffer from several security issues [6], [7].
For example, some attackers can impersonate victims by
exploiting the vulnerabilities of face recognition systems and
compromise the privacy of sensitive data [8], [9]. Even more,
someone with evil intent can seize control of autonomous
vehicles [10] and voice control system [11] to make wrong
decisions on recognizing traffic signs and voice commands,
respectively. Hence, it can be expected that the security issues
of machine learning will deserve much more concerns with
larger application fields of the technology.

In the past decades, existing works mainly focused on the
basic concepts and models of security threats against machine
learning. In 2004, Dalvi et al. [12] introduced the concept
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of adversarial classification and analyzed the detection eva-
sion problem of early spam detection systems. After that,
Lowd and Meek [13] proposed the concept of adversarial
learning in 2005, and Barreno et al. [14] explicitly investi-
gated the security of machine learning in 2006, including the
taxonomy of attacks against machine learning systems and
the adversarial models.

To address diverse security threats towards machine learn-
ing, many researchers devote themselves to propose some
defensive techniques to protect learning algorithms, mod-
els and systems. Basically, defensive techniques of machine
learning consist of security assessment, countermeasures in
the training phase, countermeasures in the testing or inferring
phase, data security and privacy. More details of defensive
techniques will be discussed in Section IV. Furthermore,
we would like to argue that the advances of security threats
and defensive techniques regarding machine learning are pro-
moted alternatively, resulting in a more powerful and intelli-
gent debate.

Recently, some surveys on the security perspective of
artificial intelligence and machine learning have been pre-
sented [15], [16]. Amodei et al. [15] gave a general introduc-
tion of security issues about artificial intelligence, especially
the supervised and reinforcement learning algorithms. On the
other hand, Papernot et al. [16] reviewed existing works about
security issues and corresponding defensive methods in the
life cycle of a machine learning-based system from training
to inference. Different from previous surveys and reviews,
this survey targets a comprehensive literature review regard-
ing security threats and defensive techniques during training
and testing or inferring of machine learning from a data
driven view. Particularly, we emphasize the data distribution
drifting caused by adversarial samples and sensitive infor-
mation violation problems in statistical machine learning
algorithms.

The framework of this paper is organized as follows.
Section II briefly introduces the basics of machine learning,
adversarial model and security threat taxonomy. Section III
gives detailed description of corresponding security issues
embedded in the two important phases of machine learning,
training and testing/reasoning phases. Section [V summarizes
security assessment frameworks and specific defensive tech-
niques that defend against the security issues raised before.
Section V presents several challenges and opportunities of
security threats and defensive techniques of machine learn-
ing. Finally, Section VI gives conclusion remarks of this

paper.

Il. BASIC CONCEPT, MODEL AND TAXONOMY

A. BASICS OF MACHINE LEARNING

Machine learning is a multidisciplinary research field that
spans multiple disciplines including computer science, proba-
bility and statistics, psychology and brain science. The objec-
tive of machine learning is how to effectively imitate human
learning activities by computers such that the knowledge can
be automatically discovered and acquired.
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According to the differences of feedbacks, machine learn-
ing related works can be categorized into three groups,
namely supervised, unsupervised and reinforcement learn-
ing [17]. In the supervised learning, the training samples with
category labels should be feed into classification or regression
models during their training phase. The typical supervised
learning techniques includes decision tree, support vector
machine (SVM), neural networks, etc. The unsupervised
learning, on the other hand, induces models using the training
samples with no knowledge of corresponding category labels.
Clustering and auto-encoder are two typical examples of
unsupervised learning techniques. The reinforcement learn-
ing optimizes behavior strategies via try-and-error, which is
different from the learning procedure of the above two types
of techniques.

B. ADVERSARIAL MODEL

The security research of machine learning with the consider-
ation of adversarial knowledge was proposed in [13]. Then,
researchers proposed to jointly consider the goal and the
capability of adversaries into the model in [18]. Recently,
Biggio et al. argued that a well-defined adversarial model
should be constructed with four dimensions, goal, knowledge,
capability and attacking strategy [19]. Specifically, the adver-
sarial goal can be clearly described using both the expected
impacts and the attack specificity of security threats. For
example, the goal of an attacker is to launch an indiscrimi-
nate integrity attack that induces high false positive and true
negative rates of classifiers or to launch a targeted privacy
violation attack that illegally obtains sensitive data of the
targeted user. Regarding the adversarial knowledge, it can
be divided into two groups named constrained knowledge
and complete knowledge by examining whether or not an
attacker know training data, features, learning algorithms,
decision functions, classifier parameters and feedback infor-
mation. The adversarial capability of an attacker refers to
his or her capability of controlling training and testing data.
Furthermore, the capability can be qualitative interpreted
from three aspects: (1) Is the impact of security threats
causative or exploratory? (2) What is the percentage of train-
ing and testing data that are controlled by the attacker?
(3) What is the extent of features and parameters that are
known by the attacker? At last, the attacking strategy is the
specific behaviors of manipulating training and testing data
to effectively achieve his/her goals. For example, the attacker
makes the decision regarding manipulation of data, modifi-
cation of category labels and tampering with features.

C. SECURITY THREAT TAXONOMY
The taxonomy of security threats towards machine learning
was proposed in [20] in three different perspectives, the influ-
ence on classifiers, the security violation and the attack speci-
ficity, as illustrated in Fig. 1.

In the perspective of the influence on classifiers, security
threats towards machine learning can be classified into two
categories: (a) Causative attack. It means that adversaries
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FIGURE 1. The taxonomy of security threats towards machine learning.

have the capability of changing the distribution of training
data, which induces parameter changes of learning models
when retraining, resulting in a significant decrease of the
performance of classifiers in subsequent classification tasks.
(b) Exploratory attack. Such attack does not seek to modify
already trained classifiers. Instead, it aims to cause misclas-
sification with respect to adversarial samples or to uncover
sensitive information from training data and learning models.

In the perspective of the security violation, threats towards
machine learning can be categorized into three groups:
(a) Integrity attack. It tries to achieve an increase of the false
negatives of existing classifiers when classifying harmful
samples. (b) Availability attack. Such attack, on the contrary,
will cause an increase of the false positives of classifiers
with respect to benign samples. (c) Privacy violation attack.
It means that adversaries are able to obtain sensitive and con-
fidential information from training data and learning models.

In the perspective of the attack specificity, security
threats towards machine learning have two types as follows:
(a) Targeted attack. It is highly directed to reduce the per-
formance of classifiers on one particular sample or one spe-
cific group of samples. (b) Indiscriminate attack. Such attack
causes the classifier to fail in an indiscriminate fashion on a
broad range of samples.

IIl. SECURITY THREATS TOWARDS MACHINE LEARNING
Basically, many security threats towards machine learning
appear due to adversarial samples, which was mentioned
in [21]. Specifically, adversarial samples represents those
data that lead to the counterintuitive problem in deep neural
networks (DNNs). Here, we extend this concept and regard
adversarial samples as the harmful samples which cause the
performance reduction of machine learning-based systems.
There are many concrete security threats towards different
machine learning models and corresponding application sce-
narios [22]. Since 2004, such threats aimed to attack against
security related applications. For example, in early 2004,
Dalvi et al. [12] analyzed the detection evasion problem
in early spam detection systems. Since then, more threats
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appeared to compromise other practical systems, e.g., mal-
ware identification and intrusion detection [23]. In conven-
tional supervised learning, Naive Bayes and support vector
machine (SVM) are two classical learning algorithms,
in which early security threats occur. Specifically, an attacker
can inject malicious and designated data into training data
during the training procedure of machine learning based
intrusion detection systems, inducing a significant decrease
of the performance of these systems. For example, an attack-
ing scenario was presented in [6], where a Naive Bayes based
spam detection system was attacked by injecting malicious
data. Similarly, another attack against a linear kernel SVM
based malware detection system for PDF files was stud-
ied in [24]. Typically, clustering is a kind of unsupervised
learning method, which can discover implicit patterns of
data distributions. Although clustering algorithms have been
widely used in many application scenarios, especially the
information security field, they also suffer security issues.
Specifically, most of attacks against clustering algorithms
reduce their accuracy by injecting malicious data [25]-[27].
On the other hand, the obfuscation attack is another type
of threat that compromises clustering algorithms [28]. The
goal of obfuscation attacks against the targeted cluster is
to generate a blend of adversarial samples and normal ones
from other clusters without altering the clustering results of
these normal samples, resulting in a set of stealthy adversarial
samples.

Recently, deep learning has been emerging as a prevailing
research field in machine learning. As a typical architecture
of deep learning, DNN is demonstrated to be effective in
various pattern recognition tasks, e.g., visual classification
and speech recognition. However, recent works from late
2013 have demonstrated that DNN is also vulnerable to var-
ious adversarial attacks [29], [30]. For example, in image
classification, the DNN only extracts a small set of features,
resulting in poor performance on the images with minor dif-
ferences. Potential adversaries can exploit such vulnerability
to evade anomaly detection. In late 2013, Szegedy et al. [29]
proposed to use the generated image with slight turbulence to
deceive the pre-trained DNN. After that, several works pro-
posed impersonation models to attack against DNNs and cor-
responding intelligent systems, e.g., face recognition, speech
recognition and autonomous driving [8], [11], [31]-[35].

Table 1 summarizes related works regarding security
threats towards machine learning.

A. SECURITY THREATS AGAINST THE TRAINING PHASE
Training is vital for machine learning to obtain a proper clas-
sification or regression model with respect to a target dataset.
Hence, the training data that are feed into the training phase
play an important role in establishing a high-performance
machine learning model. Accordingly, many adversaries tar-
get the training data, resulting in a significant decrease of
the overall performance of the machine learning model. For
example, poisoning attack is a typical type of security threat
against the training phase.
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TABLE 1. Summary of related works regarding security threats against machine learning.

Targeted Learning Algorithms Poisoning Attack Evasion Attack Impersonate Attack Inversion Attack
Naive Bayes/Logistic Regression/Decision Tree [6] [48] [50] [49] [52] [53] [10] [59] [20] [69]
SVM [43] [44] [48] [50] [51] [49] [52] [53] [55] [10] [59] [61] [63]
PCA/LASSO [91 [38] [47] [57] [59]
Clustering [25] [26] [28]
(45] [35]1[52] [53] [54]1 [58] | [8][10][11][30][31][32] [33] [20] [68] [69]
DNNs
[34] [35] [64] [65] [66] [67] [70] [71]
. The poisoning at.tz'ick isa type of gausatlve at'tack, wh}ch Attack locations X, S~
disrupts the availability and the integrity of machine learning
models via injecting adversarial samples to the training data Vietom’s \
set [36], [37]. Typically, such adversarial samples are desig- centroid \,
nated by adversaries to have similar features with malicious e . X /
samples but incorrect labels, inducing the change of training AN /
data distribution. Therefore, adversaries can reduce the per- i

formance of classification or regression models in terms of
accuracy. Since the training data in practical machine learning
based systems are protected with high confidentiality, it is
not easy for adversaries to alter the data themselves. Alter-
natively, the adversaries are able to exploit the vulnerability
that stems from retraining existing machine learning models.
Note that it is feasible to launch such attack against machine
learning based systems in practical usage, e.g., adaptive facial
recognition systems (FRSs) [9], [38]-[40], malware classifi-
cation [41], spam detection [6], etc. These systems are gen-
erally required to periodically update their decision models
to adapt to varying application contexts. Taking the adaptive
FRS as an example, an attacker utilizes the periodic update
characteristic and injects masqueraded samples into the train-
ing data used for retraining decision models, resulting in the
change of normal data classification centroid [38]. Fig. 2
illustrates the poisoning attack that induces the moving of
classification centroid from the normal data (X.) to the abnor-
mal one (X,). After attacking, the attacker can use adver-
sarial facial images rather than the normal ones to pass the
identity authentication. Regarding the unsupervised learning,
e.g., clustering analysis, it is not applicable for changing the
sample labels. However, some also introduced how to launch
the poisoning attack against single-linkage and complete-
linkage hierarchical clustering [25], [26], [28]. For example
in [25], a heuristic strategy was adopted to measure the impact
induced by adversarial samples on clustering accuracy via
introducing a bridge concept. Based on such measurement,
the optimal adversarial samples were selected to effectively
reduce the clustering accuracy. Community discovery, sin-
gular value decomposition (SVD), and node2vec are three
commonly used graph clustering or embedding techniques.
However, recently research [42] has shown there are two
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FIGURE 2. lllustration of poisoning attacks.

novel attacks, named targeted noise injection and small com-
munity. The two attacks can effectively evade graph clus-
tering approaches with limit adversarial knowledge and low
cost. The author also give two defense strategies: Training
Classifier with Noise (similar to adversarial training) and
improving hyper-parameter selection, but the defense effect
is not significant. In addition, the poisoning attack also
threatens many widely used machine learning algorithms,
e.g., SVM [43], [44], neural networks [45], Latent Dirichlet
Allocation [46], principle component analysis (PCA) and
LASSO [47].

1) POISONING WITHOUT MODIFYING FEATURES OR LABELS
Referring to the feasibility of poisoning attacks, it is impor-
tant to select a proper adversarial sample set. Accordingly,
Mozaffari-Kermani et al. proposed poisoning models towards
machine learning in health care cases, where the adver-
sary has complete knowledge of the distribution of training
data and the details of learning algorithms [48]. In particu-
lar, the adversarial samples were selected according to the
degree of performance reduction in terms of the classifica-
tion accuracy of learning models over validating data sets.
Experimental results with respect to decision tree, nearest
neighbor classifier, multilayer perception and SVM demon-
strated the feasibility of the proposed poisoning models.
However, this work did not give a theoretical proof of the
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poisoning capacity to guarantee the effectiveness of attacking
models. Another method of generating adversarial samples
is the gradient ascent strategy [43], [47]. In this method,
the optimal adversarial samples are selected by calculating
the gradient of objective functions that measure the effec-
tiveness of adversarial samples. Experimental results of poi-
soning SVM, LASSO and PDF malware detection systems
showed the superior performance of the strategy. Recently,
it is worth noticing that a more effective method for gener-
ating adversarial samples is to adopt generative adversarial
network (GAN), which consists of a generative model and
a discriminative one [45]. Specifically, the generative model
is trained to generate candidate adversarial samples. Then,
the discriminative model is used to select the optimal samples
with a specific loss function. Comparative results between
GAN and direct gradient methods on MNIST and CIFAR-10
data sets validated that GAN was able to rapidly generate
high-quality adversarial samples with a larger loss value.
Another example of applying GAN to adversarial sample
generation was proposed in [49] to attack against malware
classifiers.

2) POISONING WITH MODIFYING FEATURES OR LABELS
Apart from injecting adversarial samples to original training
data, a more powerful adversary model has the capability of
modifying extracted features or the labels of some training
data [46], [47], [50], [51]. For example, in label contamina-
tion attack (LCA) [50], an attacker can significantly reduce
the performance of SVM by flipping the labels of some
training data. Furthermore, Xiao. et al. extended the adver-
sary model to attack against some black-box linear learning
models such as SVM and logistic regression (LR) [51]. It is
worthwhile to mention that the above two adversary models
both transferred the problem of selecting target labels to
an optimization one. Moreover, the latter model does not
require the prior knowledge about the detailed information
of learning models.

B. SECURITY THREATS AGAINST THE
TESTING/INFERRING PHASE

The testing or inferring phase mainly refers to the procedure
of utilizing the trained model to classifying or clustering
new data. By exploiting the vulnerabilities of training mod-
els, adversaries can generate a set of elaborate samples to
evade detection, impersonate victims to obtain unauthorized
access, or even compromise the privacy of training data via
APIs of machine learning based applications to gain sensitive
information of victims. The most common types of security
threats against the testing/inferring phase include spoofing
(for example, evasion and impersonate threats) and inversion
attacks [52], [53].

Evasion attack was proposed to compromise machine
learning in information security, e.g., spam detection [6],
PDF malware detection [24], etc. The main idea of this attack
is that an attacker generates some adversarial samples that
are able to evade detection such that the overall security of
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target systems is significantly reduced [54]. There are several
studies on attacking and defense techniques with respect to
evasion attacks [55]-[57]. For example, the authors in [55]
proposed to generate the optimal adversarial samples to evade
detection via gradient algorithms. Recent studies also demon-
strated that evasion attacks were feasible for use to attack
against FRS [8] and malware detection [58] in real world,
resulting in severe security threats towards target systems.
Similar to the above attack, the impersonate attack prefers
to imitate data samples from victims, particularly in appli-
cation scenarios of image recognition [59], malware detec-
tion [60], [61], intrusion detection [62] based on machine
learning. Specifically, an attacker aims to generate specific
adversarial samples such that existing machine learning-
based systems wrongly classify the original samples with dif-
ferent labels from the impersonated ones [63]-[65]. By doing
so, the attacker can gain the victims’ authority in practical
access control systems. Such attack is particularly effective
in attacking DNN algorithms because DNN usually extracts a
small feature set to facilitate the object identification. Hence,
an attacker can easily launch impersonate attacks by modify-
ing some key features [66], [67]. Moreover, there are many
impersonate attacks to imitate images [59]. For example,
Nguyen et al. [31] proposed to use a revised genetic algo-
rithm, called Multi-dimensional Archive of Phenotypic Elites
(MAP-Elites), to generate the optimal adversarial samples
after evolving images from different categories. Then, these
samples were fed into the AlexNet and the Le-Net-5 network,
resulting in the performance reduction of DNNs. Regarding
the impersonate attack in physical world, Kurakin et al. [35]
demonstrated an attacking scenario of deceiving an image
classification system in GeekPwn 2016. Firstly, the adversary
generated electronic adversarial samples via the least likely
class method. Then, these adversarial images were printed
out to serve as the inputs of camera. Although the successful
rate of launching impersonate attacks in physical world was
much lower than that in electrical world due to the feature
loss during printing and photography, this work validated the
feasibility of impersonate attacks in real world. Moreover,
Sharif et al. [8] introduced a novel attacking method against
the latest FRS system, where an attacker was instructed
to wear a designated pair of glasses. Experimental results
demonstrated the feasibility of such attack in real world
and the severe impacts on the detection capacity of FRS.
More work [34] showed that transferable adversarial samples
could be generated from ensemble learning, where the output
samples from one DNN were effective for use to attack
against other DNNs. Extensive experiments over a large-scale
data set (ILSVRC2012)" and a commercial image and video
recognition system (Clarifai)”> demonstrated the effectiveness
of the proposed method. Regarding the impersonate attack
against audio information, its feasibility was also validated
by real experiments that the voice with no meanings in

1 http://www.image-net.org/challenges/LSVRC/2012/
2https :/[clarifai.com/
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TABLE 2. Comparison of different attacking techniques against machine learning.

Attacking Techniques

Advantages

Disadvantages

Formulations of Adversarial Samples x*

Optimization-based
method [29] [65]

1) Minimal perturbation Ax
2) Generate high quality adversarial
samples

1) It is time consuming
2) It cannot be scaled to large datasets

Minimize c||Ax|| + lossf(x + Ax, t)
s.t.x + Ax € [0,1]™
x* =x+ Ax

Fast gradient sign
method (FGSM) [91]

1) Faster than optimization-based
methods

2) Generate high quality adversarial
samples

The perturbation is not optimal

x* = x + asign(Vx J(0,x,t))

Iterative least-likely
class method [35]

1) Refinement of FGSM
2) Superior adversarial example (finer
perturbations) to FGSM

The performance is affected by the
number of iterations

Dxi=x
)xr =
Clips.e {x3, — asign(VsJ (x5, 1))}

DeepFool [32]

1) Assuming that neural networks are
totally linear
2) It is highly efficient

It does not guarantee that the
generated adversarial samples are
good enough

argmin p [|AX; |2
st f(xi) + Vf(x:)TAx; =0

Jacobian-based
saliency map
approach (JSMA)
[33]

1) It can finely tune the perturbation
2) It can make a good tradeoff
between the number and the quality
of adversarial samples

1) Target DNNs must be feed forward
networks

2) The computation complexity is
high when processing high
dimensional data

1) Compute the Jacobin metric:
VF(x) = 2500 —
[aFj <x)]

ox; ie{1,-~,1\4},je§1,~-,N}
2) Calculate adversarial saliency maps:
S = saliency_map(VF(x),T,t),
where 7 means pixels of x

3) Modity x}f with Ax  s.t.
j = argmax,;S(x, t)[i]

the perspective of human-beings could be used to emulate
real voice control commands. For more details, please refer
to [11].

Inversion attack, on the other hand, utilizes the applica-
tion program interfaces (APIs) provided by existing machine
learning systems to gather some basic information regarding
target system models [68], [69]. Then, the basic information
is fed into reverse analysis followed by the leakage of privacy
data embedded in target models, e.g., medical data of patients,
survey data of customers, facial recognition data of users,
etc [20], [70], [71]. According to the degree of understanding
knowledge in adversarial models, this type of attack can be
generally classified into two groups, namely white-box attack
and black-box one [20]. Specifically, the white-box attack
means that an attacker can freely access and download learn-
ing models or other supporting information, while the black-
box one refers to the fact that the attacker only knows the APIs
opened by learning models and some feedbacks after feed-
ing inputs. Obviously, this type of attack introduces severe
impacts on data privacy or even threatens the life of human-
beings. For instance, an inversion attack against a drug system
personalized for a patient may induce a wrong configuration
of drugs and then cause the patient to die [70]. In USENIX
SECURITY 2014, Fredrikson et al. [70] implemented an
inversion attack against a customized drug system based
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on the linear regression algorithm. After that, the authors
further implemented the attack against decision trees and
facial images in FRS using gradient-descent methods [20].
In addition, some work used the output confidence values
of machine learning cloud service platform, e.g., Google and
Amazon, to design equation-solving attacks [71]. Given out-
put labels, such security threats could extract learning models
from multi-class logistic regression, DNN, RBF-kernel SVM.

C. SUMMARY OF ADVERSARIAL ATTACKS AGAINST
MACHINE LEARNING

In this part, we summarize different adversarial attacks to
present potential readers an overall scope of attacking tech-
niques against machine learning. Specifically, we compare
existing methods in terms of advantages, disadvantages and
formulations of adversarial samples, as shown in Table 2.
The meanings of different notations in Table 2 are given as
follows: x* means the adversarial sample with respect to an
initial sample x crafted by a specific attacking technique,
Ax refers to the perturbation that is added to x to generate x*,
t represents the target label of x*, « is the step size when
searching for a proper perturbation, and the symbol € con-
straints X’ in an e-neighbourhood of x after clipping pixel
values of intermediate results. Moreover, lossy (-, -) means the
loss function of a classifier f, and J (0, X, t) denotes the cost
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FIGURE 3. lllustration of defensive techniques of machine learning.

function used to train the learning model identified by 6. The
symbol ¢ in the formulation of optimization-based methods
denotes the regularization coefficient. In the iterative least-
likely class method given an image sample X, J (X, ¢) repre-
sents the cross-entropy cost function of a target classifier, n €
{0, 1, - - - } means the number of iterations, and Clipy ({x'} is a
function that performs per-pixel clipping towards an image x’,
i.e., Clipx (X'} = min{255, x(x, y, 7)+¢, max{0, x(x, y, 7)} —
€,X'(x, v, z)}, where x(x, y, z) denotes the value of channel z
of the image x at the coordinate (x, y).

From Table 2, we can see that different attacking tech-
niques have their advantages and disadvantages in terms of
time complexity, efficiency, the quality of adversarial sam-
ples and applicability to large-scale datasets. Specifically,
optimization-based, FGSM and iterative least-likely class
methods are good at generate high quality adversarial samples
but induce high time complexity, especially for large-scale
datasets. On the other hand, deep learning based attack-
ing methods, e.g., DeepFool and JSMA, consider multiple
factors when generating adversarial samples such as com-
putational efficiency, the number and the quality of these
samples.

IV. DEFENSIVE TECHNIQUES OF MACHINE LEARNING

In this paper, defensive techniques of machine learning is
illustrated in Fig. 3. Accordingly, we will review related
works in the following part of this section.

A. SECURITY ASSESSMENT MECHANISMS

Although there are a variety of security threats towards
machine learning, conventional assessment mechanisms of
machine learning are weak to address these threats. Basically,
most of existing assessing techniques focus on quantitatively
evaluating the performance of various learning algorithms
rather than their security [72]. Hence, many researchers
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FIGURE 4. Typical workflows of two different defensive mechanisms.

devote themselves to study on the security assessment of
machine learning algorithms [19], [73]. It is widely adopted
that security assessment is performed based on the what-
if analysis method [74]. To be more detailed, a designer
first introduces adversarial assumptions towards classifier
vulnerabilities. Then, the designer proposes countermeasures
to protect classifiers from the adversaries. Typically, there are
two types of defensive mechanisms, i.e., proactive defense
and reactive one [19], as illustrated in Fig. 4.

In the reactive defending mechanism, a potential adversary
attempts to figure out proper attacking methods by analyz-
ing the target classifier. Then, the adversary designs and
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implements these attacking methods. On the other hand,
a classifier designer would analyze new added samples and
corresponding attacking results. After that, the designer pro-
poses some defending mechanisms, e.g., recollecting data
and introducing new features to update the classification
model. The above two procedures perform alternatively,
resulting in a race between the adversary and the classi-
fier designer. Similar to the reactive defense, the proactive
mechanism holds four steps as follows: selecting adversarial
models, launching penetration testing, evaluating attack-
ing impacts and proposing countermeasures towards adver-
saries. The notable differences between proactive and reactive
defending mechanisms include the following two aspects:
(1) The attacking and defending subjects are both the clas-
sifier designer in proactive defense. (2) The designer only
performs penetration testing to uncover vulnerabilities rather
than a true attack against the classifier. In other words, pen-
etration testing in the proactive defending mechanism and
attacking in the reactive one are benign and malicious, respec-
tively. In the proactive defending mechanism, the classifier
designer uncovers potential flaws or vulnerabilities that can
be exploited by an attacker to launch attacks via penetration
testing, where an adversarial model is constructed to perform
as the attacker with specific targets, knowledge, capacity
and attacking strategies. Then, the designer integrates some
countermeasures towards adversaries into classifier design.
Since the penetration testing is performed before releasing the
designed classifiers, it is very helpful to improve the security
of these classifiers.

Basically, the distribution of training data and that of
testing data will be notably different with the presence of
adversarial samples, resulting in a non-stationary data distri-
bution. Hence, such abnormal phenomenon can be used to
serve as a way of assessing the security of machine learning
and to predict whether or not the adversarial samples exist.
Based on the above idea, some researchers proposed quan-
titative security analysis and evaluation of machine learn-
ing algorithms in adversarial environments [19], [73], [75].
Fig. 5 illustrates an example of proactive security assessment
considering data distributions. Specifically, the mechanism
first selects proper adversarial models with respect to the
hypothesized attack scenario defined at the conceptual level
by making assumptions on the goal, knowledge, capacity
and corresponding strategy. Then, it defines the distributions
p(Y), p(A]Y) and p(X|Y,A) for training and testing data,
where Y € {L, M} and A € {F, T} respectively refer to class
labels (L: legitimate; M: malicious) and a Boolean random
variable representing whether or not a given sample has been
manipulated (A = T) or not (A = F). After that, it constructs
sample training TR and testing TS sets according to the
data model defined before, given k > 1 pairs of data sets
(DiTR, DiTS), i = 1,---, k that are obtained from classical
resampling techniques, e.g., cross-validation or bootstrap-
ping. Finally, the classifier performance with the presence of
simulated attack is evaluated using the constructed (TR, TS')
pairs.
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B. COUNTERMEASURES IN THE TRAINING PHASE

As being analyzed before, the poisoning attack should be
performed by injecting designated adversarial samples into
training data to affect the resulting decision function under
specific machine learning algorithms. Hence, ensuring the
purity of training data [76] and improving the robustness of
learning algorithms [77]-[79] are two main countermeasures
towards such adversary at the training phase.

Data sanitization is a practical defending technique to
ensure the purity of training data by separating adversarial
samples from normal ones and then removing these mali-
cious samples [80], [81]. For example, a Reject on Negative
Impact (RONI) defense method was proposed to protect spam
filters including SpamBayes,? BogoFilter,* the spam filter in
Mozilla’s Thunderbird® and the machine learning component
of SpamAssassin® [80]. Specifically, the method tested the
impact of each email in the training phase and did not train
on messages that had a large negative impact. To quanti-
tatively measure impacts on the classification performance,
the method compared error rates between the original classi-
fier and the new one, which was retrained after adding new
samples into the original training data, over the same testing
data. If the error rate of the new classifier was much lower
than that of the original one, then the new added samples
were considered as malicious data and would be removed
from training data; Otherwise, these samples were benign
data. In future, such method can be improved in the aspect
of calculating efficiency when selecting large-scale candidate
samples.

On the other hand, improving the robustness of
learning algorithms is another feasible defending tech-
nique, e.g., Bootstrap Aggregating and Random Subspace
Method (RSM) [78], [79]. Moreover, Rubinstein et al. [77]
extended the original PCA and proposed an antidote based
on techniques from robust statistics. To combat the poisoning
activities in the context of anomaly detector, the authors
presented a new robust PCA-based detector by maximizing
the median absolute deviation. Experimental results demon-
strated that poisoning significantly distorted the learning
model produced by the original PCA method, whereas it had
little effect on the robust model.

3 http://spambayes.sourceforge.net
4http://bogofilter.sourceforge.net
5 https://www.mozilla.org
6http://spamassassin.aqoache.org
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Another type of effective defending methods is to design
secure learning algorithms. For example, Demontis et al. [82]
proposed a defending method that improved the security of
linear classifiers by learning more evenly-distributed feature
weights. Accordingly, they presented a secure SVM called
Sec-SVM to effectively defend against evasion attacks with
feature manipulation.

C. COUNTERMEASURES IN THE TESTING/

INFERRING PHASE

Compared to the defensive techniques in the training
phase, countermeasures in the testing/inferring phase mainly
focus on the improvement of learning algorithms’ robust-
ness. Game theory is a powerful tool to model dynamic
debates between attackers and defenders. At the beginning,
Globerson and Roweis [83] and Teo et al. [84] pro-
posed invariant SVM algorithms using the min-max method
to address the worst case feature manipulation activities
(addition, deletion and modification) in the testing phase.
To improve the robustness of learning algorithms, Briick-
ner and Scheffer [85] also proposed Stackelberg Games
for adversarial prediction problems and a NashSVM algo-
rithm based on the Nash equilibrium [86]. Furthermore,
Bulo et al. [87] extended previous work and proposed a ran-
domized prediction game by considering randomized strategy
selections according to some probability distribution defined
over the respective strategy set. The method designed ran-
domized decision functions compelling an adversary to select
low-effectiveness attacking strategies. Analytical results val-
idated that the proposed method could improve the trade-off
between attack detection and false alarms of classifiers.

Another countermeasure against attacks in the testing/
inferring phase is active defense considering data distribu-
tions. Actually, the goal of adversarial samples in the test-
ing/inferring phase is to alter the data distribution of testing
data, resulting in significant deviation from the distribution
of training data. Then, the false alarms of classifiers increase
with the presence of adversarial samples [88]-[90]. Hence,
a feasible way of defending against adversaries is to fit the
testing data distributions by retraining learning models by
classifier designers with adversarial samples. By doing so,
the new trained classifiers are able to detect anomalies in
the testing phase [27], [32]. For example, Zhao et al. [27]
proposed to introduce adversarial samples with full labels into
training data to train a more robust model. Similarly, Good-
fellow et al. [91] demonstrated through experiments on the
MNIST data sets that this method could significantly reduce
the false alarm rate of learning models regarding adversarial
samples from 89.4% to 17.9%.

Apart from introducing adversarial samples to improve
the robustness of classifiers in the testing/inferring phase,
the technique of smoothing model outputs is also effective
to strengthen the robustness of learning models. Accord-
ingly, a deep contractive network model was presented
to adopt a smoothness penalty to improve its robustness
under adversarial perturbations [92]. To protect deep learning
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algorithms in adversarial settings, defensive distillation
was proposed to defend against adversarial samples on
DNNSs [93]. Specifically, Papernot et al. [93] analyzed the
generalization and robustness properties granted by defensive
distillation when training DNNs. Comparative results vali-
dated that the technique could effectively enhance the per-
formance of two DNNs with different architectures to detect
adversarial samples in terms of the success rate of adversarial
sample crafting from 95.86% (87.89%) to 0.45% (5.11%)
on the MINST’ (CIFAR10)® data set. Note that recent work
also argued that the defensive distillation was not secure and
revealed that one could find adversarial examples on defen-
sively distilled networks with a slight modification to existing
attacks [94]. Hence, it can be expected that the research on
secure learning algorithms will draw more attention in near
future.

Besides, the dimension reduction strategy can be used to
protect machine learning models from evasion attacks [95].
This defensive strategy aimed to enhance the resilience of
classifiers by reducing the dimension of sample features.
Experimental results validated that the defensive strategy
was effective to protect multiple types of machine learn-
ing models such as SVMs and DNNs. Statistical test is
also effective to distinguish the distribution of adversar-
ial samples from that of legitimate ones [96]. Specifically,
Grosse et al. [96] proposed two statistical metrics, named
Maximum Mean Discrepancy (MMD) and the Energy Dis-
tance (ED), and applied them to measure the statistical prop-
erties of sample distributions. The experiments on MNIST,
DREBIN’ and MicroRNA!? showed that this method could
effectively detect adversarial samples. Furthermore, many
researchers proposed some ensemble methods to improve the
security and the robustness of learning algorithms [97]-[99].
For example, Sengupta et al. [97] proposed an ensem-
ble framework that effectively combined multiple DNNs to
defend against adversarial attacks. Furthermore, the frame-
work was also scalable to integrating multiple defensive
techniques.

D. DATA SECURITY AND PRIVACY

In this part, we focus on the security and privacy of data
themselves. As the world entering big data era, modern classi-
fier models (especially DNNs) require a high volume of data
for being trained. Considering that crowdsourcing has been
emerging as a main route of data collection, it suffers from a
high possibility of the leakage of sensitive and privacy infor-
mation, e.g., photos, videos, identity data, medical records,
etc. Moreover, a data collector may save the information for
a long time. Hence, it is vital to figure out how to effectively
protect data security and privacy with the presence of various
attacks, for example eavesdropping and reverse engineering.

7http://yann.lecun.corn/exdb/mnist/
8http://www.cs.toronto.edu/~kriz/cifar.htm]
9http://www.sec.cs.tu—bs.de/ danarp/drebin/index.html
lOhttp://Www.mirbase.org/
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TABLE 3. Comparison of different defensive techniques of machine learning.

Defensive Techniques

Advantages

Disadvantages

Reject on Negative Impact
(RONI) [80]

1) It effectively removes adversarial samples that are
injected into training data.
2) It scales to a variety of classifiers.

It is lack of extensive performance evaluation in a variety
of application scenarios.

Adversarial training [91]

1) It is easy to understand and implement.
2) It scales to a variety of classifiers.

Its effectiveness depends on the adversarial samples in
the training phase.

Defense distillation [93]
[94]

1) It obtains a smoother DNN model by reducing its
sensitivity regarding input perturbations.

2) It improves the generalization capability of a DNN.
3) It effectively mitigates adversarial samples crafted by
FGSM.

It is weak to defend against adversarial samples crafted
by JISMA.

Ensemble method [97]
[98] [99]

It is flexible to integrate multiple classifiers or different
defensive methods.

It is not robust to adversarial samples with transferability.

Differential privacy [100]
[103] [104]

1) It preserves the privacy of training data.
2) It preserves the privacy of learning algorithms.

It influences the performance of classifiers on legitimate
data.

Homomorphic encryption

It preserves data security and privacy in cloud

[106] [108] environments.

It induces extensive computation overheads.

Basically, cryptographic technology is generally used to
protect data privacy. Differential privacy (DP) is a spe-
cific technique of preserving data privacy via data encryp-
tion [100]. In the DP model, the calculating results on a
specific data set are not sensitive to the change of one data
record. Therefore, the risk of privacy leakage after adding a
new data record is controlled in a very small and controllable
region. In other words, potential adversaries are unable to
obtain accurate user privacy information via the calculating
results of DP. Comparing to conventional privacy preserving
models, DP gains the following two advantages: (1) The
DP model assumes that an attacker has the full knowledge
of data records except for the target record, which can be
regarded as the maximal background knowledge known by
the attacker. With this assumption, it is no need for the
DP model to consider what extent the attacker’s knowledge is.
(2) The DP model is built on the basis of solid mathematical
foundation. It strictly defines privacy preserving and provides
well-defined evaluation methods. Such feature makes the
comparability of privacy preserving values under different
settings of parameters be feasible. Hence, DP is becoming
an active research subject in privacy protection. For example,
Erlingsson et al. [101] proposed an anonymous and robust
crowdsourcing method called RAPPOR, which integrated
randomized response with DP to guarantee the privacy of
crowdsourcing. Moreover, researchers have recently utilized
DP to preserve the privacy of different learning algorithms,
including SVM [102], deep learning [103] and Bayesian
optimization [104].

Furthermore, homomorphic encryption (HE) is another
technique to provide data privacy via data encryption [49].
Without decryption using private keys during calculation,
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HE has the following two merits: (1) Any type of calculation
can be done on cipher text blocks; (2) The result after decrypt-
ing the calculating output on cipher text blocks is the same as
the calculating result on corresponding plain blocks using the
same operators. Therefore, HE is particularly suitable for use
in protecting data security and privacy in cloud environments.
On the basis of HE, many researchers devoted to study secure
multi-party calculation [105], [106], classification on full HE
data [107], distributed k-means clustering algorithms [108]
and neural networks handling encrypted data [109].

Regardless of existing cryptgraphic mechanisms, reducing
sensitive outputs of learning model APIs is an alternative idea
of assuring data security and privacy [71].

E. SUMMARY OF DEFENSIVE TECHNIQUES

OF MACHINE LEARNING

In this part, we compare advantages and disadvantages of
existing defensive techniques of machine learning, as shown
in Table 3. Basically, different defensive techniques can be
used at different phases of the machine learning lifecycle
to offer security support. For example, the RONI technique
is effective to defend the training phase against adversaries;
At the testing or the inferring phase, the adversarial train-
ing, defense distillation and ensemble method are valuable
for security usage; Differential privacy and homomorphic
encryption are two important solutions of addressing data
security and privacy issues.

V. CHALLENGES AND FUTURE OPPORTUNITIES

Nowadays, machine learning is the core technology of big
data, Internet of Things (IoT), cloud computing and artifi-
cial intelligence. Accordingly, various security threats and
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TABLE 4. Comparative analysis with respect to different attacking and defensive techniques.

Attack/Defense Technique Targeting Learning Phase | Characteristics/Taxonomy Basic Idea
Poisoning
[6] [9] [25] Causative attack It may inject adversarlal_ samples 1qto
[26] [28] .. . e training datasets. Also, it may modify
Attack Training Integrity/availability attack 0.
[38] Tareeted/indiscriminate attack the features or the labels of initial
[43]-[45] & training dataset.
[47]-[51]
Evasion [35] Exploratory attack . . .
[49] . . s It crafts adversarial samples to avoid
Attack Testing Integrity/availability attack .
[52]-[55] Tareeted attack detection of target systems.
[571 [581] B
Impersonate
(8] [10] [11] . Explo?atory .attaglf It crafts adversarial samples to imitate
Attack [30]-[35] Testing Integrity/availability attack tareet ones or to confuse tareet systems
[59] [61] Targeted/indiscriminate attack g getsy :
[63]-{67]
Inversion
[20] [68] . Ex.p loratory attack It steals the sensitive information of
Attack Testing Privacy attack .
[69] [70] T d K target classifiers or datasets.
[71] argeted attac
Dat.a' ' o Protect integrity/availability It sanitizes training data and rejects the
Defense sanitization Training . samples that will induce negative
Active defense . e
[80] impacts to classifiers.
It considers adversarial samples and
Defense Adversarial Trainin Protect integrity/availability corresponding labels when training, and
training [91] & Active defense it also does adversarial sample mining
among datasets with noise.
It takes advantages of the probability
Defense . . o .
Defense distillation Training Protect mtegr_lty/avallablllty label of training d_ata generated b_y a
Smooth classifier DNN, then it retains the DNN with
(93] -
probability label.
Ensemble Protect inteerity/availabilit It integrates diffent classifiers or
Defense method [97] Training Srity y defensive techniques to mitigate
Improve robustness .
[98] [99] adversarial samples.
Differential It adds random noise to initial data or
Defense privacy [100] | Training & Testing Protect privacy utilizes some randomized methods in the
[103] [104] training phase.
Homomorphic It is able to directly process encrypted
. .. . . data, and it can also protect the data
Defense encrytion Training & Testing Protect privacy . . i .
[106] [108] prlv.acy 1n multi-party computation
environments.

corresponding defensive mechanisms of machine learning
have drawn great attentions from both academia and industry.
Table 4 presents the comparative results of qualitative anal-
ysis with respect to aforementioned attacking and defensive
techniques.

Based on the existing literature, we argue that the research
on security threats and defensive techniques of machine
learning has the following trends:

(1) New security threats towards machine learning are
constantly emerging. Although a large number of learning
frameworks, algorithms and optimization mechanism have
been proposed, studies on the security of learning models
and algorithms are still at the beginning. Hence, there are
a variety of attacks that threaten the security of machine
learning techniques [6], [25], [28], [31]. On the other hand,
statistical machine learning highly relies on the data quality,
which is weak to defend against adversarial samples and
incomplete data statistics. Furthermore, the difficulties of
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collecting and predicting adversarial samples significantly
challenge the performance of identifying malicious samples
using machine learning based detection methods. Hence,
we argue that designing new adversary models is becoming a
meaningful research point in the perspective of an attacker.

(2) Security assessment on machine learning based
decision systems in adversarial environments becomes a
prevailing research area. Basically, it is intuitive that a
defender will show more interests in the security analysis
of decision systems with a rapid increase of security events
about machine learning. Currently, formally standardizing
security assessment techniques on machine learning is still at
the initial stage [19], [73]. Therefore, it is vital for establish-
ing a widely adopted and well-defined security assessment
standard.

(3) Data privacy plays an important role in protecting
the security of machine learning. Regardless of a great
advance of DP [101] and HE [49], [107]-[109], existing
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privacy preserving methods suffer from low cost efficiency
due to complex cryptographic operations on a large number of
parameters of machine learning algorithms. Thus, highly effi-
cient privacy preserving technology in adversarial environ-
ments is a meaningful topic that needs to be further studied.

(4) Secure deep learning is a new growth point in the
field of machine learning security. Existing works have
demonstrated that the counterintuitive characteristic of DNNs
affects their security [29]. Regardless of the proposals of
considering adversarial samples in training models [91] and
improving the robustness of learning algorithms [92], [93],
these solutions are still weak to address the above problem.
Therefore, research on secure deep learning models is very
interesting in near future, e.g., Bayes deep networks with
prior information [110].

(5) Jointly optimizing security, generalization perfor-
mance and overhead is required to design secure learning
algorithms. Generally speaking, a higher level of security
induces a larger overhead or even a lower generalization
performance of learning algorithms, which challenges their
application [111]. Hence, properly balancing the above three
aspects since the design of secure machine learning algo-
rithms is recommended to facilitate the practical usage.

VI. CONCLUDING REMARKS

As machine learning is becoming widely used in many
practical applications including but not limited to image
processing, natural language processing, pattern recogni-
tion, computer vision, intrusion detection, malware iden-
tification and autonomous driving, protecting the security
of machine learning at both training and inferring phases
becomes an urgent need. In this paper, we have presented
a systematic survey on security concerns with a variety of
machine learning techniques. Specifically, we have revisited
existing security threats towards machine learning from two
aspects, the training phase and the testing/inferring phase.
Furthermore, we have categorized current defensive tech-
niques of machine learning into security assessment mech-
anisms, countermeasures in the training phase, those in the
testing or inferring phase, data security and privacy. After
that, we have presented five interesting research topics in
this field. Such survey can serve as a valuable reference for
researchers in both machine learning and security fields.
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