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ABSTRACT Rolling element bearing is a critical component in many mechanical systems in view of its
critical functionality. One of the major issues industries face today is the failure of bearings, which results
in catastrophic consequences. Although various prognostic approaches were proposed for the degradation
of bearings, the incapability of adaptation of those models yields inaccurate predictions under different
running conditions of the bearings. To address this issue, this paper proposes a prognostic algorithm using the
variable forgetting factor recursive least-square (VFF-RLS) combined with an auto-regressive and moving-
average (ARMA) model. The structure and parameters of ARMA model were initially determined using
the vibrational data of the bearing without significant defect presented. During the bearing degradation
process, the ARMA model makes predictions of the future degradation trend. Once the future acquired
signal becomes available, the error between the acquired and predicted vibrational signal is calculated.
The VFF-RLS algorithm uses the calculated error, correlation matrix and other parameters to update the
coefficients of the ARMA model. In addition, the VFF-RLS algorithm updates the forgetting factor during
each iteration to achieve faster convergence and reduced error. The updated ARMA model makes new
predictions and the adaptive process continues. To demonstrate the applicability of adaptive prognosis
methodology, the accuracy of the prediction of the proposed model is tested using experimental and simulated
data in comparison with an auto-regressive integrated moving average (ARIMA) model without adaptation.
Results show accurate predictions of the vibrational signal and degradation trend of the bearings over the
ARIMA model.

INDEX TERMS Adaptive algorithms, ball bearings, fault diagnosis, prognostics and health management,

time-series analysis.

I. INTRODUCTION

Various mechanical systems such as gearboxes, helicopter
rotors, and spindle assemblies of CNC machines rely on the
running condition of the bearings. Even though the compo-
nents of the bearings are made of materials with superior
mechanical strength and fatigue life, limitations of the capa-
bilities of the manufacturing process along with the defects
of material lead to the formation of microcracks on the
surfaces and sub-surfaces of the elements of bearings. Over
time, the cracks will propagate because of periodic loadings
and subsurface plastic flow. In addition, lack of lubrication,
contamination, misalignment, corrosion, and improper loads
cause premature failure of bearings. Because of its highly

unpredictable failure time and mode, bearing failure is a
major issue in rotating machineries. Therefore, companies
are devoting significant effort to estimating the severity of
bearing damage and predicting the failure time and degra-
dation trend of bearings by implementing bearing diagnos-
tic and prognostic schematics. Traditionally, the severity of
bearing damage, such as the size of the defect, is measured
by placing bearings under certain running conditions on a
testing rig, disassembling the bearings after a period of time
and measuring with an optical device [1]. However, the mea-
surement of defect size is time-consuming. Thus, unobtrusive
signal acquisition methods that use accelerometers or acous-
tic emission sensors are preferred. Because the time-domain

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

10986 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-2063-8549
https://orcid.org/0000-0001-7170-4679

Y. Lu et al.: Prognosis of Bearing Degradation Using Gradient VFF-RLS Combined With Time Series Model

IEEE Access

acceleration data clearly reflect the degradation trend and are
easily obtainable, the signal acquired by accelerometers is
used in this paper to track the degradation process.

Bearing diagnosis can be classified into three major
groups: time-domain, frequency-domain, and time-frequency-
domain analysis. Time-domain methods use an acquired
signal from sensors placed on a component of the machine
to extract critical features for the diagnosis of the bearing
condition. Some desired features of the diagnosis in the time-
domain analysis are shock pulse counting, root mean square
(RMS), peak values, crest factors, kurtosis, short-time energy,
and short-time zero-crossing rate. Early research has demon-
strated that time-domain data indicate certain patterns of the
types of defects [1]-[5]. Using Fourier transform, researchers
find that the frequency-domain data reveal the critical fre-
quencies of vibration signals. Some widely used methods
include bi-coherence analysis, cepstrum analysis, and the
high-frequency response technique (HFRT) [1], which has
been widely implemented. Using the HFRT, one study found
that the impact generated by the defect site in the bearing
elements normally excites resonance in other components
in the system [6]. The high-frequency components directly
reflect the damage levels of bearing during its service life.

The fundamental characteristic frequencies of the rolling
elements of bearings are often buried during the signal mon-
itoring because of the existence of noise and resonance.
Therefore, researchers implemented different signal pro-
cessing techniques to denoise the undesirable signals and
locate important information in the system. For instance,
Shiroishi et al. [7] utilized an adaptive line enhancer that
increases the signal-to-noise ratio to detect small defects;
Zhou et al. [8] implemented the Wiener filter to extract the
bearing fault signature. Tian implemented spectral kurtosis
and cross-correlation to detect incipient faults and location
of faults without reference data [9]. Tian also implemented
simulated annealing to optimize the spectral kurtosis to locate
optimum frequency band for diagnosis [10]. The purpose
of bearing prognostics is to predict the fault of the bear-
ing before its catastrophic failure [11]. The most critical
factors for optimizing the bearing maintenance schedule
and further reducing cost are the accuracy and reliability
of the prognostic methodology. Early researchers developed
deterministic models from the physical understanding of the
defect-propagation processes based on fracture mechanics
[12], [13]. However, the propagation of defect is stochastic
because most manufacturing processes induce phase trans-
formation and grain structure change [14].

One of the most common prognosis is the prediction of
the remaining useful life (RUL) of bearings. For instance,
Qiu et al. [15] compared the performance of wavelet
decomposition-based de-noising and wavelet filter-based de-
noising methods in bearing prognosis. Caesarendra et al. [16]
applied relevance vector machine and auto-regressive and
moving-average (ARMA) model in simulated bearing data.
All these methods are relatively complex and require a
significant amount of computation, which results in issues
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for online application. To define the bearing failure point,
researchers choose a specific size of defect to quantify dam-
age of bearings [1], [7]. Shiroishi et al. [7] proposed the
failure size as 0.01 in?. However, this type of defect size
should not be generalized to all types of bearings because the
size of the defect is proportional to the size of the bearing
elements. Therefore, defining a damage severity level for a
specific type of bearings is superior to using the pre-defined
defect size as the criteria of failure.

This study uses an innovative combination of the ARMA
model with the variable forgetting factor recursive least-
square (VFF-RLS) algorithm to achieve prognosis of the
vibrational signal of the bearings. In addition, the model
overcomes the computational complexity and adapts to the
stochastic nature of the fatigue behavior of bearings. The
ARMA model is implemented instead of the ARIMA model
because of the simplicity and commonality of the model in
online application. The gradient based variable forgetting
factor improves the convergence speed of the RLS algorithm
and yields smaller error with fewer iterations of training.
To prepare the signal for prognosis, a Butterworth band-pass
filter and local regression smoothing filter is used along with
the RMS of the signal to track the behavior of the bearing
in the time-domain. The prognostic model implements the
gradient based VFF-RLS algorithm to update the coefficients
of the ARMA model, which predicts the degradation trend
during the online monitoring process. Adaptation is needed
during the online monitoring because the bearing degradation
process does not exhibit a consistent increasing trend, and the
process itself is highly stochastic. Even though vibrational
signal in the time-domain is non-stationary, the in-process
adaptation of the VFF-RLS algorithm tracks the changes of
vibrational signal and reduces errors between the predicted
and experimental values accordingly.

The rest of the paper is organized as follows: Section 2
describes the models used in bearing prognosis and
introduces the ARMA+4VFF-RLS model used in this
paper. Section 3 includes testing the applicability of the
ARMA+VFF-RLS model in online monitoring of the vibra-
tion of the bearings. To further validate the model’s appli-
cability in various conditions, the ARMA-+VFF-RLS model
was tested using simulated data in Section 4. Section 5 shows
the improvement of the multi-iteration training on individ-
ual data points and compares the traditional RLS with the
VFF-RLS. In addition, the ARIMA model is used as a bench-
mark to prove the improvement of the ARMA-+VFF-RLS
algorithm. Section 6 concludes the paper with comments and
suggestions for future work.

Il. ARMA+VFF-RLS MODEL

A. DETERMINISTIC CRACK PROPAGATION MODEL

A deterministic bearing diagnostic model is developed based
on fracture mechanics and failure analysis for high-cycle
fatigue. Various experimental data show that crack growth
of bearing element under running conditions depends on a
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FIGURE 1. RMS value of vibrational signal.

variety of factors such as material properties, loading profile,
manufacturing processes, size of bearing elements and other
environmental effects. The most popular empirical model is
Paris’ law [17] shown as (1),

da n

N = Co(AK) ey
where j—]f‘, is the rate of the crack extension, instantaneous half
crack length is denoted by a, the number of running cycles
is represented by N, Cp and n are constants related to the
material properties and running conditions, and AK is the
stress intensity factor range. Over the last decade, different
researchers modified (1) to capture the failure mechanisms
of bearings. For instance, Li et al. [18] applied a log-normal
random variable to the original Paris’ law to capture the
stochastic nature of the defect propagations of bearings. This
modified equation follows the general trend of the failure
processes of bearings under stationary running conditions.
However, other experimental data indicate that the failure of
the bearing does not always follow Paris’ law closely [19].
The measured vibration signals generally remain constant for
a long period of time before sudden failure occurs. In addi-
tion, under certain circumstances, such as sharp edge round-
ing of the defects and reduction of the rotation speed, the
measured vibrational signal decreases as shown in Fig.l.
Because of the decreased vibration signal, the initiation of
defect is extremely difficult to distinguish from the vibra-
tion signal. The deterministic models cannot resolve the two
issues described. Therefore, implementing an adaptive model
to capture the changes of the vibrational signal of bearings is
beneficial.

B. ADAPTIVE ROGNOSTIC MODEL
The prognostic model implemented reduces the complexity
of computation compared with other models, such as the
ARIMA model, in the online monitoring application. The
proposed model is shown in Fig.2.

The model first takes in the signal from x(0) to x(¢) in terms
of output voltage of the accelerometer and passes the signal
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FIGURE 2. Adaptive bearing diagnostic and prognostic model.

to the bandpass filter to eliminate high-frequency noise. The
future signals x(r + 1)...x(t + A) pass the same filter and
are used to generate error terms for the RLS algorithm. After
the signal is filtered, the RMS value of the vibration signal is
calculated based on (2),

1
xrms=\/;(x12+x%+-~-+x3) 2)

where 7 is the number of data points used in the calculation,
and x1, x2 ... x, are the vibrational signals. The selection of
n will affect the RMS of the vibrational signals. After the
RMS value is calculated, a robust local regression smoothing
filter is implemented to smooth out the leftover narrow-band
oscillation in the RMS values. The regression smoothing filter
computes regression weights for individual data points and
uses linear least-squares regression to obtain the smoothed
data. The magnitude of the RMS decreases after the filters are
applied. Therefore, after completion of the filtering, a correc-
tion factor is applied to the filtered RMS to compensate for the
decreased magnitude. The last step of the signal preparation is
to convert the RMS value to either defect size or defect sever-
ity. Li [1] has identified that the value of RMS, kurtosis, and
peak force of the vibration signal within a certain frequency
range is related to the defect size. The relationship between
the RMS and the defect size shows either a linear relationship
with fitness value of R*> = 0.850 or an exponential relation-
ship with R> = 0.843. Similarly, a power law and a second
order polynomial regression can be implemented between
the kurtosis and the defect size using the measurement from
Li [1] and Shiroishi et al. [7]. Because of the similarity in the
experimental setup and bearing type with [1], the relationship
between the RMS value and defect size in this paper can be
described using (3),

D=axRMS+b 3

where D stands for the defect size (area) or defect severity,
a is a coefficient related to a specific bearing running con-
dition, and b is a constant with respect to the bearing type
and the running condition. In the application of prognosis,
an experiment which determines the values of coefficient
a and constant bis necessary to establish the relationship
between the severity of defect and RMS of the signal.
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The adaptive part of the model uses the ARMA model to
predict the signal at time ¢ + A. Once the newly acquired
signal is available, the error between the experimental and
predicted signal is obtained. The error is passed to the
VFF-RLS algorithm to correct the coefficients of the ARMA
model for future prediction. The adaptive part of the model
is implemented recursively so that the coefficients of the
ARMA model are updated constantly during the online mon-
itoring. The model overcomes the restrictions and limitations
of a deterministic model and represents a robust and inno-
vative method for bearing prognosis. The following section
describes the ARMA model and VFF-RLS algorithm used in
the prognostic model.

The ARMA model includes two parts: auto-regressive
(AR) and moving-average (MA). An ARMA(p, ¢) model can
be described using (4),

P q
Xo=ctet Yy o= Y OiEi “
i=1 i=1

where c is a constant and &, is an independent identically dis-
tributed random variable sampled from a normal distribution
with zero mean value, &, ~ N(O, 02). The variable o2 is
the variance, &; is normally treated as a white noise with a
variance of o2, x; stands for the vibrational data in the time
domain, and ¢; and 6; are the coefficients of the AR and MA
model respectively [20]. A general way of determining the
ARMA model parameters p and q is the Akaike Information
Criterion (AIC). The ARMA (p, g) model with the lowest
AIC value is the most efficient model to describe a process.

The RLS algorithm can be initialized by setting P(0) =
iy | , where P is the inverse correlation matrix, § is a small
number generally used as a scaling factor, and I is an identity
matrix [21]. The size of I corresponds to the number of
coefficients that the RLS algorithm updates. For instance, an
ARMA (2,2) model described by (4) has five coefficients:
one constant, two coefficients from the AR model, and two
coefficients from the MA model. In this case, I represents
a five by five identity matrix. The tap-weight vector, w(0),
was set to zero because the initial value does not affect the
convergence of the RLS algorithm [1]. The length of the tap-
weight vector equals the number of coefficients of the ARMA
model. For an ARMA (2,2) model with five coefficients, the
tap-weight vector w(0) is a five by one vector. Then, for each
instant of time, n = 1,2, 3, ..., the algorithm calculates the
following entities,

A7 "P(n — Du(n)

k(n) = 1+ 2w (n)P(m — Du(n)

&)

where k is the gain vector, and A is the forgetting factor. When
A is close to one, the RLS algorithm converges to a steady
state error in a slow manner while yielding a small error,
and for A close to zero, the algorithm converges to a steady
state error in a relatively fast manner while yielding a large
error. The value of A normally varies between 0.8 and 1. The
input vector u has a dimensional size equal to the number of
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coefficients that need to be updated. Using the ARMA (2,2)
example, u is a one by five vector. The error & between the
experimental and predicted data is shown in (6),

£(n) = d(n) — W (n — Du(n) (©6)

where d is the experimental value, wH(n — Dun) represents
the predicted value at time n, and £* is the transpose of €. The
error term £ is supposed to decrease to zero as the algorithm
updates the coefficients through the tap-weights

w(n) = w(n — 1) + k(n)§*(n) (7
P(n) = A" 'Pn— 1) — A 'k P — 1) (8)

vector of the model. One advantage of this algorithm, men-
tioned by Li [1], is that the initial values of the coefficients
that need to be updated do not affect the error convergence.
In comparison with other algorithms, such as least-mean-
square (LMS), the rate of convergence of RLS is an order of
magnitude higher since the RLS algorithm does not require as
many iterations to update the tap-weight vectors as does the
LMS. This feature greatly improves its applicability in online
bearing monitoring processes [21].

The gradient based variable forgetting factor algorithm
improves the RLS algorithm convergence speed by changing
the forgetting factor A in (5). As demonstrated by So et al., this
algorithm overcomes the deficiency of the traditional RLS
algorithm in time-varying models [22]. The gradient of the
forgetting factor is obtained by deriving the dynamic equation
of the mean square error. The algorithm adjusts the forgetting
factor to minimize the mean square error and updates the
forgetting factor recursively as shown in (9) [22],

M+ 1) = [Mn) — pVAmIT &)

where VA(n) is the gradient of the forgetting factor with
respect to the mean square error, and w is the step size in
the gradient-descent algorithm. The recursive equation has an
upper limit A+ and a lower limit A— to avoid the divergence
of this algorithm. The gradient of the mean square error 03
with respect to the forgetting factor is shown in (10) [22],
dol(n+1 do2(n) aC

—0
or "

(10)

where Ag is the initial value of the forgetting factor, and 0,;2 is
the variance of the error between the experimental value and

predicted value. With assumptions and simplifications, 39%
and % can be simplified as (11) and (12) [22],

aC 2(N +2)(1 = MINAZ = (N +3)r—1
001, 2N AU —WINE =W+ =1
oA [IN(1— 1)+ 212

aC 41 =N =N +3Hr—1

G _ A= (N +3)n—1] 12
R [N(1 =)+ 2]

where N is the length of the RLS filter. The choice of N
depends on the signal to noise ratio. No specific guidance
exists to select the optimized N number. For this ARMA(2,2)
model, the filter length is set to five by trial and error. The
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FIGURE 4. Unprocessed vibrational signal.

VFF-RLS algorithm significantly reduces the number of iter-
ations to minimize the mean square error as described in [22].
In the next section, the diagnostic and prognostic model is
tested using an experimental bearing vibration data.

Ill. EXPERIMENTAL DATA

To investigate the feasibility of the proposed approach for
online monitoring of bearings, we used the bearing data
measured by Nectoux et al. [19].

The experimental setup is shown in Fig.3. The vibration
signal was collected by the DYTRAN 3035B accelerometer
with a 25.6 kHz sampling frequency to avoid aliasing. The
expected resonance frequency of the bearing is within 5 kHz
as mentioned in [1]. Therefore, the 25.6 kHz sampling fre-
quency is adequately larger than the Nyquist frequency. The
bearing was running at 1800 rpm with a 4000 N load, which
is the dynamic load rating of the bearing. The failure criteria
is defined as when the measured acceleration exceeds 20 g.
Fig.4 shows the raw signal in the time domain. The data show
that the raw experimental signal is comparatively noisy.

Because only using the VFF-RLS algorithm for noisy
signals generates undesirable oscillations in predictions,
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bandpass and smoothing filters are implemented to exclude
the noise within the data and facilitate the convergence speed
of the VFF-RLS algorithm. The filtered signal using a fifth
order Butterworth bandpass filter (1 kHz to 5 kHz) is shown
in Fig.5. We picked the frequency range of the filter based
on previous experiment conducted by Li [1], which indicates
that the high frequency components reflect the defect signal
clearer than low frequency components in the time domain.

Since the magnitude of the signal is decreased by using the
Butterworth filter, the signal requires rectification before it is
used to calculate the RMS. Each value of the RMS is obtained
using 2560 sample points. The resulting RMS after applying
a correction factor is shown in Fig.6.

The smoothing filter eliminates most of the narrow band
noises, which reduces fluctuation in prediction. After the
smoothing filter has been successfully implemented, the con-
version equation between the RMS value and the defect sever-
ity is applied based on the user’s requirement. The conversion
between the RMS value and defect severity uses a similar
structure as shown in (3). A defect severity level from one
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FIGURE 8. ARMA-+VFF-RLS prediction with § = 0.01 and A = 0.9.

to ten is assigned based on the failure requirement in the
experiment performed by Nectoux et al. [19], with a severity
of ten indicating a bearing failure. The experimental defect
severity is shown in Fig.7.

To find the most efficient model to present the signal,
the AIC is implemented to find the ARMA model structure.
The AIC test result suggests an ARMA (2,2) model structure
for this specific experiment. The VFF-RLS correlation matrix
parameter § is selected to be 0.01 and the forgetting factor A is
initially set to 0.9. The influence of the convergence of error
by A and § is demonstrated by Zhang and Zhang [23], which
mentioned that a large forgetting factor reduces the steady
state error while sacrificing the speed of convergence. The
benefit of the VFF-RLS is that it overcomes the deficiency
of the fixed value forgetting factor. Fig.8 and 9 show the pre-
dicted trend and modeling error during the prognostic process
with § = 0.01. The spikes from Fig.9 of the prediction error
indicate a sudden change in the experimental signal, which
possibly indicates damage.

By comparing Fig.5 and 9, we observed that the sud-
den increase of error around four hundred thousand cycles
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FIGURE 10. Zoomed interval of prediction.

in Fig.9 is related to an unusual increase of the signal
in Fig.5. Because the duration of the increased error is short,
we attribute this change into possible operational error while
conducting the experiment. Fig.10 and 11 are an enlarged
portion of Fig.8 and 9 from eight hundred twenty thousand
cycles to eight hundred forty thousand cycles. Although large
fluctuations are observed during the updates of the coeffi-
cients of the ARMA model, the relatively fast convergence
feature of the VFF-RLS algorithm efficiently reduces the
error to zero as shown in Fig.11 around eight hundred twenty-
five thousand cycles.

IV. SIMULATED DATA
The model was also tested on simulated bearing data created
using an exponential function with sinusoidal functions of
various frequencies. The simulated bearing signal can be seen
in Fig.12.

Using the same diagnostic model as shown in Fig.2,
the smoothed RMS is shown in Fig.13. The discontinuity of
the RMS value in Fig.13 is because of the window size of
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FIGURE 13. RMS value for simulated data.

calculating the RMS. A smaller window could be used to
reduce the discontinuity shown in Fig.13.

In addition, the prediction error of the ARMA+VFF-RLS
is shown in Fig.14. Both the simulated and experimental data
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TABLE 1. Error comparison of different iteration number.

Mean Mean Maximum  Percentage

Square Absolute Error of Change

Error Percentage

Error

Iteration 0.0164 1.26% 3.18 N/A
n=1
Iteration 0.0063 0.96% 2.64 17.0%
n=5
Iteration 0.0020 0.64% 1.35 48.9%
n=15
Iteration 0.0001 0.17% 0.43 68.1%
n=50
Iteration 5.47x10° 0.02% 0.09 79.1%
n=100

demonstrate the successful prediction of the bearing failure
using the ARMA+4-VFF-RLS model in different patterns of
degradation.

V. MODEL COMPARISON
An adaptive ARMA+RLS model is used on both experi-
mental and simulated data as a comparison. In this section,
we compared the multi-iteration training of the RLS algo-
rithm with the proposed VFF-RLS algorithm. For the multi-
iteration RLS, each individual data point was used multiple
times in the RLS algorithm to update the coefficients of
the ARMA model. The results show that the error of pre-
diction can be reduced significantly through multi-iteration
data training by 79.1%. The result of the different iterations
of the training is shown in Table 1. It can be seen that the
increment in the number of iterations significantly reduces
the error in terms of mean square error (MSE), mean absolute
percentage error (MAPE), and maximum error. The error
converges to a satisfactory value defined by the user after
fifteen iterations. However, the added computation time may
result in hardware challenge and extra memory required in
practical applications.

The gradient based VFF-RLS algorithm overcomes the
disadvantage of the multi-iteration RLS algorithm by

VOLUME 6, 2018



Y. Lu et al.: Prognosis of Bearing Degradation Using Gradient VFF-RLS Combined With Time Series Model

IEEE Access

TABLE 2. Error comparison of VFF-RLS and RLS.

VFF- RLS VFF-RLS RLS
RLS (iteration=5)  (iteration=5)
MSE 0.0850 0.1478 5.47x10° 1.85x10*
MAPE 1.4775 1.5509 0.1228 0.1927
Max 10.0383 10.4087 0.2920 0.5034
Error
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FIGURE 15. Forgetting factor change during adaptation.

TABLE 3. Comparison of RLS and VFF-RLS.

VFF-RLS RLS
Iteration 10 100
Max Error 0.078 0.09

optimizing the RLS convergence speed with the changes of
the forgetting factor. The step size w is selected to be 0.4 by
trial and error, and the upper limit and lower limit of the
forgetting factor is set as 0.995 and 0.8. The comparison result
can be seen in Table 2. The VFF-RLS, in comparison with
RLS, has marginal improvement during single data iteration
in a time-varying environment, as shown in Table 2. However,
with multiple iterations, the VFF-RLS yields smaller error
than the traditional RLS algorithm. The error is reduced more
than 50% in terms of the MSE and 42% in terms of the
maximum error.

The change of forgetting factor can be seen from Fig.15.
The result of Fig.15 indicates that a large or constant for-
getting factor does not guarantee the maximum speed of
convergence and minimization of error. Instead, the forget-
ting factor varies all the time during the VFF-RLS algo-
rithm. Table 3 demonstrates the improvement by using the
VFF-RLS over the RLS. The VFF-RLS improves the conver-
gence speed by ten times and yields a smaller maximum error
for the bearing prognostic model.

The ARMA+VFF-RLS model is also compared with
a widely used time-series forecasting model, the ARIMA
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model. The structure of the ARIMA model is selected to
be (2,1,2) based on the AIC. The value of the prediction is
shown in Fig.16 and 17 along with the prediction from the
ARMA+VFF-RLS model.

It can be observed that the ARIMA model is unable to
adapt to the non-stationary data. In addition, the error of the
ARMA+VFF-RLS method is smaller in the stationary part
of the signal. In conclusion, the ARMA-+VFF-RLS model
is superior than the time-series ARIMA model in predicting
both stationary and non-stationary trends.

VI. CONCLUSION

This paper presents an adaptive prognostic model that is
implemented in online monitoring processes of bearings to
predict the degradation trend of bearings. The model first
establishes a linear relationship between the vibrational sig-
nal and defect-severity level of the bearing. The prognostic
model uses an ARMA (2,2) model to predict the defect-
severity level of the bearing with the VFF-RLS adaptation.
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The adaptive model overcomes the inflexibility of the deter-
ministic model by constantly varying the coefficients of the
ARMA model. Previous documented models only account
for the increase of the magnitude in the vibration signals
of bearings. In comparison, this model can accommodate
various types of signals and patterns of degradation during the
online monitoring process. The VFF-RLS further improves
the RLS by increasing the model convergence speed while
reducing the error of prediction. The model also yields a
better prediction over a widely used ARIMA model which
is used as a benchmark model for comparison.

Both experimental and simulated data were tested to verify
the applicability and robustness of the model. The adaptive
model effectively predicts the defect propagation process
by optimizing the coefficients of the ARMA model. The
error between the experimental value and predicted value
is reduced significantly by the adaptation. The VFF-RLS
further optimizes the forgetting factor to minimize the MSE
and increase rate of convergence. The iteration number of
training data is closely related to the accuracy of the prog-
nosis. A large iteration number generates small error; how-
ever, it requires more computation power and memory. The
proposed VFF-RLS overcomes the disadvantage of the slow
convergence, which resulted from a large forgetting factor.

Since the AIC was used initially in the early stage of bear-
ing vibration signal, the ARMA model structure could change
over time during the process of degradation. Further research
can be performed to add structural adaptation mechanisms
to modify the time-series model. In addition, other signal
features such as energy ratio could be combined with the
proposed model to predict the trend of degradation.
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