
Received December 20, 2017, accepted February 6, 2018, date of publication February 13, 2018, date of current version March 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2805831

Learning Individual Moving Preference and
Social Interaction for Location Prediction
RUIZHI WU, GUANGCHUN LUO , (Member, IEEE), QINLI YANG,
AND JUNMING SHAO, (Member, IEEE)
School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Guangchun Luo (gcluo.uestc@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61403062, Grant 41601025, and
Grant 61433014, in part by the Science-Technology Foundation for Young Scientists of SiChuan Province under Grant 2016JQ0007,
in part by the National Key Research and Development Program under Grant 2016YFB0502300, and in part by the Postdoctoral Science
Foundation of China under Grant 2014M552344, Grant 2015M580786, and Grant 2015T80973.

ABSTRACT Location prediction has attracted increasing attention in diverse fields due to its wide applica-
tions, such as traffic planning and control, weather forecasting, homeland security, and travel recommenda-
tion. Many existing algorithms forecast a user’s next location by learning that user’s past moving patterns.
However, the individual moving patterns in many practical applications (e.g., the moving trajectory of a taxi
driver) tend to be random, which poses a big challenge for location prediction. In this paper, we propose
a new robust location prediction model that considers both individual preferences and social interactions
(PSI) at a group level to alleviate the effect of randomness and improve the location prediction perfor-
mance. Specifically, we first extract hot places of interesting (POIs) and normal POIs, respectively, via a
two-stage clustering approach. To characterize exterior social interactions, an associated group is identified,
and an outline of group moving patterns is then extracted based on association rule mining. Finally,
the next location is predicted by learning the individual’s regular patterns and group moving patterns via
a pair-wise ridge regression. In contrast to the traditional approaches, our proposed algorithm has several
desirable characteristics: 1) PSI provides an intuitive and quantitative way to model human movement
from two aspects: the individual’s internal moving preferences and group-level exterior social interactions;
2) Building upon group-level pattern mining, PSI provides a more robust prediction model by learning both
individual and group trend information simultaneously, alleviating the randomness of location prediction
from individual historical trajectory data only; and 3) The experimental results demonstrate that PSI achieves
a better prediction performance compared to the state-of-the-art methods.

INDEX TERMS Trajectory data, location prediction, data mining.

I. INTRODUCTION
Mobility data (e.g., GPS data, WiFi signals, bus-trip
records [1], credit card transactions [2], and check-in data [3]
from online social networks) are increasingly collected from
devices such as mobile phones, smart cards and vehicular
digital records. Tracking and mining the mobility patterns
in these datasets has attracted a lot of attention, from both
industry and the research community [4]–[8]. For example,
the use of tens of thousands of taxis equipped with GPS
sensors enable traffic administrators to perceive the city’s
traffic flow. The goal of location prediction, as a primary
task for mobility data mining, is to learn human moving
patterns from the historical data to forecast future locations.
Typical applications include travel recommendations, city

traffic flow control, location-aware advertisements and early
warnings of potential public emergencies [9]. Over the past
decade, numerous location prediction algorithms have been
proposed. These existing studies suggest that human moving
patterns are highly regular and periodic [10]–[13], usually
limited to several frequented locations such as homes, offices
and restaurants. However, human movement is not always
regular; it often changes dynamically through interactions
with exterior factors. Consider a taxi driver, whose mov-
ing trajectory appears to be random, because a taxi driver
has no idea who he will pick up and where that customer
will go. Even when observing the trajectory of a taxi for
an entire day or even a month, regular moving patterns are
rather rare. In such cases, predicting future movement is more
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challenging because it is difficult to learnmobility patterns by
analyzing only that taxi’s past data.

Over the past century, human behavior has also been
extensively studied by behaviourists [14]–[17], who often
consider human behavior from two aspects: an individual’s
internal preferences and his or her exterior social influences.
For instance, when a person makes a decision, the outcome
usually depends both on that individual’s own knowledge,
preferences and habits as well as direct or indirect social
influences from the external environment, such as sugges-
tions from friends. Although this exterior social interaction
is difficult to observe and characterize directly, its influences
are indirectly reflected by the moving patterns of social
groups. To further explore the taxi driver example, on the
day of a popular concert in the city, the probability that a
taxi driver will travel to the concert location with his next
customer is higher. This suggests that the external environ-
ment (i.e., the special event) can provide hints to help with
location prediction. Fortunately, such external effects can also
be reflected by group patterns (i.e., on the day of the concert,
for a group of taxi drivers, a frequent mobility pattern exists—
travel from many places to the concert location). Therefore,
external interactions can be discovered by exploring frequent
moving patterns in a group. Finally, any collected external
interaction information is beneficial to individual movement
prediction.

In this paper, we focus on predicting GPS data patterns
that do not exhibit strong individual regular moving patterns.
To deal with this challenging problem, we propose a robust
location prediction model that explores both an individual’s
moving preferences and that individual’s social interactions.
Specifically, to quantify the effect of exterior social interac-
tion on individual future movement, we first identify an asso-
ciated group to which a person belongs via clustering. Then,
the frequent moving patterns that may reflect external social
interactions are extracted based on association rule mining.
These frequent group moving patterns (which characterize
the group’smoving trends), together with the individual’s past
moving patterns are finally integrated to forecast the individ-
ual’s next location. Moreover, the quantitative contributions
of interior preference and exterior social influence on human
behavior are learned by pairwise linear ridge regression. The
main contributions of this paper are as follows.
• Identification of Hot and Normal POIs. To extract the
key semantic information from trajectory data, a two-
stage clustering method is proposed that discovers hot
places of interesting (POIs) and normal POIs, respec-
tively. In contrast to traditional approaches that identify
only hot POIs, our POIs extraction approach better rep-
resents the trajectory and alleviates the information loss.

• Intuitive Model. Motivated by behaviorist theory,
an intuitive model is introduced to characterize human
movement from two aspects: internal moving prefer-
ences and group-based exterior social interactions. More
importantly, this model provides a quantitative way to
characterize the contributions of those two aspects.

• High Performance. By exploring an individual’s mov-
ing preferences and social interactions, the PSI model
can predict a user’s next location more accurately.
The rationale is that group-level frequent patterns alle-
viate the randomness of location predictions made
solely from an individual’s historical trajectory, and
the time-aware learning strategy further filters out out-
dated patterns. Experimental results on several real
datasets demonstrate the superiority of our PSI approach
(cf. Section IV-C).

The remainder of this paper is organized as follows: The
following section briefly surveys related work. Section III
presents our algorithm in detail. Section IV contains an
extensive experimental evaluation. Finally we provide a brief
discussion and conclude the paper in Section V.

II. RELATED WORK
Over the past decades, many approaches have been pro-
posed for location prediction (e.g., [2], [5], [18]–[23]). Here
we review only the most highly related works. In addition,
we introduce some related works concerning POI extraction.

A. LOCATION PREDICTION
Early location prediction studies often resorted to time-
series analysis. The basic idea is to view trajectory data
as location sequences, and then use traditional time series
mining techniques such as the Markov chain to predict the
next item in the sequence. For example, Gambs et al. [22]
employs the Markov chain to first model the n previous
locations visited by the user, called the mobility Markov
chain (MMC) model, and then predicts the next location via
the transfer probability between different locations. To con-
sider spatial movement constraints, Cheng et al. [4] proposes
a model that built personalized Markov chains by utiliz-
ing the user’s location history sequence. They introduce a
spatial constraint on the localized region and factorize the
transfer probability matrix of personalized Markov chains
to predict the user’s next movement. Although Markov
chains are widely used in sequence analysis, this approach
does not sufficiently consider the temporal information
in GPS data. By exploring follow-up research on student
card consumption trajectories in camps, Barabasi [10] and
Brockmann et al. [11] demonstrate that individual human
mobility behavior sometimes shows regular spatial and tem-
poral rules. Based on this assumption, Morzy [19], [24]
extracts regular moving rules by mining users’ frequent tra-
jectories to predict location [25]. To better integrate temporal
information, Giannotti et al. present a model that considers
the time interval between two successive user locations
and builds a decision tree to model these associated rules
(called a T-pattern) between the temporal and spatial spaces.
Relying on the T-patterns, location prediction strategies are
further proposed in [13] and [26]. It is worth mentioning that
including semantic information about human movements
in the trajectories has raised some concerns, and various
works have attempted to discern geographically triggered,
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temporally triggered, or semantically triggered inten-
tions [5], [27]. For instance, Noulas et al. [3], [28] aims to
capture the spatiotemporal characteristics from trajectories
and build a semantic trajectory pattern tree to forecast a user’s
next moving location. Although individual mobility pattern
mining is an essential driving factor for predicting a user’s
future location, it is not the only pertinent factor. In fact,
user movement is highly susceptible to exterior influence. For
example, similar people may have similar mobility patterns.
Motivated by this social phenomenon, Cho et al. [29] pro-
poses a time-aware Gaussian mixture model that considers
users’ social activities. Jia et al. [30] selects the top N
friends of a user using a temporal-spatial Bayesian model
to learn the dynamics of friends’ influences on an indi-
vidual’s mobility patterns, and then predict a user’s future
location. Moreover, an increasing group of studies have used
technologies related to collaborative filtering for location
prediction [23], [31]–[34]. Wang [34] proposes the RCH
model by integrating a user’s regularity term and conformity
term; this model adopts matrix factorization to capture the
influence of intimate friends. Moreover, a Bayesian inference
framework is another effective strategy for location predic-
tion. Xue et al. [35] proposes the STS model, which utilizes
sub-trajectories to build a global transfer probability matrix
and adopts a Bayesian framework to infer a user’s future
location.

In summary, most existing approaches that use GPS data
implicitly or explicitly assume that there are some regular
patterns in individual movements. However, due to the ran-
domness of individual trajectories in real-world applications
(e.g., recall the example of the movement of the taxi driver),
learning regular patterns from individual trajectories with
traditional approaches is a non-trivial task. More importantly,
an individual’s moving preferences may change dynamically
over time. In light of these problems, we introduce a new
model, PSI, that uses a time-aware transfer matrix to describe
individual preferences and extract the skeleton information
from a group associated with the user to simultaneously char-
acterize social influence and, finally, learn the contributions
of the two factors in a simple yet quantitative way via pair-
wise ridge regression.

B. POIS IDENTIFICATION
Trajectory data produced by GPS devices often contains
huge amounts of redundant information. Extracting POIs
from the trajectory data is essential for practical mobil-
ity pattern mining [20]. The mainstream approach to POI
extraction is to discover POIs based on clustering. For
instance, Palma et al. [36] first extracted features such as
speed and time from trajectory data, and then found the POIs
via spatial-temporal clustering. Zheng et al. [37] discovered
the interesting locations and travel sequences in a given
geo-spatial region from GPS trajectories by first clustering
the non-moving points into groups; each group represents
a geographic region where a user stayed over a certain
time interval, and then designed a scoring system to rank

the clusters. However, most existing approaches mainly focus
on the attractive areas and ignore places that users do not
usually visit, which is also an aspect of a user’s mobility
information. In this study, we introduce a two-stage clustering
strategy that identifies both hot POIs and normal POIs in
urban areas to extract all the semantic locations from the GPS
trajectory data.

III. PSI MODEL
In this section, we introduce PSI, a robust model to predict
human movement.

A. INTUITION AND OVERVIEW
Inspired by behaviorist theory, we construct a humanmobility
model based on an individual’smoving preferences and social
interactions using a simple and intuitive yet quantitative
approach. The key point is to find the exterior interaction
influences from the frequent mobility patterns in grouped
trajectories. These group-level patterns can typically provide
hints concerning the influences of external events on human
mobility. Therefore, relying on a trajectory similarity mea-
sure, we first identify trajectory groups. Then, we extract
the frequent grouped mobility patterns (i.e., hot and impor-
tant moving patterns). Considering the varying importance
of moving preferences over time, a time-aware strategy is
applied. Finally, the individual moving preferences are inte-
grated with the social interaction influence to perform loca-
tion prediction. For illustration, Fig. 1 gives an overview of
our prediction model. The algorithm starts by extracting the
POIs (Fig. 1, left). Then, the users are grouped based on
spectral clustering (Fig. 1, middle), and only the frequently
groupedmoving patterns are considered (e.g., those with high
visiting frequencies, depicted in blue) to reflect the external
social influence. Finally, the individual’s moving preferences
and the group-level patterns are learnt by ridge regression to
predict the user’s next location (Fig. 1 right). In the following,
we first describe how to extract the semantic trajectory for the
GPS datasets, and then elaborate on how to learn the patterns
from each driving factor and combine them together.

B. EXTRACTING A SEMANTIC TRAJECTORY
GPS-based trajectory data is represented by sets of points
consisting of latitude, longitude and a time stamp; however,
investigating human mobility patterns from raw GPS data
directly is not the best approach. A more intuitive method
is to group all the GPS points into a smaller number of
semantic locations. Currently, doing this involves two main
strategies: grid-based partitioning and semantic POI extrac-
tion. The first approach simply partitions the study area
into multiple grid cells of either equal or different sizes.
However, because this type of approach ignores the relative
importance of different locations, it does not well represent
the semantic locations in the trajectory data. The second
approach extracts the semantic locations (such as a home,
office, or shopping mall) based on their visiting frequencies
in the trajectory data. Here we propose a two-stage clustering
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FIGURE 1. An overview of the PSI model. The first stage extracts semantic POIs from trajectory data. The second stage models an individual’s moving
preferences. The third stage applies the external social interaction model, in which users are first grouped and then group-trend moving patterns
(e.g., the high frequent visiting pair-wise patterns) are discovered. The fourth stage performs quantitative learning via a pair-wise ridge regression
algorithm to obtain the final location prediction.

FIGURE 2. The framework to identify POIs via a two-stage clustering. (a) A trajectory in an urban grid, the cell in the right figure is an example;
(b) The hot POIs (yellow areas in the figure) are identified using the DBSCAN algorithm; (c) The normal POIs (all colored areas except the yellow
areas) in urban areas are identified using the K-means algorithm and then the hot and normal POIs are integrated.

strategy to group these GPS data points into hot POIs and
normal POIs. Specifically, we first partition the study area
into n × n (e.g., n = 100) grid cells. Then, we calculate
the visiting frequency of each cell. Because some places
are visited often while others are rarely visited, we regard
the square root of the visiting frequency as the cell weight.
Finally, each cell is represented by gi = (xi, yi,wi), where wi
is the cell weight, and xi and yi are the average latitude and
longitude of the points in the cell, respectively. Building upon
this grid-based representation, we apply a typical density-
based clustering algorithm, DBSCAN, [38] to the grid data.
DBSCAN was selected due to its popularity and its ability
to find arbitrarily-shaped clusters. More importantly, it is
suitable for finding the dense regions (characterized as the
hot POIs). Because each cell is associated with a weight,
we used the weighted DBSCAN method, where wi is used
as a weight when computing the core points. After clus-
tering, the hot POIs can be extracted. However, some cells
are regarded as noise due to their low frequency. Therefore,
we further apply the K-means to cluster the remaining ’noisy’

cells into groups. These groups usually represent some
common places that we term ‘‘normal’’ POIs. K-means is
applied in the second stage for two reasons: (1) it main-
tains the complete trajectory information, and (2) unlike
DBSCAN, K-means fits the sparse spatial data clustering
as it allows partitioning the data space into Voronoi cells.
The procedure to extract POIs is illustrated in Fig. 2. Fig. 3
further plots the extracted hot POIs for two real trajec-
tory datasets. In contrast to the traditional approaches, our
method finds both hot POIs and normal POIs; thus, it main-
tains more complete trajectory information. Finally, we rep-
resent each trajectory using the extracted POIs. Namely,
Ti = (ti, poi1, · · · , poin), where ti is the time of the trajectory,
and poii is the i-th POI the user visited. Algorithm 1 shows
the pseudocode for extracting POIs.

C. TIME-AWARE INDIVIDUAL MOVING
PREFERENCE MODELING
Similar to traditional approaches, we extract an individual’s
moving preference based on frequent mobility patterns in
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FIGURE 3. Hot POIs in the urban area after the first clustering algorithm based on the Porto taxi dataset and the Geo-life
dataset: (a) Hot POIs in Porto; (b) Hot POIs in Beijing.

Algorithm 1 Algorithm to Extract a Semantic Trajectory
Input: GPS trajectory data, K , ε, minpts.
Output: ST = {T1,T2,T3...} //ST is a semantic

trajectory dataset.
Create a grid in the urban area;
for each grid cell gi in the urban grid do

//calculate gi, P is a GPS point in cell gi;
xi = mean(Plongitude);
yi = mean(Platitude);
wi =

√
N (P); //N (P) is the number of points in cell

gi;
gi = (xi, yi,wi);

end
//POIs identification ;
//POIh denotes a hot POI and POIn denotes a normal
POI;
POIh = DBSCAN (G(g1, g2, ....gn×n), ε,minpts);
//N (POIh) is the number of hot POIs;
Gn is the noisy cells in DBSCAN algorithm;
POIn = K − means(Gn, (K − N (POIh)));
POIs = (POIh,POIn);
for each trajectory do

//update semantic trajectory;
Ti = (ti, poi1, · · · , poin);

end
ST = {T1,T2,T3...}

historical individual trajectory data. Formally, let f (POIA) be
the visiting frequency starting from the place of interest A
but not visiting A for a given user, and f (POIA → POIB)
be the number of times the user travelled from place A
to place B. We define the individual’s moving preference
Primp(POIA→ POIB) as follows.

Pr(POIA→ POIB) =
f (POIA→ POIB)

f (POIA)
(1)

Considering that individual moving preferences change
dynamically, more recent moving patterns are usually

more important. Therefore, we introduce a decay func-
tion to characterize the relative importance of moving pat-
terns over time. Finally, an individual’s moving preference
Primp(POIA→ POIB) is redefined as follows:

Primp(POIA→ POIB) =

∑M
i e−γ (t

cur
i −ti)∑N

j e
−γ (tcurj −tj)

(2)

where M represents the number of times the user moved
from place A to place B, N is the number of times the
user visited place A, tcuri is the current time when the
i-th instance of one pattern occurred, and ti is the start time of
the i-th instance of that pattern. Here, γ is a constant used to
control the time effect onmoving preferencemodeling. In this
study, we set γ = 0.5.

D. EXTERNAL SOCIAL INTERACTION MODELING
As stated above, human mobility is mainly driven by the indi-
vidual’s moving preferences and external social interactions.
In this section, we elaborate on how to use the group-level
sketching patterns to model the social interaction and why it
works.

The social characteristics of human beings is important;
through social interactions, people influence others and are,
in turn, influenced by others. In the context of human mobil-
ity, individual movements are affected by the movement
patterns in a community. Moreover, external environment
conditions such as holidays and events are also reflected
by group mobility patterns. Therefore, to enhance the pre-
dictability of human movement, we also consider group-
level patterns. The group-level patterns differ from other
traditional methods in two ways: (1) we consider group pat-
terns rather than global patterns because the external effects
tend to be local. In addition, global patterns may introduce
considerable noise. (2) Only the most frequent moving pat-
terns that represent the group trends are considered. The
rational is that human mobility is usually affected only by
the most important ideas, suggestions, or trends. Group pat-
terns with low frequency usually characterize the diversity
of mobility patterns in the group. Therefore, we identify
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the associated group for each user by performing trajectory
clustering.

We integrate all the trajectories of each individual user in
chronological order build a unique trajectory for each user.
Because different trajectories often have different sampling
rates and lengths, it is a non-trivial task to use traditional simi-
larity measures such as Euclidean distance. Here, we employ
the Jensen-Shannon divergence to assess trajectory similar-
ity because it is both symmetric and allows comparing two
distributions:

JSD(Ti||Tj) =
1
2

(
DKL

(
Ti‖T ∗

)
+ DKL

(
Tj‖T ∗

))
(3)

where

T ∗ =
1
2
(Ti + Tj)

DKL
(
Ti‖T ∗

)
=

∑
poi

Pi(poi)log
( Pi(poi)
P∗(poi)

)
(4)

Here, Ti and Tj represent the i-th and j-th trajectory, respec-
tively, poi represents a POI in the trajectories of Ti and Tj, and
Pi and P∗ indicate the probability distributions of trajectory
of Ti and Ti + Tj, respectively.

Relying on the Jensen-Shannon divergence, a typical spec-
tral clustering [39] approach is applied to find the C groups
(C = 10 in the Porto taxi dataset, and C = 5 in the
Geo-life dataset). Subsequently, we apply the prefix-span
algorithm to each trajectory group to find the frequent pair-
wise moving patterns. Formally, prefix-span is a sequen-
tial pattern mining algorithm that explores prefix-projection.
Unlike the Apriori algorithm used to create candidate fre-
quent patterns in databases, the basic idea of prefix-span is
to extract the prefixes of sequence items to build a projected
database, and it removes a sequence if the suffix is less than
a given support rate s after scanning the projected database.
Then for each remaining sequence in the projected database,
its ending location is used as the beginning location for new
scans [40]. In this study, we employ the prefix-span algorithm
to extract frequent patterns such as (POIA→ POIB) that have
a support rate of s, and then calculate the confidence of each
pattern, respectively. Because the extracted patterns represent
frequent moving patterns using the confidence of frequent
patterns, they provide a potential way tomodel external social
interactions. Formally, we can write

Presi(POIA→ POIB) = confidence(POIA→ POIB)fre

=
f (POIA→ POIB)fre

f (POIA)fre
(5)

where f (POIA → POIB)fre denotes the number of the
frequent moving pattern (POIA → POIB) in a specific
group (i.e., a sub-trajectory from place A to place B). Here,
f (POIA)fre is the number of patterns associated with place A
in the group. Presi(POIA → POIB) characterizes the group
preference of the moving pattern.

E. LOCATION PREDICTION VIA LEARNING INDIVIDUAL
MOVING PREFERENCE AND SOCIAL INTERACTION
After modeling the individual moving preferences and exter-
nal social interactions, we finally integrate the two driving
factors to perform trajectory prediction. To provide an intu-
itive yet quantitative way to analyze the importance of these
two factors, we use a linear regression model for each pair-
wise trajectory pattern A→ B. Formally, this can be written
as follows:

Pr(POIA→ POIB) = β0 + β1 × Primp(POIA→ POIB)

+β2 × Presi(POIA→ POIB) (6)

where Pr(POIA → POIB) is the next location preference
matrix of a user, Pimp(POIA→ POIB) is the individual mov-
ing preference for the next locations and Pesi(POIA→ POIB)
is the external social interaction. βi represents the correspond-
ing coefficients. To predict user’s next future movement,
we learn the different quantitative contributions (i.e., different
βi values) from the current place A to the next location B.
Unlike other prediction methods, such as support vector
regression (SVR) or the hidden Markov model (HMM), this
approach allows the model to learn the quantitative contri-
butions of the driving factors intuitively. The traditional way
for computing βi usually adopts a least squares (LS) method.
However, LS estimates are not robust with ill-conditioned
input data, and may not fit sufficiently well to the test data
(although it fits to the training data well). Here we use ridge
regression, an improved least squares method for linear mod-
els that avoids overfitting and improves model robust due to
its use of a regularizer to control the model complexity:

min
β
‖y− βX‖2 + λ ‖β‖22 λ ≥ 0 (7)

where β = [β0 β1 β2]T , λ is a constant, and y is the
observed pairwise movement pattern matrix for each user.
X = [Ximp Xesi] contains the individual moving preference
matrix Ximp and external social interaction matrix Xesi for
each user, respectively.

To train the model, we must determine the training dataset.
In this study, we use a sliding window strategy where the
data within a given window size (e.g., trajectory data for
three months) is regarded as training data and used to pre-
dict the next location within a window size (e.g., in the
next week or month). The selected window size depends on
the trajectory data and the user’s application requirements.
In addition, considering that humanmovement usually differs
substantially on workdays and weekends, in our PSI model,
we analyze these two moving patterns separately.

F. PSI ALGORITHM
In this section, we describe the PSI algorithm, which involves
the following steps:

1) POI Identifications. First, the hot POIs and normal
POIs that represent the semantic locations in trajec-
tory data are identified. In contrast to most traditional
approaches, which extract only the hot POIs, we use
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a two-stage clustering (i.e., density-based DBSCAN
and partitioning-based K-means) approach to identify
the hot and normal POIs, respectively. The maximum
total number of POIs (i.e., K ) is set to 100 in all the
experiments, and the hot POIs are determined by the
DBSCAN algorithm. Then, the number of normal POIs
is set toK = (100 - number of hot POIs) for theK-means
algorithm.

2) Individual Moving Preference Modeling. Consider-
ing that individual moving preferences change dynam-
ically, an individual’s moving preferences over time are
characterized by Eq. (2).

3) External Social Interaction Modeling. To charac-
terize the external social effect, the trajectory is first
grouped into several clusters building upon the Jensen-
Shannon divergence. Then, the frequent group-level
patterns are mined by the prefix-span algorithm.

4) Location Prediction: Building upon the modeling
of individual moving preferences and external social
interactions, the ridge regression is introduced to pre-
dict the next location. More importantly, the contri-
butions of both individual moving preferences and
external social interactions are measured.

Finally, the pseudocode of the PSI algorithm is summa-
rized in Algorithm 2.

G. COMPLEXITY ANALYSIS
To extract POIs, we need to perform the two-stage clus-
tering (DBSCAN and K-means). Therefore, the time com-
plexity depends on the number of cells considered (e.g., N=
100 ×100), whose complexity is O(N · log(N )). The most
time-consuming part of trajectory clustering is the SVD
decomposition of spectral clustering, which is O(N1 · d2 ·
log(d)) of the time complexity of spectral clustering, where
N1 is the number of users. For frequent group pattern
mining, the running time is approximately O(N 2

1 ). There-
fore, the theoretical total running time is approximately
O(N · log(N )+ N1 · d2 · log(d)+ N 2

1 ).

IV. EXPERIMENT
To comprehensively study PSI’s performance, we conducted
experiments on two real-world datasets: Porto taxi GPS tra-
jectory data and Geo-life data. We compared PSI with the
Next-place model [22], the Prediction of Moving Object
Locationmodel (PMOL) [19], the Time-weight Collaborative
Filter Model (TWFM) [31] and the Sub-trajectory Synthesis
Model (STS) [35]. An introduction to and the parameter
settings of these models is provided in Section IV-F. All the
experiments were performed on a personal computer with a
3.5 GHz CPU and 8 GB of RAM. In general, in this study,
we set the parameters as follows. C is the number of groups
in the dataset; we set C = 10 in the Porto dataset and C = 5
in the Geo-life dataset. s is the support of the prefix-span
algorithm; we set s = 0.01. T is the length of sliding time
window, and γ is the decay-rate factor in Eq.( 2). The effects

Algorithm 2 PSI Prediction Algorithm
Input: ST = {T1,T2,T3...}, C , s, T , γ , λ.
Output: Predicted location
//Part ST according T (Dtrain,Dtest ) = Partition(ST ,T );
for each D in (Dtrain,Dtest ) do

//find individual moving preference;
for each user in dataset do

Find the individual moving preference, such as
Primp(POIA→ POIB);
calculating Primp(POIA→ POIB) using Eq. 2
and γ ;

end
//Cluster users to find group patterns;
for each user in a dataset do

//calculating distance matrixDis;
Disij = JSD(Ti||Tj);

JSD(Ti||Tj) = 1
2

(
DKL

(
Ti‖T ∗

)
+ DKL

(
Tj‖T ∗

))
;

end
//G is group;
G = spectralcluster(Dis,C);
for each G do

//mining frequent patterns from the group;
(POIA→ POIB)fre = prefixspan(G, s);
Presi(POIA→ POIB) = confidence(POIA→
POIB)fre;

end
Pr(POIA→ POIB) = β0 + β1 × Primp(POIA→
POIB)+ β2 × Presi(POIA→ POIB);
where β = [β0 β1 β2]T ;
Learning β using Eq.7 and λ;

end
Predicting location using β , Primp and Presi;

of these parameters on the prediction performance will be
further investigated in Section IV-G. We set the parameters
of the compared algorithms to the values suggested by their
authors.

A. DATASET
In this study, we focus on two real GPS trajectory datasets:
Porto taxi data and Geo-life data [41], [42]. The Porto
taxi dataset contains the trajectories of 442 taxis from
July 2013 to June 2014 in the city of Porto, Portugal. This
data represents approximately 1.7 million taxi rides. These
mobile data terminals are installed in each vehicle and pro-
vide GPS localization and taximeter state information. Elec-
tronic dispatch systems make it easy to see where a taxi
has been. One objective of this dataset is to predict the
next destination of each taxi. For more details, please refer
to the website (https://www.kaggle.com/c/pkdd-15-predict-
taxi-service-trajectory-i). TheGeo-life dataset is another GPS
trajectory dataset that was collected by Microsoft Research
Asia for 182 users over a period of more than five years (from
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FIGURE 4. An illustration of the location prediction for a given user. (a) A user in the Porto taxi data; (b) A user in the Geo-life
dataset.

TABLE 1. The statistics of two trajectory datasets.

April 2007 to August 2012). Table 1 further lists the statistics
of two trajectory datasets. We split both datasets into training
data and test data at an 8:2 ratio, respectively.

B. EVALUATION METRICS
To quantitatively evaluate the PSI, we adopted the following
performance metrics:
• Prediction performance. We evaluated the performance
of the PSI model in terms of accuracy (including Acc,
Acc@5, and Acc@all), precision (mean average preci-
sion (MAP)), rank (first place rank (FPR)), F1-score and
record.

• Sensitivity. We tested the sensitivity of the prediction
performance to parameter variation.

Acc@topP is the percentage of accurate predictions for
a list of predictions with length P. We selected Acc@1,
Acc@5 and Acc@all to describe the accuracy of the PSI
model. FPR represents the prediction performance of the
top-1 location rank. The formal definition is as follows.

FPR = (K − rank(L)+ 1)/K (8)

where K is the number of locations (K = 100 in this
study), and rank(L) is the position of the top-1 location in
the predicted list. AFPR is the average FPR.

The MAP, derived from information retrieval, is an evalu-
ation index that represents the relationships between all the
predicted moving locations and the real moving locations.
Formally,

MAP = (
n∑

r=1

(P(r) ∗ rel(r)))/K (9)

where K is the number of locations, rel(·) is a binary function
on the relevance of a given rank, and P(r) is the precision for
a given rank.

The F1-score is an index that considers both the precision
and the recall rate. It records the ratio between the number of
true predictions of moving locations and the total number of
real moving locations.

C. PSI’S LOCATION PREDICTION PERFORMANCE
1) HIGH PREDICTION PERFORMANCE
To evaluate the performance of the PSI when predicting
the next location, we first performed experiments on both
Porto taxi data and Geo-life datasets with different settings:
(1) different window sizes for training: three months, four
months, five months and six months on the Porto dataset,
eighteen months, twenty-four months and thirty months on
the Geo-life dataset. The Geo-life dataset spans a longer
time and contains sparser trajectory data (every user has a
20-day trajectory); and (2) with and without a decay function.
Table 2 and Table 3 summarize the prediction performances
in terms of the different evaluation measures on the two
datasets (in Table 2 and table 3 M means months), respec-
tively. Other parameters were set as follows: k = 100,
s = 0.01, γ = 0.5, λ = 0.5. The time ranges of the predic-
tions are one month for the Porto dataset and six months for
the Geo-life dataset. From these tables, we can observe that
PSI achieves a good prediction performance, especially for
the top-1 location prediction (with an AFPR> 96%). In addi-
tion, we can see that the decay function has only a slight effect
on the prediction performance. Regarding the selection of
training data, whenmore data are used for training, the results
show a slight improvement in the prediction performance.
To better illustrate the results, Fig. 4 further plots the location
prediction for one user from the Porto dataset and Geo-life
dataset; the red points indicate the predicted the locations
while the blue circles demonstrate the ground truth (i.e.,
the real moving locations).We can observe that the prediction
is good because most of the predicted locations and the real
moving locations match.

Furthermore, we evaluated the prediction performances
for workdays and holidays, respectively. Human movements
on workdays are usually more regular. Fig. 5 compares
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TABLE 2. PSI’s location prediction performance on the Porto taxi dataset.

FIGURE 5. Comparison of PSI’s prediction performance on workdays and
holidays. (a) Porto taxi dataset (b) Geo-life dataset.

TABLE 3. PSI’s location prediction performance on the Geo-life dataset.

the prediction performances for workdays and holidays.
As expected, Fig. 5 shows that PSI achieves better prediction
performance for workdays in terms of the different evaluation
measures on both datasets.

2) LOCATION PREDICTION WITH DIFFERENT TIME RANGES
In addition to predicting the moving trajectory for either
workdays or holidays, we further considered the time ranges
when predicting future movements. Here, considering the
two datasets, we predicted the next location of a given user
in 10 days to 50 days when using the Porto dataset and
1 months, 3 months, 6 months and 9 months when using
the Geo-life dataset. Table 4 and Table 5 summarizes the
prediction performances. Clearly, the PSI captures both the
individual moving preferences and social interaction influ-
ences; thus, it achieves high prediction performances over
different time ranges.

TABLE 4. Location prediction performance with different time ranges on
the Porto dataset.

TABLE 5. Location prediction performance with different time ranges on
the Geo-life dataset.

3) TREND PREDICTION
Here, we further evaluated the group trend movement by
merging all the individual predicted locations together. Group
movement provides amore comprehensive way to understand
human moving patterns. In Fig. 6, we draw a heat map of
the predicted location in a global manner, and compare it to
the real movements for all users. It is interesting to note that
the predicted group mobility patterns are highly successful.

D. QUANTITATIVE ANALYSIS OF INDIVIDUAL MOVING
PREFERENCE AND EXTERNAL SOCIAL INTERACTION
In contrast to previous approaches, PSI provides a simple
quantitative way to investigate the effect of individual moving
preferences (IMP) and external social interactions (ESI) on
human movement, respectively. For each user, we derive the
coefficients β1 and β2, which characterize the contributions
of the two driving factors, respectively. The contribution of
IMP is calculated by β1

β1+β2
, and the contribution of ESI is

calculated by β2
β1+β2

. Fig. 7(a) shows a plot of the portions of

the individual moving preferences and social interactions for
themovement of some taxis in Porto, for example, the red part
shows the proportion of individual moving preferences and
the yellow part shows the proportion for social interactions.
Fig. 7(b) shows the individual moving preference of all the
taxis in the dataset, and Fig. 7 (c) and (d) show the results
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FIGURE 6. The group movement distributions on two datasets.
(a) Group prediction location distribution in Porto; (b) Group true location
distribution in Porto; (c) Group prediction location distribution in Beijing;
(d) group true location distribution in Beijing.

FIGURE 7. Illustration of the contributions of individual moving
preferences and external social interactions when determining human
movement from the Porto and Geo-life datasets. a) Example users (Porto).
(b) All users (Porto). (c) Example users (Beijing). (d) All users (Beijing).

on the Geo-life dataset. From Fig. 7, we can easily see the
external social influence on human mobility, where the aver-
age contribution of individual moving preference accounts
for 66.9% in the Porto data and 51.2% in the Geo-life data.
In general, some users have strong individual regular moving
patterns, while some people tend to follow the groupmobility.
However, for both datasets, external social interactions play
an important role in human mobility.

FIGURE 8. Randomness analysis on two datasets. (a) The randomness of
the next location by comparing individual patterns or individual & group
patterns of a taxi in Porto; (b) The different prediction performances on
the Porto dataset using the two different strategies: individual patterns
and individual plus group patterns; (c), (d) The same types of plots using
the Geo-life dataset.

E. RANDOMNESS ANALYSIS
To further evaluate how PSI helps location predictions on
irregular GPS trajectory data (i.e., the derived social inter-
action supports a robust prediction, which alleviates the
random movement prediction based on historical individual
movements only), we perform a randomness analysis in this
section. Specifically, we use entropy (see. Eq. 10) to charac-
terize the moving distribution to reflect the randomness of a
given individual user and analyze the influence of mobility
randomness on location prediction. For example, we assume
that a user starts from a location called POIA and predict
that user’s next location based on individual historical pat-
terns alone and on the individual plus group information.
Fig. 8(a) plots the randomness of movement with individual
patterns and for individual & group patterns for a given taxi
driver in Porto. Fig. 8(b) plots the prediction performances
using the two different strategies, and Fig.8 (c) and (d)
show the results on the Geo-life dataset. From Fig.8, we can
observe that the randomness of the next location decreases
when the algorithm also considers external social interac-
tions. More importantly, the resulting decrease in random-
ness obtains a better prediction performance, which indicates
that our PSI model captures the social interaction well and
achieves a good location prediction on the GPS trajectory
data even when each individual movement pattern is highly
random.

H (POIA) = −
K∑
i=1

pi log pi (10)
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TABLE 6. Prediction performances of different algorithms on the Porto
dataset.

TABLE 7. Prediction performances of different algorithms on the Geo-life
dataset.

F. COMPARISONS WITH OTHER LOCATION
PREDICTION APPROACHES
In this section, to further demonstrate the benefits of
our location prediction model, we compare PSI with the
Next-place model (including the one-order HMM and two-
order HMM, abbreviated by 1-HMM and 2-HMM, respec-
tively) [22], the Prediction of Moving Object Location
model (PMOL) [19] based on frequent pattern mining,
the Time Weight Collaborative Filter Model (TWFM) [31]
and the Sub-trajectory Synthesis Model (STS) [35]. The
1-HMM, 2-HMM and PMOL models focus on individual
moving preferences via a Markov model and on individual
pattern mining, while the TWFM and STS models adopt
external global mobility movement to infer the individual’s
next location via collaborative filtering and the Bayesian
inference framework. It should be noted that the original STS
model focused on destination prediction; therefore, we made
a modification to the STS model and use a 2-length sub-
trajectory to predict the user’s next location. Table 6 and
Table 7 summarize the prediction performances in terms of
different measures on both real-world datasets (the number
of states is 100 in the Next-place model, and the number
of grids is 100*100 in the STS model). From these tables,
we can observe that ourmodel achieves the best results. These
good performances may be due to PSI integrating the individ-
ual moving preferences and external social interactions, thus
enhancing the predictability of human movement patterns.
More importantly, the group-level information contains only
the trend information; other "noisy" information is filtered
out. Therefore, external social influence is well captured and
the model achieves a high prediction performance.

G. SENSITIVITY TO PARAMETERS
In this section, we perform sensitivity analyses of PSI regard-
ing the different parameters on the Porto dataset, including
the number of POIs (K ), the decay rate factor γ , the support

TABLE 8. A sensitivity analysis of K on the prediction performance.

TABLE 9. A sensitivity analysis of γ on the prediction performance.

TABLE 10. A sensitivity analysis of s on the prediction performance.

TABLE 11. A sensitivity analysis of λ on the prediction performance.

parameter (s) for determining the frequent group-level pat-
terns and the regularization parameter λ for ridge regression.
Tables 8 to 11 show the prediction performances when vary-
ing the values of the different parameters. From these tables,
we can see that PSI is quite robust to the number of POIs,
the decay rate factor and to λ: the prediction performances
with different values remain stable. However, the prediction
performance is highly sensitive to the parameter s. Lower s
values, derivemore frequent patterns; thus, they help alleviate
the randomness of patterns learned from historical individual
moving preferences. However, the prediction performance
decreases with very low s values, where almost no group
information is used for prediction. These values tend to
introduce noise, which negatively affects the final location
prediction.

V. DISCUSSION AND CONCLUSION
The proposed PSI method builds upon both Individual Mov-
ing Preference and External Social Interaction. PSI utilizes
external social interaction as a group-level filter to reduce the
randomness of individual mobility patterns. Considering both
driving factors when modeling human mobility is a natural
fit, because both factors are important in determining human
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movements based on the studies of behaviourists. Most other
location prediction algorithms assume that regular patterns
exist in the individual trajectory data, which is challenging
in some real-world scenarios. Although our PSI model can
be viewed as a special combination of the internal and exter-
nal factors for modeling human moving patterns, it largely
differs from the traditional approaches. One main difference
is that external social interactions are modeled using only the
sketching group patterns instead of using the full information.
Another attractive property of PSI is that it provides a quanti-
tative way to evaluate the importance of the driving factors for
human mobility at each user level. Through comprehensive
experiments, we have shown that PSI outperforms some other
location prediction methods and that it provides an intuitive
way to analyze the results. In future work, we plan to focus
on analyzing evolving human mobility patterns based on data
stream mining techniques.
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