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ABSTRACT This paper presents an application of functional additive models in the context of electricity
demand and price prediction. Data from the Spanish electricity market are used to obtain the pointwise pre-
dictions. Also prediction intervals, based on a bootstrap procedure, are computed. This approach is compared
with the use of other functional regression methods applied to the same data set by Aneiros et al. (2016).

INDEX TERMS Additive model, functional data, functional time series forecasting, load and price,
prediction intervals.

I. INTRODUCTION
Prediction of electricity demand and price are significant
problems for the agents and companies involved in the elec-
tricity markets. In particular, one day ahead hourly fore-
casts of demand and price has been extensively studied in
the literature. Some methods are based on statistical models
(dynamic regression, transfer functions, time series, expo-
nential smoothing, etc.) whereas other ones are based on
computational intelligence models (neuronal networks, sup-
port vector machines, etc.). See the book by Weron [1] for
a nice monograph on electricity demand and price forecast-
ing. See also [2] and [3] for reviews on electricity demand
forecasting and [4] and [5] on electricity price forecasting.
Most of the papers studying methods of electricity demand
and price prediction take information from scalar variables,
but in recent years, the use of functional data has been
extended in this area. Considering the daily curves of electric-
ity demand or price as functional data, the prediction problem
in electric markets can be studied taking use of functional
regression methods. The books [6] and [7] are comprehensive
references for functional data analysis using a linear or non-
parametric view, respectively.

Some papers that use functional data to predict electric-
ity demand and price curves are the following: [8] used a
parametric model to predict electricity consumption curves;
functional time series methodology was applied in [9] to
historical daily curves of load; [10] obtained probabilis-
tic forecasts of electricity load, based on functional data

analysis of generalized quantile curves; [11] used, among
other methodology, two functional approaches to forecast the
France’s daily electricity load consumption; [12] proposed
an adaptive functional autoregressive (AFAR) forecast model
to predict electricity price curves; finally, [13] analysed the
case of residual demand curves whereas [14] considered the
prediction of both demand and price curves.

When the interest is to forecast scalar values (not curves)
from functional data, the reader can see [15] or [16]. The case
of forecasting scalar values (as well as curves) of demand
and price from functional data within the Spanish Electric-
ity Market are studied in [14]. In that paper, nonparamet-
ric and semi-functional partial linear models are employed.
Non-parametric autoregressive models with functional data
(FNP) provide good predictions, due to its flexibility, but
the results can improve by adding exogenous variables to
the model. In that way, when dealing with demand predic-
tion, it is convenient to introduce the temperature and other
weather variables as covariates. When the aim is the pre-
diction of electricity price, the wind power production and
the forecast daily demand can be considered instead. Due
to the curse of the dimensionality, it is not recommendable
to use nonparametric regression models with several covari-
ates. References [13] and [14] solved that problem with the
use of a Semi-Functional Partial Linear model (SFPL), with
a nonparametric autoregressive functional component and
introducing other scalar covariates in a linear way. SFPL
models improve, in general, the results from the FNPmodels.
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The aim of this paper is next-day forecasting of hourly
values of electricity demand and price using functional addi-
tive models (FAM). These models combine flexibility and the
control of the dimensionality effects. Additive models have
been already used for prediction in the context of electricity
demand (see [17], [18]) and price (see [19]). However, those
references are not dealing with functional data, as in our
proposal. Focusing now in the references named in the previ-
ous second and third paragraphs, it is worth being noted that,
although they deal with functional data, they do not consider
the models (FAM) used in this paper. Three approaches,
taking information from functional covariates (one is endoge-
nous), are considered. In the first case, the effect of the
covariates on the response is linear (functional linear model),
whereas in the other two proposals the regression is the
sum of smoothing functions applied to the covariates. Also,
algorithms for the construction of the prediction intervals (PI)
and prediction density (PD) associated with the functional
additive models are proposed. These algorithms use residual-
based bootstrap methods.

This paper continues the following two studies: [14] in
which nonparametric and semi-parametric functional regres-
sion methods were used to predict electricity demand and
price; and [20] in which prediction intervals, using residual-
based bootstrap algorithms, were obtained for the prediction
methods proposed in [14]. It is worth being noted the main
differences between the study in this paper and the ones pre-
sented in [14] and [20]. On the one hand, this paper considers
models (FAM) that are more general than the ones consid-
ered in [14] and [20]. On the other hand, all the exogenous
covariates in our models are of functional nature, while the
exogenous covariates in [14] and [20] are scalar.

The remaining of the paper is organized as follows.
The additive methods with functional covariates and scalar
response are presented in Section II, together with the algo-
rithms proposed to obtain PIs and PDs. Sections III and IV
show numerical results concerning 1-day ahead forecasting of
electricity demand and price, respectively, in mainland Spain
during the year 2012. A comparative study of the proposed
additive models and the results obtained in [14] and [20] is
also included. Finally, Section V provides some relevant con-
clusions: basically, the proposed models (FAM) improve the
results obtained in both [14] (pointwise prediction) and [20]
(prediction intervals).

II. FORECASTING FROM FUNCTIONAL ADDITIVE MODELS
A. POINTWISE PREDICTION METHODS
We assume that the time series of interest (electricity demand
and price) are continuous time stochastic processes, and we
use the same notation {ζ (t)}t∈R to refer to any of them (units
for t are hours). As {ζ (t)}t∈R is a seasonal process with
seasonal length τ = 24, and considering that such process
is observed on the interval (a, b] with b = a + Nτ , the
observed daily curves (of electricity demand or price) can be
written as {ζi}Ni=1, where ζi (t) = ζ (a+ (i− 1) τ + t) , with
t ∈ (0, τ ].

In this paper, predictions and PIs are obtained for each
hour, one day ahead, of electricity demand or price, ζN+1 (t),
with t ∈ {1, 2 . . . , 24} , in year 2012 from information given
by the previous 365 days. Three functional additive models
are considered and, for each prediction method, 72 (3 × 24)
models are computed according to the kind of day and the
hour, considering that the dynamic of the curves depends on
the type of day where are observed: weekdays, Saturdays or
Sundays.

We wish to predict the variable ζN+1 (t) using informa-
tion given from

{
Eχi =

(
χ1
i , . . . , χ

d
i

)}N
i=N−364 , where χ

j(t)
are functional covariates. In both cases (demand or price)
χ1
i = ζi is the endogenous covariate. When the day N + 1

corresponds to either Saturday or Sunday, information from
the previous curve (i.e. from the curve observed on previ-
ous Friday or Saturday, respectively) will be used. If the
day N + 1 corresponds to a weekday, information will be
taken from the curve observed on the previous weekday
(note that the previous weekday to a Monday is a Friday).
Let us assume that the day N + 1 is Saturday (in the case
of a weekday or Sunday, the procedure is analogous) and
denote I0 = {N − 364,N − 363, . . . ,N − 1,N }, ISat ={
j ∈ I0 / ζj is a Saturday

}
. The prediction of the electricity

demand or price at the hour t , ζN+1 (t), is obtained from the
next general model:

ζi+1 (t) = rt
(
χ1
i , . . . , χ

d
i

)
+ εt,i+1, i+ 1 ∈ ISat , (1)

where rt (·) is an unknown function of the covariates and
εt,i+1 is an error term, with zero mean. Then, a prediction
ζ̂N+1 (t) for the variable ζN+1 (t) can be obtained by estimat-
ing rt ( EχN ) in (1), this is, ζ̂N+1 (t) = r̂t ( EχN ).

1) FUNCTIONAL LINEAR MODELS
When the relation between the covariates and the response is
linear, the regression function, rt ( Eχ), in ( 1) is the following

rt ( Eχi) = E (ζi+1 (t) / Eχi) = βt,0 +
d∑
j=1

∫
I
χ
j
i (s)βt,j(s)ds. (2)

The Functional LinearModel (FLM) has been widely stud-
ied in the literature (see, for instance, [6, Ch. 10]). Func-
tional coefficients, (βt,j), can be estimated by different ways.
Reference [21] proposed an estimator using a functional prin-
cipal component analysis and proved the convergence of this
estimator. Reference [22] studied an estimator based on a
B-splines expansion which, in some way, generalizes ridge
regression. This one is the estimator that will be considered
in Sections III and IV. Reference [23] proposed a similar
estimator in the context of time series.

2) FUNCTIONAL ADDITIVE MODELS
In most of applied situations there is a lack of knowledge
about the relationship between the response and the func-
tional covariates and this leads naturally to consider nonpara-
metric modelling. In this case, the regression function, rt ( Eχ)
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in (1) is

rt ( Eχi) = E (ζi+1 (t) / Eχi) = βt,0 +
d∑
j=1

rt,j
(
χ
j
i

)
. (3)

That model is called functional additive model (FAM)
and here, the key point is the estimation of the partial func-
tions rt,j. Reference [24] proposed to estimate rt,j using one
cyclic conditional algorithm. At each stage, the effect of a
functional covariate is estimated, conditionally on previous
estimation, using functional kernel estimates. We will refer to
thismodel as the Functional Kernel AdditiveModel (FKAM).
An alternative is proposed by [25], using in this case the func-
tional principal component scores of χ j, being rt,j

(
χ
j
i

)
=∑K

k=1 r
k
t,j(ξ

k
j ) smooth functions of ξ kj , the k−principal score

of variable j.We will refer to this approach as the Functional
Spectral Additive Model (FSAM) because the use of spectral
decomposition of the covariance operator of χ.

B. BOOTSTRAP PREDICTION INTERVALS
When dealing with forecasting, it is important to consider
also prediction intervals and the prediction density, which
help to understand the behaviour of the forecasts in a deeper
way. A bootstrap algorithm is proposed to construct PIs and
PDs in the problem of the next-day forecasting of electricity
demand and price. This algorithm is similar to the proposal
in [20], but adapting it to the case of the prediction with
the additive models presented in Subsection. The algorithm
is also adapted to deal with cases of homoscedasticity and
heteroscedasticity.

We want to compute a PI for the variable ζN+1 (t), where t
is fixed and the day N + 1 corresponds to a Saturday. In this
case, the sample will be S ′ = {( Eχi, ζi+1(t)) : i + 1 ∈
ISat }, and we assume that the pair ( Eχi, ζi+1(t)) follows the
additive model given in (2) or (3). Under the assumption
that the model is heteroscedastic, the error of the model is
εt,i+1 = σt (ζi) ηt,i+1, where ηt,i+1 are iid, E(ηt,i+1|ζi) =
0 and Var(ηt,i+1|ζi) = 1 . Then, Var(ζi+1 (t) |ζi) =
Var(εt,i+1|ζi) = σ 2

t (ζi) = νt (ζi), where νt (ζi) denotes the
error conditional variance.

The predictor for ζN+1(t)| EχN is r̂t ( EχN ) and one has the
following decomposition:

ζN+1(t)| EχN = r̂t ( EχN )+
(
rt ( EχN )− r̂t ( EχN )

)
+
(
εt,N+1| EχN

)
Hence, as the true regression function, rt ( EχN ), is unknown

in practice, one needs to approximate rt ( EχN ) − r̂t ( EχN )
and the error term, εt,N+1| EχN , using bootstrap procedures.
In our case, under heteroscedasticity, the proposed algorithm
includes the estimation of the conditional variance, νt (ζN ).
This estimation is made following the ideas of [26], but
adapting them to functional data.
The bootstrap (1−α)-prediction interval for ζN+1(t)| EχN is

constructed as:

I∗χN ,t,1−α = (r̂t ( EχN )+ q∗t,α/2( EχN ), r̂t ( EχN )+ q
∗

t,1−α/2( EχN )),

where the bootstrap quantiles q∗t,p( EχN ) are computed in the
following way:

1) Compute r̂t ( Eχi), i+ 1 ∈ ISat , using one of the additive
models proposed in Subsection II-A.

2) Compute the residuals ε̂t,i+1 = ζi+1 (t)− r̂t ( Eχi).
3) Based on the sample Sε,t = {(ζi, ε̂2t,i+1) : i+1 ∈ ISat },

using Nadaraya-Watson estimator for functional data
(see [7]), the estimator for νt (ζ ) is obtained as:

ν̂t,g(ζ ) =
∑

i+1∈ISat
wg(ζ, ζi )̂ε2t,i+1, (4)

where g is the bandwidth. One obtains the estimators
for νt (ζi) and νt (ζN ), denoted as ν̂t,i = σ̂ 2

t,i = ν̂t,g(ζi),
i+1 ∈ ISat , and ν̂t,g(ζN ) = σ̂ 2

t,g(ζN ), respectively. The
standardized residuals of the model can be obtained as:

η̂t,i+1 =
ε̂t,i+1

σ̂t,i
, i+ 1 ∈ ISat .

4) Apply the naive bootstrap procedure to obtain the boot-
strap errors: Draw nSat = #(ISat ) iid random variables,
η∗t,i+1, i + 1 ∈ ISat , from the empirical distribution
function of

{
(̂ηt,i+1 − η̂t ) : i+ 1 ∈ ISat

}
, denoted by

Ft,η, where η̂t = n−1Sat
∑

i+1∈ISat η̂t,i+1.
5) Denote ε∗t,i+1 = σ̂t,iη

∗

t,i+1 and obtain ζ
∗

i+1(t) = r̂t ( Eχi)+
ε∗t,i+1, i + 1 ∈ ISat , and from the sample S ′∗ =
{( Eχi, ζ ∗i+1(t)) : i+ 1 ∈ ISat } we obtain r̂∗t ( EχN ).

6) Repeat B times Steps 4-5, giving the B estimates{
r̂∗,jt ( EχN ) : j = 1, . . . ,B

}
.

7) Draw B iid random variables η̃t,1, . . . , η̃t,B from the
empirical distribution function, Ft,η, and compute
ε̃t,j = σ̂t,g(ζN )̃ηt,j, j = 1, . . . ,B. ε̃t,j approximates the
error in the model.

8) Compute the set of bootstrap errors:

Errors.Boot =
{
r̂t ( EχN )− r̂

∗,j
t ( EχN )+ ε̃t,j

}B
j=1
.

9) Compute the bootstrap quantile, q∗t,p( EχN ), from the
quantile of order p of Errors.Boot .

Some remarks about this algorithm are the following.

• If the model is homoscedastic, the algorithm can be
simplified, as Step 3 is deleted. In Step 4-5, nSat iid
random variables ε∗t,i, i + 1 ∈ ISat , must be drawn
from the empirical distribution function of the centered
residuals, denoted by Ft,ε. In Step 7, ε̃t,r is obtained
from Ft,ε. The rest of the algorithm remains the same.

• We assume that the conditional variance, ν(ζi), only
depends on the functional explanatory variable, ζi = χ1

i ,
and not on the other covariates, as it happens in the most
common situations. However, if one wants to assume
that this conditional variance depends on all covariates,
one may consider the expression Var (ζi+1(t)| Eχi) =
Var

(
εt,i+1| Eχi

)
= νt ( Eχi). In that general case, the esti-

mation of νt ( Eχi) cannot be done by a nonparametric esti-
mator. Alternatives as partial linear or additive models
need to be employed instead.
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• Note that one can consider, from the algorithm above:

ζ
∗,j
N+1(t)| EχN = r̂t ( EχN )+

(
r̂t ( EχN )− r̂

∗,j
t ( EχN )

)
+ ε̃t,j,

with j = 1, . . . ,B. Now, using the bootstrap responses
{ζ
∗,j
N+1(t)| EχN }

B
j=1, one can obtain an estimation for the

PD of ζN+1(t)| EχN applying, for instance, the Rosenblatt
Parzen kernel density estimator.

III. ANALYSIS OF ELECTRICITY DEMAND
Prediction methods presented in previous Section II will be
applied to a real dataset coming from the Spanish Electricity
Market. Specifically, within this section, an application to the
electricity demand will be considered. Results of the next-
day forecasting of hourly electricity demand, based on the
functional additive models, are given. In addition, results
from other prediction methods previously used in [14] will be
shown with the aim of comparison. Finally, also the bootstrap
procedures in Subsection II-B will be applied to compute the
prediction intervals (PI) and prediction density (PD).

The electricity dataset involved in this application has been
used before in [14] and [20]. In that case, functional nonpara-
metric and semi-functional partial linear regression, among
other prediction methods, were considered. The results in that
paper will be compared to the functional additive models.
Next paragraphswill contain a brief description of the dataset,
both electrical data and additional covariates. See [14] for a
detailed review of the dataset.

Electricity demand and price comes from OMIE
(Operador del Mercado Ibérico de Energía), which is the
Market Operator in Spain and which provides at its web
page (www.omel.es) the hourly observations of the elec-
tricity demand, among other related variables. We consider
each daily curve of electricity demand, computed from the
24 hourly observations, along the years 2011 and 2012.
Then, each one of these daily curves is a functional datum
composing a functional time series.

When dealing with electricity demand, one may take into
account their particular features, summarized in the daily
and weekly seasonality, the calendar effect on the weekend
and the presence of outliers. Due to the different behaviour
of the electricity demand between the weekdays and the
weekend (and also between Saturdays and Sundays within the
weekend), the procedures will be applied separately for three
groups of days: Weekdays, Saturdays and Sundays. Prior to
any statistical analysis of the data, outlier detection methods
for functional time series presented in [27] and [28] are
applied to our dataset and the selected outliers are replaced
by weighted moving average.

Prediction methods are applied as autoregressive models,
since the hourly electricity demand is predicted based on the
previous daily curve of demand. However, one may consider
additional information to be used as functional covariates
within the prediction methods. It is known that temperature
affects the energy consumption, and so does to the electricity
demand, due to the use of heating or cooling systemswhen the

temperature is low or high. Daily curves of the temperature
in Spain, obtained from the 24 hourly observations, will be
included in the models as functional covariate. That temper-
ature information is given by AEMET (Agencia Estatal de
Meteorología) for each province of Spain and so, by popula-
tion weighted average, one can obtain the hourly temperature
for Spain.

Once the dataset involved in the application is presented,
the functional additive methods are applied to the next-day
forecasting of the hourly electricity demand. Thus, the scalar
response of the prediction model is the electricity demand for
one hour, considering as functional explanatory variable the
previous daily curve of demand, together with the daily curve
of the temperature in the day to be predicted. Predictions for
all the year 2012 are obtained.

FLM, FKAM and FSAM will be considered. Those meth-
ods are available in the R package fda.usc, whose routines
were used in this application (see [29]). B-Splines basis and
gaussian family was considered in the prediction methods.
The external functional covariates in FSAM were smoothed
and the L2 norm was considered in the FKAM. In addition,
due to the different behaviour between weekdays, Saturdays
and Sundays, onemay consider separate models for each kind
of day and also for each one of the 24 hours in the day. Thus,
one deals with 72 prediction models at the same time.

To compare the accuracy of each considered model and
obtained forecast ζ̂N+1 from the different predictionmethods,
the mean absolute percentage error (MAPE) is used, which is
defined as:

MAPEN+1 =
1
24

24∑
j=1

APEN+1(j),

where

APEN+1(t) = 100×

∣∣∣∣ ζ̂N+1(t)− ζN+1(t)ζN+1(t)

∣∣∣∣ for t ∈ (0, 24].

Table 1 displays the MAPE error from the electricity
demand predictions, when dealing with the additive models
for functional data, divided by kind of day and quarter of
the year. Also the Naive method is considered in order to
compare the accuracy of the proposed procedures. This Naive
method is a very simple procedure, working quite well in
this context. It consists in just to assign, as the prediction
for one day, the observed value in the previous one. Taking
into account the different behaviour of the electricity between
the days of the week, the prediction for a weekday will
be the observed values in the day before (for example, the
prediction for a Tuesday is obtained from previous Monday,
taking into account that the previous weekday for a Monday
is the previous Friday). Meanwhile the prediction for Satur-
day or Sunday will come from the Saturday or Sunday of the
previous week.

In general, the best result is achieved by the FLM, which
reaches the lowest prediction error for all the kind of days
and almost all the quarters. FKAM and FSAM behave very
similar in this case, being the FKAM slightly better in the
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TABLE 1. Mean of the MAPE for the electricity demand curves using the
functional additive and the Naive methods. Results are shown by type of
day, week, quarter and year.

global result. By kind of days, the FSAM is better on the
weekdays, while FKAM improves their results during the
weekend. All the three procedures turn out to be better than
the Naive method, reducing its MAPE error in a 20%. That
improvement is more remarkable in the weekend, reaching a
reduction about 30% of the prediction error.

Graphical comparison of the prediction errors reported
in Table 1 is given in Figure 1. In that plot, one can see the
daily errors from the four considered methods divided by
kind of day. It is easy to distinguish that the higher errors
are committed during the Sundays. However, weekdays and
Saturdays are closer and the prediction errors are more con-
centrated along the same values. Comparing each one of the
procedures, one can distinguish that Naive method generates
the worst errors, specially during the weekend. FLM seems
to be the best method in terms of global error, with small
differences among the three functional additive models.

FIGURE 1. Daily errors (MAPE) for electricity demand curves
corresponding to the functional additive and the Naive methods.

Real versus predicted demand along one entire week is
represented in Figure 2, considering the Naive, FKAM and

FIGURE 2. Observed and predicted demand curves for the week
November 26–December 2.

FLM method. One can easily distinguish the poor accuracy
of the Naive method, motivated by its poor behaviour during
the weekend. Even if no major differences are seen between
FKAM and FLM, the FKAM is slightly worse than FLM.
In general, the accuracy is better during the weekdays than
in the weekend, when the variability is more remarkable.

Some other prediction methods can be considered in order
to compare the behaviour of the proposed procedures. For
that reason, one may consider the results in [14], which
were obtained based on the same dataset as the current
application. The methods used for the comparison will be
the Naive (N) (which has been presented in the previ-
ous paragraphs), ARIMA (A), ARIMAX (Ax), Functional
Nonparametric regression (FNP) and Semi-functional partial
linear (SFPL).

ARIMA models are used to predict hourly electricity
demand, fitting one model for the univariate time series
coming from each hour of the day, considering all the week
together. ARIMAX follows the same procedure but including
as external covariates the temperature information. Func-
tional Nonparametric regression, based on Nadaraya-Watson
estimators, is applied in the same way as the additive models.
That is, to consider scalar response and functional covariate
in the 72 models (one for each kind of day and hour). Finally,
Semi-functional partial linear adds a linear component with
the temperature information as external and scalar covariates.
One may take into account that the proposal in [14] includes
the two functional regression methods (FNP and SFPL) using
both functional or scalar response, with similar results among
them. In order to compare with the functional additive mod-
els, which work with scalar response, only the FNP and SFPL
with scalar response will be considered.

The application in [14] presented also two combined fore-
casting methods (CF1 and CF2), which are also included
in the comparison. CF1 is obtained by simple average of
the individual predictions computed by the models indicated
above. CF2 consists in the average of the two best individual
predictors, separately for each kind of days.
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The comparative study with the methods in [14] will be
carried out using the relative prediction errors (RPE). Those
RPE are computed as the MAPE for each one of the consid-
ered procedures in the comparison, divided by the MAPE of
a reference method. For that purpose the FLM, which gets
the best individual predictions, will be considered as the ref-
erence method. It will be compared with the other procedures
applied in [14], including the two combined prediction mod-
els (CF1 and CF2), and the two functional additive models
FKAM and FSAM. Figure 3 summarizes this relative error
analysis, divided by kind of day and for all the week.

FIGURE 3. Relative prediction errors for electricity demand curves,
comparing to the FLM method.

Combined and additive prediction methods seem to be
closer to the FLM during the weekdays. Results get worse
during the weekend for Naive, among others, and also for
the FNP and SFPL (especially on Sunday). In general, as for
the weekdays, combined and additive prediction methods are
the closest to the FLM, which is the benchmark in this study.

TABLE 2. p-values from Diebold-Mariano test for demand predictions.

Previous paragraphs were based on the pointwise forecast
accuracy, measured by means of the MAPE. However, one
can also test the statistical significance of the differences
observed among the considered methods using the Diebold-
Mariano test [30]. Table 2 reports the p-values from Diebold-
Mariano test, taking into account that the null hypothesis of
the mentioned test is that no difference is found between the
accuracy of the methods. Focusing on the comparative and
additive models, one can see that both combined predictions
and also FKAM and FSAM predictions are similar. However,

FLM cannot be assimilate to any of the considered prediction
methods.

The predictions obtained for the hourly electricity demand
can be complemented through the bootstrap procedures
developed in Subsection II-B to build prediction intervals
and also prediction density. For that purpose, only FLM and
FSAM will be considered, due to its best performance in
terms of prediction errors and also in computation times. Both
procedures are faster than the FKAM,which is about 10 times
slower than the FSAM, resulting in almost unreachable com-
putational cost when dealing with iterative algorithms as the
bootstrap. Comparing FLMand FSAM, the FLM is the fastest
one being nearly 10 times faster than the FSAM.

PIs are analysed in terms of coverage and Winkler score
which allows to assess, jointly, the unconditional coverage
and interval width (for details about this Winkler or interval
score, see [31] and [32]). Better PIs are those with lower
score. Table 3 displays the results of the PIs for each group
of days, together with the global outcome for all the week,
comparing both additivemodels and also different confidence
levels. Coverages are computed as the proportion of times that
each PI covers the corresponding observed demand value,
while the length andWinkler score are computed as the mean
length and mean Winkler score of the PIs for the correspond-
ing kind of day. In general, coverages are closer to the nom-
inal level in the weekdays, while Saturdays attain the worst
behaviour. No major differences are appreciated between the
different confidence levels, except for an expected decrease
in the length and the corresponding coverage. Comparing
the PIs from FLM and FSAM, one can see slightly lower
coverages in the FSAMand also shorter intervals, even if both
results are close.

TABLE 3. Coverage, mean length and mean Winkler score of the PIs for
electricity demand using FLM and FSAM, by kind of day.

In [20] PIs for electricity demand and price, based on a
similar bootstrap procedure as in II-B, but considering FNP
and SFPL regression models, were obtained. Comparing the
results for electricity demand (see [20, Tables 1, 3, and 4]),
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one can see that Winkler score is lower for the additive
models.

Figure 4 represents the PIs obtained from FLM for each
hourly demand along four consecutive days, corresponding to
Saturday, Sunday, Monday and Tuesday. This election allows
to see also the different pattern of the electricity demand
between the group of days, being lower during the weekend,
especially on Sundays. In general, the intervals are quite
similar among the four days.

FIGURE 4. Prediction intervals, using FLM from Saturday to Tuesday
(2-5 June 2012) in demand, α = 0.05.

FIGURE 5. Prediction density for the electricity demand, using FLM, for
different kind of days.

Finally, to conclude this application, the PD obtained
from the FLM is computed under distinct situations.
Figures 5 and 6 represent the PD for the three kind of days at
the fixed hour 12:00, and also for different hours in the same
day, respectively. One can clearly distinguish the behaviour of
the electricity demand between weekdays and the weekend,
being more similar between Saturday and Sunday. Related to

FIGURE 6. Prediction density for the electricity demand, using FLM, for
different hours along the day.

the hour of the day, one can recognize the contrast between
day and night.

IV. ANALYSIS OF ELECTRICITY PRICE
This section contains a prediction study of electricity price,
which follows a similar structure as the one conducted in
Section III for the electricity demand.

The data source for the hourly electricity price along the
years 2011 and 2012 was again OMIE. In that case, price
shares the main features of the electricity demand, with the
particularity of the zero-price days. The price of the electricity
depends, among other factors, on the energy source and there
is a significant influence of the wind power production: when
this production increases, the price decreases following a lin-
ear relation, reaching even the value zero. Due to this feature,
wind power production will be included in the prediction
models.

Hourly electricity price will be predicted based on the pre-
vious daily price curve, following an autoregressive model as
in Section III. Together with the price, also information about
the electricity demand (due to the influence over the price,
following the market rules) and the wind power production
will be added to the models. Both covariates are functional,
as they represent the daily curves of demand and wind power
production in the day to be predicted. Electricity demand
curves will be constructed from the hourly forecasts obtained
with FLMmodel in Section III, whereas observedwind power
production will be obtained from Red Eléctrica de España
(System Operator in the Spanish Electricity Market).

FLM, FKAM and FSAM will be applied again to predict
the hourly electricity price along the year 2012, following the
same indications as Section III and considering also different
models for each kind of day (weekdays, Saturday and Sun-
day). Themeasure of the prediction error will be the weighted
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mean absolute errors (WMAE). This election is motivated by
the zero price days, which could disturb the results given by
MAPE. WMAE is computed as:

WMAEN+1 =
1
7

7∑
i=1

MAREN+i,

where N + i indicates the ith day in the week to forecast,
and the mean absolute relative error (MARE) quantifies the
accuracy of the daily forecasts with respect to the weekly
mean (WM) of the values to forecast:

MAREN+i =
1
24

24∑
j=1

∣∣̂ζN+i(j)− ζN+i(j)∣∣
WMN+1

,

with WMN+1 =
1
168

∑7
i=1

∑24
j=1 ζN+i(j).

Table 4 displays the prediction errors (MARE), compar-
ing the functional additive models with the Naive method.
Results are analysed again by kind of day and quarter of the
year. As in the demand case, FLM is the best global predictor,
being also the best one for each kind of day. FSAM is not
far away in this case, being always the second best predictor.
FKAM is relatively close to those two models, while the
entire three additive models are better than the reference
Naive method.

FIGURE 7. Daily errors (MARE) for electricity price curves corresponding
to the functional additive and the Naive methods.

Graphically, in Figure 7, one can see the daily error for
each kind of day, comparing the same prediction methods
as in Table 4. Sundays, as in the demand case, concentrate
the worse prediction errors. Weekdays and Saturdays seem
to be more stable and the results are quite close among the
additive models. Naive is clearly the worst predictor, while
FLM seems to be the most accurate.

Figure 8 represents the observed versus predicted price
curves along an entire week. Comparing this graph with the
analogous Figure 2 in Section III, one can see the different
patter of the electricity price curves. Now, the differences
between weekdays and weekend are not so remarkable. Naive
method is clearly the worst predictor in this example, due to

TABLE 4. Mean of the MARE for the electricity price curves using the
functional additive and the Naive methods. Results are shown by type of
day, week, quarter and year.

FIGURE 8. Observed and predicted price curves for the week November
26–December 2.

the instability of its predictions. FLM, followed closely by the
FSAM, seems to attain the best performance.

A comparison with the prediction methods presented
in [14] will be carried out also in this electricity price study.
Relative prediction errors, considering as reference the FLM
method, of the different procedures applied in this study are
represented in Figure 9. In general, Naive, ARIMA and FNP
models are the farthest from the FLM, while FSAM is always
very close to it. Comparing to the previous demand case
in Figure 3, the differences among the kind of days are now
attenuated.

Diebold-Mariano test is also applied to the electricity price
predictions, in order to analyse if the results are similar among
the different procedures. Table 5 displays the p-values for all
the considered methods. Even if one can find some similar-
ities between the predictions, both the two best predictors
(FLM and FSAM) are always unique, they do not look like
any other.
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FIGURE 9. Relative prediction errors for electricity price curves,
comparing to the FLM method.

TABLE 5. p-values from Diebold-Mariano test for price predictions.

Finally, this application concludes with the prediction
intervals and prediction density obtained from the bootstrap
procedures developed in Subsection II-B. Both tools allow to
complement the pointwise predictions with additional infor-
mation which is very useful in the practice.

TABLE 6. Coverage, mean length and mean Winkler score of the PIs for
electricity price using FLM and FSAM by kind of day.

Table 6 summarizes the coverage, lengthmean andWinkler
score mean of the PI from the FLM and FSAM, which com-
bines a good performance in terms of accuracy and computa-
tional cost. In general, coverages are slightly lower than those

obtained for the electricity demand. Saturdays and Sundays
are very similar in terms of coverage for the FLM, while
Sundays perform worse in the case of FSAM. As in the case
of the demand, those PIs can be compared with the ones
obtained in [20] for the FNP and SFPL, based on a similar
bootstrap procedure. Again, Winkler score is lower for the
additive models, even if the coverages are higher for the two
functional regression models (but also with higher lengths).

Figure 10 represents the FLM PIs obtained in four con-
secutive days, from Saturday to Tuesday, which are quite
similar among them. Even if one can see some differences
between Saturday, Sunday and the weekdays, those are not
so remarkable as in the demand case.

FIGURE 10. Prediction intervals, using FLM from Saturday to Tuesday
(2-5 June 2012) in price, α = 0.05.

FIGURE 11. Prediction density for the electricity price, using FLM, for
different kind of days.

To conclude this application, Figures 11 and 12 represent
the PD for the FLM comparing their behaviours by group
of days and hours of the day, respectively. Left panel in this
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FIGURE 12. Prediction density for the electricity price, using FLM, for
different hours along the day.

Figure allows to recognize the particular pattern of the week-
days versus weekend, also with slight differences between
Saturday and Sunday. Concerning the hour of the day, one can
distinguish the contrast between the early morning and the
rest of the day, while afternoon and evening hours are alike.

V. CONCLUSIONS AND PERSPECTIVES
Additive regression models with scalar response and func-
tional covariates have been successfully used for electricity
demand and price forecast in the Spanish Electricity Mar-
ket. FLM attains the best results, indicating a linear rela-
tion between the response and the covariates introduced in
the model. Both additive models (FKAM and FSAM) have
greater flexibility and also give accuracy results. The three
considered models improve the results obtained by para-
metric models (ARIMA and ARIMAX), functional nonpara-
metric regression, semi-functional partial linear regression
models and also combined predictions methods used in [14].

Based on the predictions from the functional additive mod-
els, a residual-based bootstrap algorithm has been proposed
to obtain prediction intervals and to estimate the prediction
density. The proposed bootstrap algorithm is able to capture
both sources of variability: first one due to errors in model
estimation and the second one caused by the innovation error,
with the advantage of not assuming hypothesis about the
distribution of the data. Computed PIs attain true (uncon-
ditional) coverages close to the nominal coverages and a
Winkler score lower than the ones in [20], which are based on
prediction methods as FNP and SFPL. In general, best results
are achieved during the weekdays while they get worse on
the weekend. This behaviour is motivated by a twofold cause:
on the one hand, the lower sample size of the weekends and,
on the other hand, their greater variability. It is also known

that bootstrap PIs in regression are often characterized by
finite-sample undercoverage (see [33] for details).

Future research related to the additive models in this con-
text includes the extension to various topics: to consider
higher orders in the autoregression with the endogenous vari-
able, to seek for new informative covariates that can entry in
the additive model and also to adapt the proposed methods to
consider functional response (that is, to predict all the daily
curve of electricity demand or price as a functional datum)
and, as a consequence, to obtain functional prediction inter-
vals (prediction region). All these featuresmake this approach
appealing and with plenty of potential for improving.
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