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ABSTRACT Due to the rapid rise of automated tools, the number of malware variants has increased
dramatically, which poses a tremendous threat to the security of the Internet. Recently, some methods for
quick analysis of malware have been proposed, but these methods usually require a large computational
overhead and cannot classify samples accurately for large-scale and complex malware data set. Therefore,
in this paper, we propose a new visualization method for characterizing malware globally and locally to
achieve fast and effective fine-grained classification. We take a new approach to visualize malware as
RGB-colored images and extract global features from the images. Gray-level co-occurrence matrix and color
moments are selected to describe the global texture features and color features, respectively, which produces
low-dimensional feature data to reduce the complexity of training model. Moreover, a series of special byte
sequences are extracted from code sections and data sections of malware and are processed into feature
vectors by Simhash as the local features. Finally, we merge the global features and local features to perform
malware classification using random forest, K-nearest neighbor, and support vector machine. Experimental
results show that our approach obtains the highest accuracy of 97.47% and the highest F-measure of 96.85%
of 7087 samples from 15 families. Color features and the local features effectively assist in the classification
based on texture features and enhance the F-measure by 3.4% and 1%, respectively. Overall, the combination
of global features and local features can realize fine-grained malware classification with low computational

cost.

INDEX TERMS Malware visualization, fine-grained classification, RGB-colored image.

I. INTRODUCTION

With the widespread use of automatic generation tools, a large
number of new variants of malicious code has been generated
rapidly. According to 2017 Internet security threat report
of Symantec [1], 357 million new malware variants were
identified in the last year, averaging more than 1 million per
day. The huge amount of new variants become a big challenge
for malware analysts.

Among the existing analysis methods, static analysis and
dynamic analysis are the most used. Static analysis analyzes
disassembled code without performing malicious samples.
In static analysis, researchers typically extract opcodes [4],
API sequences [13], [14] and function call graph [3], [10]
from disassembled code as the original feature for analy-
sis. Static analysis can quickly capture syntax and semantic
information for thorough analysis, but this approach is easily
disturbed by code obfuscation and encryption technology.
Dynamic analysis usually analyzes behavioral information

such as network activity [12], system calls [11], file oper-
ations and registry modification records [6] by executing
samples in the monitored virtual environment. It is more
robust, but the cost of time and resources for malware execu-
tion is expensive. Both static analysis and dynamic analysis
have their own advantages and disadvantages, but in view of
the time and resources required in dynamic analysis, static
analysis is more advantageous for analyzing a large amount
of malware.

In recent years, visualization-based approaches [19], [22],
[26] have been proposed to directly analyze malware binaries
for classification, which further improves the efficiency of
malware analysis because no in-depth analysis is required.
The reason that this kind of method works well is that most
of the variants are generated by using automation technol-
ogy or reusing some important modules, so they have some
similarity in binary code. However, most of the existing
methods of visualization are based on grayscale and evaluate
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similarity by texture, which can not work for malware that
is evenly distributed on bytes. Moreover, almost all of them
use only global features to characterize malware, resulting in
a classification model that is not sufficiently stable against
complex malware and can only apply on a small number of
malicious samples with marked image features.

Therefore, in this paper, we present a novel malware visu-
alization method, which combines global features and local
features to characterize and classify malware. For global
features, we create a new method to visualize malware as
a RGB-colored image and extract texture features and color
features. The RGB-colored images can demonstrate the sim-
ilarities between families, but not obvious for some variants
within the family. Thus, some sequences of the continuous
byte values which can be visualized string through ASCII
conversion are considered to be as local feature to reveal
similarities of these variants. Experimental results show our
approach obtains high classification accuracy and maintains
high performance with the way of combining the global fea-
tures and the local features. Our method mainly contributes
to providing a new malware visualization method, a malware
local feature extraction method and a malware classification
method that can achieve high efficiency, high accuracy for a
variety of complex malware in practice.

The rest of this paper is organized as follows. Some related
researches in malware visualization and classification are
presented in Section II. Section III provides an overview of
our approach. Section IV describes the malware visualization
method and the malware classification process. Section V
shows the results and analysis of malware visualization
and classification. Finally, the limitations and future work
are discussed in Section VI, and conclusions are presented
in Section VII.

Il. RELATED WORK

At present, most of the traditional malware analysis methods
are based on static analysis and dynamic analysis. Kang et al.
extracted opcode from disassembled file and organized them
into feature vectors using N-gram in [4]. Besides, they
compared the classification accuracy on different length of
opcode. The results indicated that opcode is a valid feature
for malware classification, and the short opcode is better.
Imran et al. [2] proposed a similarity based classification
method. They extracted API sequences to train the Hidden
Markov Models (HMMs) to evaluate resemblance between
training sequences and testing sequences. The relevance
scores were computed to classify malwares. This method can
effectively utilize API sequence information, but it requires
a lot of computational overhead to train the HMM models.
Iwamoto and Wasaki [5] also extracted API sequences, but
instead of calculating the similarity directly, they converted
the API sequences to function call graphs(FCG) and shrank
those graphs. The method takes into account the calling rela-
tionship between the APIs to make them more differentiated.
These methods enable efficient classification, but them are
susceptible to code obfuscation. So several dynamic analysis
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methods such as system calls analysis and network activity
analysis were proposed. Xu et al. [9] extracted system calls
and represented them with several methods: system call his-
togram, N-gram and Markov Chain. Kim et al. [7] collected
system calls in the process of malware execution. The system
calls were clustered and generated behavior chain to charac-
terize the common pattern of a family. Malware classification
were performed through calculating similarity between the
behavior sequence chains and system calls of a testing mal-
ware. While, some different ideas in the dynamic behavior
analysis were presented. In [8], application layer protocols
were extracted and summarized in a graph with the way of
protocols as graph’s nodes and the commonalities between
them as edges. Then, a graph distance measure method was
used to compute similarities between network activity graphs.
Nari and Ghorbani [12] also converted network behavior to a
graph, but they selected statistical properties of graphs such
as graph size and graph degree as the graph features. Except
network activity, Cabau et al. [6] used the changes made to
filesystem and registry keys to conduct dynamic analysis.

With the development of image processing technology,
some visualization-based methods have been proposed for
malware analysis. In the beginning, visualization techniques
were usually applied to traditional static features [15] and
dynamic features [16], [21]. Zhang et al. [19] converted
opcode sequences to binary images. The results proved
the method has good accuracy for a small training set.
Han et al. [23] also proposed a way to visualize opcode
sequences, but their opcode extraction methods included dis-
assembly and dynamic execution, which make the methods
are effective for packers and encryption malware. While,
Trinius ef al. [17] used tree map and thread graph to visualize
the overall behaviors and individual thread, respectively. [16],
Saxe et al. [16] chose to visualize system call log, they
generated Markov chains from system calls and used them to
compute similarity matrix. Shaid and Maarof [21] proposed
a method of assigning color to malicious APIs based on
their maliciousness degree and used it to convert behavioral
information into images for classification. In addition, some
novel approaches [18], [24] of visualizing the entire mal-
ware as images has been proposed. Nataraj ef al. [26] ini-
tially used visual methods for malicious code classification.
They converted malware binary code into gray image and
extract texture features using GIST [32], [33] to classify them.
They obtained high classification of 98% and proved their
method is faster than n-gram. Xiaofang et al. [18] visual-
ized malwares as gray images and extracted image feature
with SURF. The research of Liu and Wang [20] also focused
on gray image, and the local mean method was used to
reduce the image size to speed up ensemble learning process.
Han et al. [22] proposed a malware visualization method,
entropy graph generated based on gray image were used to
realize automatic analysis. But this method can not be applied
to packed malware, because the entropies of packed mal-
ware usually are very high and can not indicate any specific
pattern.
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FIGURE 1. Overview of the proposed method.

Different from the traditional static and dynamic analysis,
visualization method does not require complex disassembly
and time-consuming execution process, and the difficulty of
visualization is not affected by the amount of malware. This
greatly increases the processing efficiency so that it can be
applied to large-scale malware classification. For instance,
for the traditional analysis method in [4] and [7], the time
it takes to get and handle opcode or system calls will be
unacceptable when the amount of malware is huge. Com-
pared with other visualization methods, our method avoids
their shortcomings. In addition to transforming gray values
into texture features like [26], we add color feature based on
entropy values and relative sizes of malware sections, which
makes our approach more robust. The addition of the local
features increases the cohesion of samples within the same
family, which can reduce misclassification among similar
families. In the end, the combination of global features and
local features can be relatively complementary to further
improve the classification accuracy.

lIl. MECHANISM OVERVIEW

Our approach is composed of three steps which are malware
visualization, feature extraction and malware classification.
The specific process is shown in Fig. 1. In the process of
malware visualization, a new RGB-colored image generation
method was proposed to solve the problem of insuffi-
cient information in grayscale images. We did not con-
sider looking for a way to convert grayscale to RGB-color
directly, but to populate the red, green and blue channels of
RGB-colored images with more useful information. Byte
values can directly reflect the nature of malware, but are
subject to change, so we added the entropy and relative
size of malware sections to enhance the stability of mal-
ware images. This method makes the difference between
sections more obvious, and the malware easier to distin-
guish their families for helping to categorize. In order to
enhance the robustness of the method when dealing with
the complex dataset, we decided to find local features from
the code and data sections of malware. We focused only
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on the sequences of consecutive byte values that can be
converted to strings, because these byte sequences usually
represent key information such as string constants, API calls,
and DLLs, which indicates there is a high probability that
they can be inherited stably in the variant production process.
For the feature extraction, we extracted the global features
from RGB-colored images and extracted the local features
from the sections of malware, respectively, and then merged
them. Gray Level Co-occurrence Matrix (GLCM) was used
to extract texture features because its computational com-
plexity is lower than other algorithms. Color moment is a
simple and effective method and was used to describe color
features. For local features of images, spots and corners are
usually extracted as feature points, but these feature points
are not meaningful for malware. So we chose byte sequences
that can be converted ASCII strings as local features, and
arranged them into feature vectors. As for last classification,
three different types of classifiers RF (Random Forest), KNN
(K-Nearest Neighbor), and SVM (Support Vector Machine)
were selected to classify malware.

IV. MALWARE VISUALIZATION AND CLASSIFICATION
A. MALWARE VISUALIZATION
The core steps of malware visualization are section division
and feature computation. First of all, malicious code were
filtered to ensure that samples follow PE format and retain
the original structure. Then, malware was divided into several
sections according to the PE format and characterized these
sections using entropy, byte value and relative size. The red
channel, green channel, and blue channel of each pixel were
filled by these values and combined into a RGB-colored
image at the end. The detailed process is shown in Fig. 2.
Malicious code filtering is a prerequisite to ensure the
effectiveness of the method. Non-PE files are difficult to
divide and keep structural information, so they are temporar-
ily not considered in this paper. Malware was judged whether
it is a PE file by parsing it according to the PE format. The
PE file structure and the required field information for filter-
ing malware are shown in Fig. 3. There are two main field
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FIGURE 3. The structure of PE file.

“e_magic” and “Signature” need to be validated for PE file.
The field “‘e_magic” is in “DOS_HEADER” of PE format
and usually locate the first byte of malware. If the malware
follows the PE format, the value of the field “‘e_magic”
must be 0x4D5A (hexadecimal) and the corresponding ASCII
string is “MZ”. In the meantime, the value of the field
“Signature” in “NT_HEADER” must be 504500 (hexadec-
imal) and the corresponding ASCII string is “PE”. More
details on PE structure and the corresponding parse methods
can be found in [27]. In the process of section division,
the original section structure of the PE file was preserved.
The code section, data section and other natural sections were
still viewed completed sections, but the rest regions such
as the Dos header, the PE header and the additional data at
the end of file were merged according their locations. After
section division, the entropy and relative size were computed
to represent these section because they can demonstrate high-
level characteristics and reflect the similarities of the malware
in general.

Entropy can represent chaotic extent of byte values in the
section. When the variants change less, the entropies of their
sections are almost the same. Entropy can be calculated as:

255

SectionEntropy = — Z p(ci)log, p(ci)
i=0

ey

where p(c;) is the probability of occurrence of byte value i.
When all of byte values in a section are the same, the entropy
obtains the minimum value of 0; in contrast, the entropy
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obtains the maximum value of 8 when all the byte values are
different. But the range of 0 to 8 is so small that the grayscale
may not be observed clearly by the human eye. Thus, entropy
was magnified by 31.875 times for better visualization of red
channel images.

255
RedComponent = SectionEntropy x =
255
= (= )_pleplogy p(ci) x 31.875  (2)
i=0

We used the visualization method in [26] to fill green channel
of the RGB-colored image, as shown in Fig. 4. Malware
binaries are composed of a series of 0 and 1. A byte contains
8 bits (8 binary numbers), which can be converted into a
decimal number (byte value) in the range of 0 to 255. Each
byte value was used to represent a gray level (0 represents
black, 255 represents white, and other values represent differ-
ent degrees of grey). At last, byte values were organized into a
two-dimensional matrix and then visualized as an image. The
width of the image was determined by the size of the file and
the height was changed accordingly. The size is a basic way to
describe section, but the relative size of section to whole file is
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TABLE 1. Byte ranges and the corresponding colors.

91, 96], [123, 126
0,31], [127,255]  Black

ASCII type Byte range Color RGB

Number [48,57] Blue (0, 0, 255)

Upper case letter (65, 90] Green (0, 255, 0)

Lower case letter [97,122] Red (255, 0,0)

Special character %32’ 47), 58, 64, Yellow (255, 255, 0)
[

Other (255,255,255)

more appropriate for comparison. The relative size also need
to enlarge 255 times to be a pixel of the blue channel image
by the equation as below.

SectionSi
BlueComponent = —ec. lon. 1ze x 255 3)
FileSize

Before extracting texture features, RGB-colored images need
to be converted to gray images. In the conversion process,
the different proportion of the three channels of red, green,
and blue were given, which was equivalent to assign weights
for entropies, byte values and relative sizes. A famous trans-
formation method to convert RGB color to grayscale are
shown as below.

Gray =R %0.299 4+ G % 0.587 4+ B x0.114 “)

where R, G and B represent red component, green component
and blue component separately. As for their match relation-
ship, we assigned entropy, byte values and relative size to
R, G and B respectively, which meant byte values obtained
the maximum weight of 0.587 and relative size obtained
minimum weight of 0.114. In the section III, we mentioned
that we extracted local features from special byte sequences
in code sections and data sections. The each byte value in the
sequences must be guaranteed it is between 32 and 126 (dec-
imal numbers), because which can be converted into ASCII
string only in this range. Moreover, the local features were
extracted from continuous byte sequences, because these
sequences contain some special information. For instance,
the string constants, Dynamic Link Library(DLL) names, and
system call function names are string type and usually con-
verted binary through ASCII and then stored in code or data
sections. These strings are more likely to be retained when
malware changes and can play a import role in the classifi-
cation of samples from similar families. So we can display
these sequences as images and compare them to verify the
effectiveness of local features. In order to illustrate the local
features, we proposed a new technique to visualize byte
sequences according to their types of corresponding ASCII
strings. The method divided the byte values into five ranges,
each of them was represented by a kind of color. The detailed
relationships are as shown in Table 1. To clearly show the
differences between colors, we did not use the byte value
to control the depth of the color, but only determined the
basic color according the ASCII type. Fig. 5 is an example of
visualization result of code sections, the lengths of sequences
in the image are limited to more than 6 bytes.
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FIGURE 5. The code section image of Trojan.Win32.Buzus.aayv.

B. FEATURE EXTRACTION

1) GLOBAL FEATURES

The next step after malware visualization is to extract fea-
tures for malware classification. Image feature extraction
generally includes two methods: one is to extract the global
features from the whole image; the other is to extract the
local feature points and then describe them with appropriate
features. Global features generally describe texture, color,
shape, and space of the image. By analyzing the characteris-
tics and contained information of maware images, we thought
texture features and color features were more appropriate
and sufficient as the global features of malware. Common
used texture feature extraction algorithms include Gray Level
Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP)
and Gabor transformation, whereas GLCM is the best fit for
our needs of low computational complexity. Color Moment
was selected to extract color features because of it has more
efficient expression to color distribution and lower feature
dimension when compare with the methods of color his-
togram, color set, and color correlogram.

a: TEXTURE FEATURES
Gray Level Co-occurrence Matrix (GLCM) was proposed
by Haralick er al. [34]. It is based on the assumption that
the spatial distribution of pixels in an image contains image
texture information. Co-occurrence Matrix is the joint prob-
ability distribution of two gray pixels at the distance of d
in the image. GLCM can reflect the integrated information
of grays from aspects of direction, adjacent interval, and
variation amplitude. The direction (0), offset (d), and gray
level are the three important parameters of GLCM. The direc-
tion of GLCM refers to the change direction of grayscale,
we selected four directions: 0°, 45°, 90°, and 135°, which
contains the main direction of texture changes. Offset is the
distance between two gray pixels, two adjacent pixels repre-
sent they are in a given direction and offset is 1. The gray level
actually is the maximum of grayscale in a image and plus
one, which is used in grayscale compression. GLCM mainly
contains three steps: grayscale compression, co-occurrence
matrix generation and feature calculation.

Fig. 6 shows the feature extraction process of GLCM
with direction of 0 degrees, offset of 1 and gray level of 3.
The first step was to convert the RGB-colored image to
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FIGURE 6. The process of extracting texture features by GLCM.

grayscale image. The related method has been introduced in
Section I'V-A. Grayscale compression was used to reduce the
matrix dimension and the amount of computation. In Fig. 6,
the matrix dimension was compressed from 12 x 12 to
4 x 4, and the amount of computation was reduced by around
10 times. The way of generating the co-occurrence matrix
was to find out the number of pixel pairs corresponding
to the position (7, j) for each matrix element. The number
should be multiplied by 2, because it needs to be recalculated
from the opposite direction. The co-occurrence matrices were
generally not directly treated as texture features because the
elements of matrices are so many. Therefore, Haralick et al.
proposed 14 kinds of statistics to represent texture features,
which were calculated based on the co-occurrence matrix.
But only 5 of them are common used, which include ASM
(Angular Second Moment), Entropy, Contrast, IDM (Inverse
Different Moment), and Correlation. So we can speculate the
dimension of the texture feature to be 20 (4 directions x
5 indicators). The calculation formulas are as follows (M is
the co-occurrence matrix):
1) ASM (Angular Second Moment)

ASM =" " M, j) )
i

ASM is the sum of the squares of each matrix element.
The ASM reflects the uniformity of grayscale distribu-
tion and the coarseness of texture. If all the values of
the co-occurrence matrix are equal, the ASM will be
small. Otherwise, if some of the values are great and
the other values are small, the ASM will be large. Large
ASM represents a more homogeneous and regularly
changing texture pattern.
2) Entropy

Ent = — Z Z M(i, j)log M (i, ) (6)

i

Entropy represents the degree of non-uniformity or com-

plexity of the texture in the image. When the pixels
are close to random or the image has a lot of noise,
the entropy will be large. The larger the entropy,
the more complicated the image.

3) Contrast

Con = Z Z(i ) )
i
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Contrast directly reflects the contrast of the brightness
of a pixel value and its neighboring pixel values and
indicate the clarity of the image and the groove depth of
texture. The deeper the groove of the texture, the greater
the contrast and the texture looks more clear. On the
contrary, the smaller the contrast, the more shallow
groove and the texture looks more blurred.
4) IDM (Inverse Differential Moment)

M, j)
IDM = ZZ TY a7 ®)

IDM reflects the homogeneity of image texture and
measures the local change of image texture. A large
IDM indicates that there is no change among different
regions of the image and the local uniformity must
be very high. While, if the elements in co-occurrence
matrix diagonal contain a large value, IDM will take a
large value.

5) Correlation

Corr = Z Z @@, pM (i, j) — MHilkj

$iSj

ZZ’ M, j)
ZZJ M. j)
= Z ZM(LJ)(:‘ - )’
=3 iM(i,j)(/ - )’ ©
i

The correlation reflects the direction of the texture and
represents the extended length of the gray value along
a certain direction, which is common used to assess the
similarity between row elements and column elements
in the co-occurrence matrix. The longer the grayscale
extends, the greater the correlation.

b: COLOR FEATURES

Color moment [28] is a simple and effective description
method color feature, which was proposed by Stricker et al.
in 1995. It usually contains the first moments (mean), the sec-
ond moments (variance) and the third moments (skewness).

14515



IEEE Access

—

. Fu et al.: Malware Visualization for Fine-Grained Classification

The color information is mainly distributed in the low-order
moments, so the first moment, second and third moments
are enough to express the color distribution of the image.
Compared with other description methods of color features,
the color moments do not require color space quantiza-
tion and the generated feature vectors are low-dimensional.
The color moments of the image only generate a total
of 9 components (3 color components and 3 low-order
moments per component). The specific formulas of moments
are as follows:
1) The first moment

N
M= Zpl-,,- (10)
J=1
2) The second moment
1 al i
0= (5 Y (piy = D) (11
j=1
3) The third moment

N
i = (}V > i = 1)) (12)
j=1
where N is the number of pixels in the image, p;; is the
Jj-th pixel of the i-th color channel. w; denotes the mean
of all the pixels on the i-th color channel, o; denotes the
standard deviation of all the pixels on the i-th color channel,
and s; denotes the cubic root of the skewness of all the
pixels on the i-th color channel. The first moment reflects
the brightness of the image, the second moment reflects the
color distribution range, and the third moment reflects the
color distribution symmetry. The color moments of the three
components of red, green, and blue form a 9-dimensional
vector, expressed as follows:

Feolor = IR, OR, SR, LG, OG, SG» LB, 0B, sB]  (13)

2) LOCAL FEATURES

Before extracting the local features, we need to get the code
and data sections. Since sections of the PE file are named
differently, we defined the code sections include “.text”,
“CODE”, and ‘““.code” named sections, and data sections
include “.data”, “DATA”, ““.rdata”, ‘““.idata’’, and ‘“‘.edata”
named sections. After that, we extracted byte sequences
which can be converted into ASCII string (the byte range
is 32 to 126) and processed them into feature vectors with
Simhash. Simhash [29] was proposed by Charikar in 2002,
and it has been used to remove duplication of hundreds
of millions web pages by Google (see [30]). This hashing
approach ensures that similar texts still have similarities after
hashing and drastically reduce the data dimension. Simhash
is a kind of LSH (Locality Sensitive Hash). Its main idea
is dimensionality reduction. The high dimensional feature
vectors are mapped into low dimension feature vectors and
still retain the similarity. The Hamming Distance of two
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vectors is usually used to measure the similarity. Instead of
calculating the Hamming distance, our method directly uses
the last-generated feature vector as the local features. The
detailed process of extracting and processing local features
consists of five steps, as described below:

1) Extract sequences of consecutive byte values, each byte
value in the sequence can be converted to a ASCII
character (byte value is in [32,126]). The length of the
sequence is used as the weight of the sequence.

2) Use a traditional hash algorithm (such as MDS5) to hash
each sequence to generate a n-bit vector of 0 and 1.
Hash algorithm must ensure that the hash values of
different sequence are different.

3) Weighting each element S; in the vector. If S;
is 0, the weighed result takes a negative number
—Wi;, whereas if S; is 1, the result takes a positive
number W;.

4) For all weighted vectors, the elements are summed into
an n-bit vector according to their positions.

5) Traverse all the elements of the cumulative result, then
set 1 at the corresponding position if the element is
greater than 0, otherwise set to 0. The final result is a
feature vector and as our local features.

An example of extracting local features is shown in Fig. 7.

A sequence of consecutive byte values n(32 < n < 126)
was treated as a key portion of the malware section, like the
feature point of local feature extraction in image processing.
The longer the sequence, the more likely it is to be in a
locally stable region (such as a file path, Email address),
so the corresponding weight should be larger. The weighted
result selected plus or minus the corresponding weight based
on 1 or O of the hash value element. The final feature vector
was a n-bit vector consisting of 0 and 1, which was converted
by weighted result. n is determined by the traditional hash
method. In our approach, we used 64-bit MDS5 as the hash
algorithm, so the local features has a dimension of 128 (64 for
data sections and 64 for code sections).

V. EXPERIMENT

A. EXPERIMENTAL DATA

In order to make the experimental result more convincing,
we used a large-scale dataset containing 7087 malware sam-
ples from 15 families. The details of malware samples are
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FIGURE 8. Malware visualization results of 15 families.

TABLE 2. Malware dataset of 15 families.

# Class Family Quantity
1 Backdoor Hupigon 807
2 Backdoor VB 306
3 Hoax Renos 210
4 Rootkit Agent 126
5 Trojan-Downloader Banload 441
6 Trojan-Downloader FraudLoad 487
7 Trojan-Downloader Obfuscated 795
8 Trojan-Downloader Small 475
9 Trojan-Dropper KGen 527
10 Trojan-Dropper VB 435
11 Trojan-GameThief OnLineGames 472
12 Trojan Agent 297
13 Trojan Buzus 286
14 Trojan Obfuscated 552
15 Trojan Vapsup 871

shown in Table 2. The dataset includes four categories, which
are Backdoor, Hoax, Rootkit and Trojan. While the Trojan
and its subclasses of Trojan-Downloader, Trojan-Dropper,
Trojan-GameThief are still divided into several similar fami-
lies. For example, families of Banload, Frauload, Obfuscated
and Small are included in a big family of Trojan-Downloader.
In general, samples from such families are highly similar
and difficult to classify. But our method has been solved for
this problem and achieved fine-grained classification through
the global features and local features complement each
other.
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B. VISUALIZATION RESULTS
Nataraj et al. [26] visualized malware as grays images and
found that image textures of the same families are partic-
ularly similar, and there is a big difference between differ-
ent families. In our method, we expanded grayscale images
to RGB-colored images and found the visualization results
of our samples are a litter different from the results of
Nataraj et al. As shown in Fig. 8, we put the image on the left
represent the image has more similar images in that family.
We can see that the images in a family are not always sim-
ilar, the images may display several styles, such as families
of Trojan.Win32.Buzus, Trojan-Downloader.Win32.Banload
and Trojan-Dropper.Win32.VB. This means that it is hard to
separate them accurately with a single feature. Thus, we com-
bined multiple features to complement each other to improve
the classification accuracy. Moreover, we can clearly observe
the facilitation of features combination through visualization.
For our dataset, the texture features are not enough to
classify samples very well. As we can see in Fig. 8, the tex-
tures of some malware images in some families such as
Trojan.Win32.Buzus, Trojan-Downloader.Win32.Small and
Trojan-Dropper.Win32.VB are very similar, but the color
features clearly distinguish them. The Fig. 9 gives two spe-
cific examples to show the role of color features. The first
group images are from the family Backdoor.Win32.VB, their
textures look different, but the colors display similarity. The
images of second group belong to different families look
almost the same from the texture, but it is easy to distinguish
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FIGURE 9. Comparison of the color and texture from the same family
(a) and different family (b).

Malware Malware
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Data section

FIGURE 10. Comparison of the whole image and section images.

for the color. In the meantime, for images having fine tex-
tures or no obvious textures, using textures alone will result
in poor accuracy. However, the color feature can make the
above two kinds of images correctly classified to improve the
accuracy.

In addition, the visualization of the sections corrobo-
rates the effectiveness of extracting local features. The
Fig. 10 shows some examples where the textures and colors
of the whole images are different but image of the data
section or code section are similar. In fact, variants producers
often add or modify icons, sounds and other resource to cheat
users in different scenarios, but usually keep the core code and
data. This allows malware sections to reduce false positives
resulting from inconsistent RGB-colored image in overall.
Further said that local features can contribute to the accuracy
of classification.

C. CLASSIFICATION RESULTS

After the feature extraction, we obtained a low-dimensional
feature set composed of 20 texture features, 9 color fea-
tures and 128 hash features. Moreover, the dimensions of
the features will not change according to the data set, which
greatly reduces the complexity of the model and improves the
usability. For the final classification, we conducted 10-fold
cross-validation using three classifiers of RF (Random For-
est), KNN (K-Nearest Neighbor), and SVM (Support Vector
Machine). In order to minimize the effect of unbalanced data
sets on the results, we used stratified folds to ensure that the
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proportion of each family of training and test sets remains the
same. We repeated the classification 100 times and calculated
the average accuracy, precision, recall, and F-measure as the
classifier evaluation method. The classification results are
shown in Table 3. The combination of the global features,
local features and RF classifier result in the highest values of
accuracy, precision, recall, and F-measure of 0.9747, 0.9711,
0.9672 and 0.9685. The formulas of accuracy, precision,
recall and F-measure are as follows:

TP + TN
Accuracy = (14)
TP+ TN + FP 4+ FN
. P
Precision = —— (15)
TP + FP
TP
Recall = —— (16)
TP + FN
Recall x Precision
F — measure = 2 X —
Recall 4 Precision
2TP
= a7
2TP + FP + FN

The TP, TN, FP and FN usually are defined in the binary
classification. In this paper, for the family A, the definition of
TP, TN, FP and FN in the formulas are shown as follows:
o TP (True Positive) is the number of samples that are
labeled as family A and do belong to family A.

o TN (True Negative) is the number of samples that are
not labeled as family A and do not belong to family A.

o FP (False Positive) is the number of samples that are
labeled as family A but do not belong to family A.

o FN (False Negative) is the number of samples that are
not labeled as family A but do belong to the family A.

We performed all malware classification experiments on
three classifiers: RF (Random Forest), KNN (K-Nearest
Neighbor), and SVM (Support Vector Machine). The classi-
fication results in Table 3 show RF is superior to KNN and
SVM for all feature combinations except the local features.
For local features, the results of SVM are much better than
other two classifiers. For the combination of all features,
the F-measure of RF is 1.69% higher than that of KNN and
2.55% higher than that of SVM. From the final classification
results, RF is the best classifier among RF, KNN, and SVM.

By comparing classification results of different feature
combination, we can conclude that the combination of
global and local features is superior to individual global
features or local features. Since the data set is imbalanced,
we select F-measure as the basis for comparison of features
combination methods. For single feature, the color features
get the highest F-measure, which is supported by results of
RF and KNN classifiers. In results of RF, color features obtain
high F-measure of 0.9550, which is 3.31% higher than that
of texture features and 13.02% higher than that of the local
features. This result proves that color features play a major
role in the classification. In addition, even though the local
features achieves the smallest F-measure, it increases the
F-measure of the global feature (the combination of texture
features and color features) by 1%. It has been proved that
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TABLE 3. Classification results.

Accuracy Precision Recall F-measure
Type Feature
RF KNN SVM RF KNN SVM RF KNN SVM RF KNN SVM
T 0.9278 0.8737 0.7895 0.9250 0.8713 0.7957 0.9209 0.8650 0.7751 0.9219 0.8650 0.7749
G C 0.9628 0.9458 0.8521 0.9575 0.9405 0.9461 0.9540 0.9484 0.8264 0.9550 0.9486 0.8566
T+C 0.9653 0.9565 0.9124 0.9607 0.9513 0.9470 0.9576 0.9493 0.8977 0.9585 0.9495 0.9089
L L 0.8595 0.8729 0.9087 0.8365 0.8506 0.8922 0.8281 0.8434 0.8804 0.8248 0.8355 0.8818
G+L T+C+L 0.9747 0.9623 0.9523 0.9711 0.9548 0.9520 0.9672 0.9502 0.9421 0.9685 0.9516 0.9430
G means global features, L means local features, G+L represents a combination of global features and local features.
T means texture features, C means color features.
Normalized confusion matrix of RF (f1-measure=0.9303) 1.0 Normalized confusion matrix of RF (f1-measure=0.9616) 10
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FIGURE 11. The confusion matrix of texture features.

the addition of local features obviously enhances the effect
of classification.

In order to further demonstrate the role of local fea-
tures, we generated confusion matrixes of the different
combinations of texture features, color features, and local
features. We randomly picked the training set of 0.9 and the
test set of 0.1, and ensured that the proportions of each family
in the training set and test set were the same. In Fig. 11,
the accuracies of test samples of Backdoor.Win32.VB and
Trojan-Dropper.Win32.VB families are under 0.9. How-
ever, only accuracy of family Trojan-Dropper.Win32.VB is
still under 0.9 and the accuracy of Backdoor.Win32.VB
increases 10% and accuracy of Trojan-Dropper.Win32.VB
also increases 9% in Fig. 12. This means that the addition
of color features enhances the discrimination between these
two families and other families and can obviously improve the
classification accuracy. As we can see in Fig. 13, the com-
bination of local features further improves the accuracy of
family Backdoor.Win32.VB to 100%. The results indicate
that local features can increase the internal similarity in
a family so that the samples of the family are not easy
be classified into other families. Moreover, we found the
similar families are easy to mix each other when using texture
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FIGURE 12. The confusion matrix of combination of texture and color
features.
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FIGURE 13. The confusion matrix of combination of texture, color and
hash features.

features, like Trojan-Dropper.Win32.KGen and Trojan-
Dropper.Win32.VB in Fig. 11. However, our method can
solve this problem by combining global features and local
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FIGURE 14. Precision-Recall curves of our method (a) and Nataraj’s method (b).

features. From this point of view, our method is better than
the method proposed by Nataraj et al. [26].

Aim to fully compare our method with Nataraj et al.
proposed method, we added several sets of experiments.
Nataraj et al. [26] only extracted texture features from gray
images using the GIST algorithm and used KNN to perform
malware classification. Since we are unable to get their origi-
nal data and can not guarantee all of the samples are PE files,
we decided to implement their method and run it on our
dataset to compare with our method. The comparison results
are shown in Table. 4. When using the RF as the classifier,
our feature obtain an F-measure higher than that of Nataraj
by 4.69%. And the F-measure of our method is 3.42% higher
when applied the KNN classifier which used in the method of
Nataraj. This shows that our method can achieve better results
when the malicious variant dataset becomes more confusing
and complex.

Because of imbalance of the data set, we used Precision-
Recall curve to evaluate the two classification methods. From
Fig. 14, we can see that our method still maintains a high pre-
cision while precision of Nataraj’s approach declines rapidly,
when recall is close to 1. This proves our method is more
stable and credible.

D. PERFORMANCE ANALYSIS

In order to measure the performance of the classifier,
we tested the training time of RF, KNN, and SVM under
different proportions of training samples. Our computer envi-
ronment includes Intel Core 17-6700, 8 core CPU, 8G mem-
ory, and 1T hard drive. The training time is the average of
the 100 training experiments, which ensures the reliability
of the result. As shown in Fig. 15, the training time of RF,
KNN, and SVM increase with the increase of the proportion
of the training set. When the training set proportion is 0.05
(354 samples), the average training time of RF, KNN, and
SVM are 0.02s, 0.001s, and 0.05s respectively. When the
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TABLE 4. Comparison of our method and Nataraj's method.

Feature  Classifier ~Accuracy Precision Recall F-
Measure
T+C+L RF 0.9747 0.9711 0.9672 0.9685
GIST RF 0.9323 0.9246 0.9205 0.9216
T+C+L  KNN(k=3) 0.9623 0.9548 0.9502 0.9516
GIST KNN(k=3) 0.9289 0.9207 0.9168 0.9174

T represents texture features, C represents color features, L represents
local features.

training set proportion is 1 (7087 samples), the corresponding
average training time are 0.15s, 0.03s, and 6.12s. The growth
rates of training time for RF and KNN are extremely slow,
while the growth rate of SVM is much faster. As the
sample increases, SVM will spend much more time than
RF and KNN. So, for the large scale dataset, KNN and RF
are more suitable.

In fact, the feature extraction time spent much more time
than the model training in our experiments. So we recorded
the extraction time of different features and compared the
average time of each sample. As shown in Fig. 16, the extrac-
tion time of texture features is longest compared with color
features and local features in our method. The GLCM is
used to extract texture features and it spend about 0.66s for
a sample. While GIST used by Nataraj et al. take an average
of 1.45s on a sample, which is more than three times compare
with the cost of GLCM. Even compare with the sum of all
feature extraction time in our approach, the time of GIST
is 0.28s longer. In addition, texture features, color features,
and local features are independent of each other and can be
extracted simultaneously. So the performance of our method
is higher than the method of Nataraj et al. proposed.

VI. LIMITATIONS AND FUTURE WORK

Our method can achieve efficient and accurate classification
of large and complex malicious code data set, but there are a
few limitations to our approach. Our method requires that the
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FIGURE 15. The comparison of training time of RF, KNN, and SVM.
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structure of malware can be parsed, the format of malware
is limited to PE files. The structure of non-PE files such as
various malicious pages are complex and cannot be effec-
tively segmented. As a result, it is very difficult to generate
RGB-colored images and extract valid local features for these
malicious code. Another important reason for choosing a
PE file is that because the PE file has a uniform structure,
the structure itself contains a lot of useful information, which
makes the resulting RGB-colored images inherently better
than gray images. Another limitation is the poor adaptability
of the method to packed malware, especially encrypted mal-
ware. These malwares must be decompressed or decrypted
before using our method. However, it is difficult to find
an effective decompression and decryption method for the
uncommon packers. Sometimes, gray images can better deal
with these packed malware, but the prerequisite is having
much similarities within the family and distinctions between
the family of packed malwares. However, it is obvious that
the condition is difficult to satisfy. For example, most mal-
ware uses common packers so it is hard to distinguish their
families. The most effective way to deal with packed and
encrypted malware is to run them in a virtual environment
and extract dynamic behavior features.

VOLUME 6, 2018

Therefore, in the future, we will directly determine the
section type of the binary file, so as to achieve section par-
tition and extract the local features from specific section.
Relevant research has been carried out in [25] and [31], but
their methods currently only can classify the type of binary
file, and lacks the basis for classification of internal sec-
tions. For packed malware, we will consider adding system
calls [3], [7], [16] and other dynamic features to break the
restrictions on compressed and encrypted malware. Another
worthwhile future work is to try some deep learning mod-
els such as CNN on malware classification, because deep
learning has a very good character, it can automatically learns
features and thus reduces manual involvement.

VII. CONCLUSION

In this paper, we present a new method of malware visu-
alization enables effective and efficient malware classifi-
cation. We divided the malware into sections by parsing
the malware structure and computed the entropy and rel-
ative size of each section to expand the gray image to a
RGB-colored image. RGB-colored images provided a com-
plete characterization of the global features of malware
in terms of texture and color. To keep the model simple,
we selected low dimensional GLCM and color moments
to extract texture features and color features, respectively.
In the meantime, we extracted local features from code sec-
tions and data sections to further distinguish their families.
Experimental results show that the combination of global
features and local features obtained the highest accuracy.
Compared with the current classification method based on
gray images analysis, our method can achieve lower compu-
tational cost and finer classification. In addition to the tradi-
tional static features and dynamic features, we provide a new
idea for malware analysis by combining the image processing
technology.
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