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ABSTRACT Three-dimensional scanning technology is becoming increasingly popular in the Internet
of Things and cyber-physical social systems. Existing reconstruction algorithms and shape extraction
algorithms usually require regularized points and clear topological relationships between them. In this paper,
a novel slicing-based method is proposed to regularize raw point clouds, in which we first slice the raw point
to get cross section points, and then generate regular point clouds under the topology control of cross section
shapes, and finally produce regular point clouds at multiple levels of detail. The proposed method is effective
specifically for huge raw point clouds and the experiment results show that the proposed method can produce
regularized point clouds for surface meshing, shapes analysis, shapes extraction, and so on.

INDEX TERMS Cross section, point clouds, regularization, shape, slicing.

I. INTRODUCTION
With the development of IoT and cyber-physical-social sys-
tems (CPSS), a large amount of 3D raw point clouds are
collected by laser scanner in many applications, such as
surface meshing, reverse engineering, shape analysis, object
recognition, etc. The raw point clouds collected contain large
amounts of cluttered, unorganized and irregular points. Due
to the irregularity of the raw point clouds, many existing
algorithms, such as Delaunay based surface reconstruction
methods [1]–[3], marching cube [4], shape context [5], shape
extraction [6]–[8], and the following algorithm [9]–[12], can-
not generate valid results. The irregular points can result inac-
curate topological relationship seeking, which is necessary in
many surface reconstruction and shape extraction.

Irregularity of the raw point clouds is mainly caused by
the laser scanning methods and the noise of raw points. As a
result, irregularity of point clouds could be alleviated by
some de-noised methods [13]–[15]. Unfortunately, it cannot
be handled thoroughly by these methods.

In this paper, we propose a regularization method for raw
point clouds. The main idea is that obtaining the cross section
points of the raw point clouds, and generating a regular
point set under the rigid topological control of cross section
shapes. In the proposed method, two adjustment parameters h

and D are introduced to control the regular point density at
different levels. Furthermore, the shapes of the input point
clouds are maintained well, and the input point clouds are
de-noised simultaneously. In the proposed method, the total
point clouds are sliced into multiple parts. Each of them will
be handled separately, and it is able to effectively process
models with huge point clouds. Figure 1 shows the three main
stages of proposed method, in which (a) shows the raw point
clouds, (b) describes the slicing process of raw point clouds
and (c) gives the output regular point clouds of different level
of details.

The rest of this paper is organized as follows:
Section 2 presents an overview of the proposed method;
Section 3 addresses the detailed regularization algorithm;
Section 4 compiles and evaluates the results; and Section con-
clusion concludes the findings of our method.

II. RELATE WORK
In surface reconstruction, a number of point clouds con-
solidation methods have been proposed. They not only can
de-noise point clouds but also can generate a relative regular
representation of the input point clouds. Meanwhile, surface
geometry of input point clouds is also kept. The well-known
point clouds consolidation methods include moving least
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FIGURE 1. The profile of the proposed method. (a) Raw point clouds, (b) slicing of raw point clouds, (c) the middle points of each slice of the raw
point clouds(the third from left), and the final regular representation (red) of raw point clouds in different level of details.

squares (MLS) basedmethods [20]–[24], locally optimal pro-
jection (LOP) methods [25]–[29] and others [17]. Essentially,
de-noising, smoothing, and resample have been implemented
during consolidation process.

MLS-based consolidation methods are based on differen-
tial geometry [20], [24]. Alexa et al. proposed a thin point set
to adheres to the underlying shape [20]. They firstly defines
a smooth manifold surface approximated by the MLS close
to the original surface. Then the points are projected onto a
2D surface that approximates the points. Finally, the points
that projected on themselves are proved to be the thinned
points. Amenta andKil [21] proposed a cloud of surfels (point
equipped with normal) from point clouds when defining an
extreme surface. Representative later works of MLS methods
include an adaptive MLS method (AMLS) [22], algebraic
point set surfaces [23], robust implicit MLS [24].

LOP methods use statistics to handle the consolidation
problem. Lipman et al. introduce a multivariate L1-median
based LOP operator [25]. Two cost functions are defined
for the projection: one is to minimize the sum of weighted
distance to point clouds P from output points of projection Q;
another cost function is proposed to regularize the points in Q
by incorporating local repulsion forces. The final points are
solution of the minimization problems of the two functions.
Huang et al. proposed a weighted locally optimal projec-
tion (WLOP) operator, that has solved the problem lead by the
non-uniform samples in LOP in [26]. Recently, an iterative
WLOP consolidation method [27] and an accelerated ver-
sion of WLOP [28] are developed. The newly representative
WLOP works include deep points consolidation [29].

The main goal of the consolidation methods is to improve
the effects of surface reconstruction. The consolidation meth-
ods put more emphasis on improving surface attributes of
points to guarantee the smoothing of surface. The objects
that have sharp features such as CAD models are not
involved in these methods. In these methods, whether the
local shapes and global shapes of the input point clouds
can be maintained accurately or not also needs extensive
discussion.

FIGURE 2. Strap-like point sets and their middle points.

Furthermore, MLS serial methods depend on oriented nor-
mal for the projection control. So, these methods are not
robust if the noise is serious. In contrast, our method is more
robust.

III. REGULARIZATION OF UNORGANIZED POINT CLOUDS
In order to regularize the point clouds, cross section shapes
are needed. The cross section shape is used to provide topo-
logical control for transforming the cluttered cross section
points into a regular point set. Because the cross section
points are strap-like, they are called strap-like point set in
this paper. Given a cluttered strap-like cross section point
set C , a regular point set M can be got by F(TC ), where TC
is the shape of cross section points C , F denotes the regular-
ization function. According to [30] and [31], a high dimen-
sional manifold can be represented accurately with resample
points. So the regularization function F could be fulfilled by
resample, as shown in figure 2. The cross section points set
is divided into many small parts denoted by 1li along the
tangent direction (the red curve) i.e. P =

∑
1li

∑
k∈1li pk .

The centroid points of these small parts constitute the regular
point set M. M is named as middle points in this paper.
M of the all cross section points forms the regular repre-
sentation of the total raw point clouds. The regularization
process also can reduce the noise. Given a de-noised point set
P1 = {pk}k∈1li from a scanned surface slice S1 and their
middle points (figure 3(a)), if there is some noise that leads
into two points pk and pk+1 deviation from surface, as shown
in figure 3(b), the centroid point p′c of noise point set will
deviate the centroid point pc less.
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FIGURE 3. De-noised effects of middle points. (a) Clear points, (b) noise
points.

The proposed regularization method has the following two
steps:

1) Getting the cross section points by slicing and
projection.

2) Generating the regular point set middle points with the
regularization algorithm.

A. SLICING AND PROJECTION OF POINT CLOUDS
Point clouds slicing is usually used in rapid proto-
type (RP) process in CAD area [32]–[35] and other appli-
cations [37], [38]. It is extended into regularization of point
clouds in the proposed method. Slices of the point cloud
are generated by moving two parallel planes that have the
thickness l along directional vector En at a step size h, as shown
in figure 4(a). In each moving step, cross section points
that lie between the two parallel planes are extracted. The
thickness l is defined by L divided by a constant number N.
L is computed as the distance between extreme points along
slicing directional vector En. The slicing direction is user-
defined. The value of N mainly depends on the precision of
point clouds. If the precision is high, the thickness l computed
by a larger value of N can extract complex geometry with
less redundant points are removed and vice versa. The step
size h mainly depends on the desired levels of results. If h is
small, the level of details will be high and vice versa. In our
experiments, we set the value for N with 30, 50, 60, 70, etc.;
h is set with the value from 0.4 l to 1.0 l.
After slicing, each slice of cross section points is projected

into a projection plane that is parallel to slicing planes and
is equidistant to the upper and lower slicing plane, as shown
in figure 4(b).

B. REGULARIZATION ALGORITHM
After slicing and projection, one or more 2D strap-like
cross section point sets are generated. When there are many
2D strap-like cross section point sets in the same slice,
they need to be segmented with clustering algorithms such
as [36] and [43]. Here Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) clustering algorithm is
employed. For each clustered 2D strap-like cross section
points set, a grid-growing algorithm (GGA) [39] is used
to generate the initial middle points. Figure 5 shows initial
middle point of 2D strap-like cross section point sets with
different shape.

In terms of the initial middle points there are two special
cases:

1) NON-UNIFORM WIDTH
If the slicing plane is not vertical to the sliced surface,
the 2D strap-like point sets generated by projection may have
non-uniform width shown in figure 6(a), which could affect
the interval between middle points. Figure 6(b) shows the
extreme case in getting the middle points. A single middle
point (the green point) is generated from a large area which
can’t show real shape of strap-like point set.

2) MIDDLE POINTS OF AMBIGUOUS STRAP-LIKE POINT SETS
Some special strap-like point sets have ambiguous shapes
information. Their shapes mainly are determined by the den-
sity of points. For example, the strap-like point set in figure
7(a) will have an exact shape as shown in figure 7(b) if the
point density is big enough. Otherwise it will have a coarse
shape as shown in figure 7(c).

In order to make the initial middle points more regular,
an equal interval resample procedure is proposed. Given
a set of ordered initial middle points points = {pi|i =
1, 2, . . . ,N } and a resample interval D, the resample proce-
dure is described in algorithm 1.

Algorithm 1 Resample Middle Points.
Input: initial middle points points, and resample interval D
Output: resample middle points, i.e. newpoints
1. newpoints.push_back(points0); // points0 is the first
point in points
2. for each point pi, i = 0, 1, . . . , points.size()
3. dis=Distance(pi, pj), j = i + 1, . . . , points.size() //
Euclidean distance between two points
4. while (dis < D)
5. j = j+ 1;
6. dis = Distance(pi, pj);
7. points.delete(pj−1);
8. end while
9. q = Interpolate(pi, pj−1, pj,D);// make ‖pi − q‖ = D
10. newpoints.push_back(q);
11. points.insert(q, i);// q will be the next pi
12. end for

On the base of slicing procedure and the equal interval
resample algorithm, the detailed regularization is given in
algorithm 2.

Our regularization method needs further improvement in
terms of several special cases. The first is that in some cases,
the cross sections are so complex that the strap-like points
can’t be segmented automatically by DBSCAN algorithm.
It will depend on the user-interaction to segment the complex
cross sections into strap-like point sets perfectively. The sec-
ond case is that, when the surface to be sliced is parallel to
the slicing plane or has a very little intersect angle with the
slicing plane, the corresponding projected point sets no longer
should be viewed as strap-like point sets, otherwise the wrong
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FIGURE 4. Slicing plane and projection plane. (a) Moving of slicing planes, (b) projection plane.

FIGURE 5. 2D middle points of different strap-like.

FIGURE 6. Middle points of 2D strap-like cross section point sets with
non-uniform width.

FIGURE 7. Ambiguous 2D strap-like cross section points set and its
shape. (a) Points set, (b) exact shape, (c) coarse shape.

results will be produced. These mentioned surfaces could be
distinguished from other surfaces by normal and they need a
new slicing direction. The concrete research will be done in
our next work.

IV. EXPERIMENTS
The proposed method is implemented using C++,
PCL (Point Clouds Library), and OpenGL. The face
model tested in this paper is coming from [26]. The
bunny model is downloaded from the Stanford Univer-
sity website (http://graphics.stanford.edu/data/3Dscanrep/).

Algorithm 2 Total Regularization Algorithm.
Input: point clouds, h, l, En, D
Output: regular point clouds RP
1. RP=φ;
2.while points in point clouds are not sliced
3.Pcross=Getslice(point clouds, h, l, En);// Pcross is the cross
section points of the point clouds
4.{P_lemda}=DBSCAN(Pcross);
5.for each P_lemda
6. middle points=GGA(P_lemda);
7. RP_lemda=Resample(middle points, D);
8. RP= RP ∪ RP_lemda;
9.end for
10.end while

The others are presented by Institute of Computer science
of Xi’an University of Technology.

A. EXPERIMENTS RESULTS
The proposed method can produce regular point clouds that
preserve the same shape with the input point clouds in differ-
ent level of details (LOD). It can be seen from the test results
( figure 8, figure 9 ) that the output point clouds generated
by the proposed method are regular. The LOD is adjusted
by slicing step size h and resample interval D. If h and D
are small, more points are reserved, and more details are
maintained and vice versa. The proposed method not only
can produce the regular point clouds in which point density
is lower than the input point clouds. When h and D are set
with values that are smaller than the scanning resolution,
the method also can produce the regular point clouds whose
point density is higher than input point clouds.

Figure 10(b), figure 11(a) and figure 12(a) show the mesh-
ing results of irregular raw point clouds with Delaunay
based surface reconstruction method. Figure 10(c), (d), (e),
figure 11(d), (e), (f) and figure 12(d), (e), (f) show the
meshing results of the corresponding regular point clouds of
different LOD. It can be seen that the irregular raw point cloud
leads to locally wrong meshing results while the regular point
clouds can produce right meshing results.

A bunny model with 10% Gaussian noise is tested in the
experiment and the results are shown in figure 10. It can

18302 VOLUME 6, 2018



Y. Wang et al.: Novel Slicing-Based Regularization Method for Raw Point Clouds

FIGURE 8. Results of tower model. (a) The original tower model (105227points); (b) N=70, h=0.6∗l, D=h (7726points); (c)N=70, h=0.8∗l,
D=h (4612 points); (d) N=70, h=1.0∗l, D=h (3153points).

FIGURE 9. Results of scene model. (a) The original scene model (1301379 points); (b) N=30, h=0.6∗l, D=h
(19935 points); (c) N=30, h=0.8∗l, D=h (11564points); (d) N=30, h=1.0∗l, D=h (6782points).

be seen that the proposed method can restore the regular
de-noised point clouds under the influence of noise. Mean-
while, the meshing results in figure 10 (c), (d) and (e)
show geometric features of the de-noising point clouds

are reserved. It can be seen that the sharp features in
the ears of bunny are not preserved well. That’s because
the cross section points set generated by projection of
sliced layer of the sharp parts in ears is the ambiguous

VOLUME 6, 2018 18303



Y. Wang et al.: Novel Slicing-Based Regularization Method for Raw Point Clouds

FIGURE 10. Results of bunny model. (a) The original bunny model (31418points), its details and its
mesh model; (b) The bunny model with noise, its details and its mesh model; (c) Using our method with
parameter (N=50, h=0.4∗l, D =h), finally produce points(20016),and its mesh model, 1avg = 0.07929,
1max = 0.8406, σ = 0.1782; (d) Using our method with parameter (N=50, h=0.6∗l, D =h), finally
produce points(12282), and its mesh model, 1avg = 0.09599, 1max = 0.8547, σ = 0.2392; (e) Using our
method with parameter (N=50, h=0.8∗l, D =h), finally produce points(6992), and its mesh model,
1avg = 0.1138, 1max = 0.8055, σ = 0.4406.

strap-like point set. The density of points in the strap-like
point set is not big enough, and the middle points are
wrong.

We match the output point clouds and input point clouds
with ICP [40] algorithm to prove the regular point clouds
can preserve the shape of the input point clouds. The root
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FIGURE 11. Results of face model. (a) The original face model with points (84398) and its
mesh model; (b) Using WLOP method, partial details and its mesh model with points(4220),
1avg = 0.05225, 1max = 0.4544, σ = 0.03788; (c) Using AMLS method, partial details and
its mesh model with points (84398), 1avg = 0.06919, 1max = 0.8312, σ = 142.087;
(d) Using our method with parameter (N=60, h=0.6∗l, D =h), finally produce points(8637),
partial details and its mesh model, 1avg = 0.05224, 1max = 0.4580, σ = 0.04841; (e) Using
our method with parameter (N=60, h=0.8∗l, D =h), finally produce points(5390), and its
mesh model, 1avg = 0.07847, 1max = 0.4297, σ = 0.05736; (f) Using our method with
parameter (N=60, h=1.0∗l, D =h), finally produce points (3464), and its mesh model,
1avg = 0.1052, 1max = 0.5867, σ = 0.07727.

mean square (RMS) registration errors of ICP algorithm are
taken as match errors that are shown in table1. The normal
of input point clouds and output point clouds produced by

our method is extracted respectively. The method [41] is used
to compute the normal. The normal is exploited to constitute
geometric features sets for input point clouds and output point
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FIGURE 12. Results of door model. (a)The original door model (207228); (b) Using WLOP
method, partial details and its mesh model with points (10362), 1avg = 1.0064,
1max = 7.8263, σ = 1.4256; (c)Using AMLS method, partial details and its mesh model with
points (207228), 1avg = 1.1052, 1max = 8.0023, σ = 12.3892; (d) Using our method with
parameter (N=80, h=0.6∗l, D =h), finally produce points (27305), partial details and its mesh
model, 1avg = 0.3270, 1max = 7.7817, σ = 1.4647; (e) Using our method with parameter
(N=80, h=0.8∗l, D =h), finally produce points (17839), and its mesh model, 1avg = 1.2077,
1max = 8.9895, σ = 1.6181; (f) Using our method with parameter (N=60, h=1.0∗l, D =h), finally
produce points (12895), and its mesh model, 1avg = 1.6872, 1max = 9.0023, σ = 1.8346.

clouds respectively. The distance between input point clouds
features set and output point clouds features set (feature
distance for short) is also shown in table 1. Given a fea-
ture set F1, distance df (F1,F2) between another feature
set F2 and feature set F1 is computed by df (F1,F2) =
(sqrt(

∑N
i=1 dp(pi,F2)

2)/N ), where F1 = {pi}{i =

1, 2, . . . ,N }, dp(pi,F2) = min
qj∈F2

(de(pi, qj)), de(pi, qj) is the

Euclidean distance between point pi and qj.

From table 1, it can be seen that the match errors and
feature distances are small, and the output point clouds by the
proposed method preserve the shape of input point clouds.

In order to evaluate the accuracy of the output point
clouds, the geometric error between the original and out-
put point clouds has also been measured. In this paper,
themaximum error and the average error between the original
point set S and the smaller point set S ′ are measured by
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TABLE 1. The match errors and feature distance between input point
clouds and output point clouds.

1max(S, S ′) = max
q∈S

∣∣ds(q, S ′)∣∣ and 1avg(S, S ′) = 1/‖S‖ ∗∑
q∈S

∣∣ds(q, S ′)∣∣.
For each point q ∈ S, the geometric error ds(q, S ′) can then

be defined as the Euclidean distance between the point qand
its projection point q̄ on the surface S ′ that is consisted of
the smaller and de-noised points. The projection point q̄ is
calculated according to the procedure presented in [42]. The
results show that the geometric error between the input point
clouds and output regular point clouds is very small.

B. COMPARISON WITH OTHER
CONSOLIDATION METHODS
The proposed method is compared with WLOP [26] and
AMLS (an adaptiveMLSmethod) [22]. The executable pack-
age of the WLOP [26] and AMLS [22] are downloaded
from the author’s web page respectively. Two models are
choose to compare them. One is the face model that has few
points and many features. The other is a door model that
has less features and huge points. It can be seen from the
results in figure 11 and figure 12 that the proposed method is
more robust in comparison with AMLS. Details of the output
point clouds produced by the proposed method show good
regularity. The output point clouds produced by the AMLS
consolidation method are less regular, so there exist some
wrong surface meshing results, as shown in figure 11(c) and
figure 12(c). Finally, the proposed method produces regular
point clouds in LOD results with different precision. Usually,
when parameters h is less than or equals 0.6∗l, high LOD

output point clouds generated by the proposed method can
obtain higher precision than other consolidation methods.
And the higher levels of detail, the higher precision achieved.

It should be noted that the proposed method can work in
a parallel way easily while the WLOP and AMLS cannot.
When point clouds are huge, themethod can reduce executing
times by parallel running. We adopt the scene model and
the door model that have huge number of points to com-
pare the executing times of the proposed method and the
two consolidation methods. Executing time of our algorithm
depends on the slicing numbers N and step size h. The pro-
posed method with bigger N and smaller h is compared with
other consolidation methods. Experiments are carried out on
a PC with 8 core 16 threads Intel(R) Core, CPU 3.30GHz,
4G memory. The results are shown in table 2. It can be seen
that our algorithm executed in a parallel manner can save the
executing time of huge point clouds and consumes a shorter
time than WLOP and AMLS.

TABLE 2. The executing times.

V. CONCLUSION
In this paper, a novel regularization method of raw point
clouds is proposed. The output point clouds of the method
preserve shape of input point clouds well. The method is
mainly impacted by the two factors: user-defined slicing
step size h and uniformly resample size D. By adjusting the
two parameters, different level of details and amount can be
obtained. Especially, our algorithm can be running in parallel
way to improve the efficiency when huge point clouds are
handled. Comprehensive examples and a comparative study
illustrate the good performance of the method. Our method
can be applied to surface reconstruction, shape analysis,
shape extraction, etc.
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