IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 28, 2017, accepted February 7, 2018, date of publication February 12, 2018, date of current version March 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2805306

A Nonlinear ARMA-GARCH Model With Johnson
Su Innovations and Its Application to
Sea Clutter Modeling

YUNJIAN ZHANG “, HUI LIU, YANAN HUANG, AND ZHENMIAO DENG, (Member, IEEE)

School of Information Science and Engineering, Xiamen University, Xiamen 361005, China

Corresponding author: Yunjian Zhang (yunjzhang @xmu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61471012 and in part by the Open-End
Fund of BITTT Key Laboratory of Space Object Measurement.

ABSTRACT In this paper, a novel time series heteroskedastic model is proposed for sea clutter modeling
application. In the light of characteristics of the practical clutter at low grazing angle, the original generalized
autoregressive conditional heteroskedasticity process, which has been widely used in various fields of
economics, is extended from three aspects. First, the autoregressive moving-average terms are introduced
for modeling the temporal correlation of both clutter returns and innovations. Second, the exponential of the
conditional variance is generalized from one to arbitrary positive value, to capture the nonlinearity existing
in the practical clutter. Third, the traditional Gaussian innovation is replaced by the Johnson S, random
variable, which is a monotonic transformation of the Gaussian random variable and is capable of modeling
the skewness and kurtosis. By systematically analyzing a large number of practical sea clutter data sets,
we show that the proposed time series model fits the data better than some commonly used statistic-based

distributions, such as the Weibull and compound Gaussian distributions.

INDEX TERMS Radar, sea clutter modeling, ARMA, GARCH, Johnson S,, distribution.

I. INTRODUCTION
The accurate modeling of sea clutter is of great importance for
remote sensing and radar signal processing. Under different
environment conditions, viewing geometries, and radar oper-
ating parameters, the characteristics of sea clutter may vary
extremely widely [1]-[4]. In general, sea clutter is more spiky
at lower grazing angles and higher spatial resolution, and hor-
izontally polarized returns are more spiky than those for ver-
tical polarization [S5]. As a result, the probability distribution
of the practical clutter is often leptokurtic, i.e., heavy-tailed.
Further, under the influence of a series of external conditions,
e.g., wind and gravity, sometimes the clutter shows skewness
and nonlinearity. It is also worth mentioning that a common
and adaptive clutter model is supposed to be capable of accu-
rate modeling of temporal and spatial correlation features.
Over the past several decades, a number of non-Gaussian
distributions has been proposed, including Weibull [6]-[8],
K [9], log-normal [10], compound-Gaussian [11]-[13],
Tsallis [14], etc. However, the fitting of these statistics-based
distributions to practical clutter data is lack of flexibility at
times. For instance, when the radar polarization mode or

grazing angle changes, the original clutter model may no
longer be applicable, or lead to a decrease in fitting per-
formance. In [15], Pascual et al. use economic generalized
autoregressive conditional heteroskedasticity (GARCH) pro-
cess [16] for sea clutter modeling. Let n; denote a real-valued
stochastic process, the GARCH(m,n) process is then given by

e = vhe e
m n

he = a0+ Y ami i+ ) Bl (®)
i=1 j=1

where &, denotes the time-varying variance, &; is the so-called
innovation, which satisfies certain distribution. It is necessary
to add some restrictions on the model coefficients {o;}" ;, and
(B ]'.': | to make sure that / is finite and stationary, see [16]
for more details. It is seen from (2) that the model uses
the process history to improve its current feature. Moreover,
the GARCH process can measure the implied volatility of a
time series, and its PDF is heavy-tailed. These characteristics
make it suitable for sea clutter modeling application. It is
worth mentioning that in recent years, the GARCH process
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also has been used in synthetic aperture radar (SAR) imaging
and sonar fields [17], [18]. The analysis results of practical
sea clutter data [15] show that this more flexible time series
modeling method adequately represents the statistics of the
data, and outperforms the Gaussian and Weibull distributions.
In [19], Pascual et al. extend the one-dimensional GARCH
process to the 2D case, the advantage of which is that it
can simultaneously consider the influence of both adjacent
fast and slow time dimensional information to current clutter
returns. Also, the introduction of autoregressive (AR) terms
in the conditional mean expression is able to model the cor-
relation of slow time dimension to a certain degree.

On the other hand, however, the original GARCH process
also has some limitations in sea clutter modeling appli-
cation. First, the structure of conditional variance is rel-
atively simple, which is the linear combination of square
of past returns and past conditional variances. In practi-
cal situation, most environment factors are unpredictable,
and the conditional variance often shows nonlinearity and
asymmetry [20], [21]. Second, for high resolution maritime
radars with pulse repetition frequency ranges from several
hundred hertz to several thousand hertz, the correlation (espe-
cially temporal correlation) of the clutter return is signifi-
cant, which cannot be accurately modeled by GARCH or
AR-GARCH process [22]. Third, the innovation of GARCH
process is commonly assumed to satisfy Gaussian distri-
bution, Student-r distribution [23], generalized-¢ distribu-
tion [24], or the generalized error distribution (GED) [25].
It is clear that all these distributions are symmetric, which
are incapable of modeling the skewness existing in practical
clutter data.

Therefore, combining with the above mentioned issues,
we propose a novel nonlinear autoregressive moving-average
GARCH (ARMA-NGARCH) model with Johnson S, (JSU)
innovations in this paper. The ARMA terms are used for
modeling the temporal correlations of both clutter returns
and innovations. The nonlinear exponential of conditional
variance generalized the traditional linear expression to adapt
to more general situations. The JSU random variable (RV)
[26] is skewed and leptokurtic. The skewness and the kur-
tosis of the JSU distribution can be controlled by the shape
parameters. It is noted that there are also some other skewed
and leptokurtic distributions, such as the skewed-¢ [27] and
skewed GED [28] distributions. The advantage of the JSU
distribution is its simplicity and ease of use, since it only
requires a monotonic transformation of the normal distribu-
tion. Through comprehensive analyses of practical sea clutter
data sets, it is proved that the proposed model achieves excel-
lent fitting performance in aspects of amplitude and temporal
correlation, comparing with some commonly used statistic-
based distributions, such as the Weibull and compound
Gaussian (CG) distributions.

The rest of the paper is organized as follows. Section II
briefly introduces the proposed ARMA-NGARCH-JSU
model. In Section III, the parameter estimation algorithm
is presented. The statistical analyses of practical sea clutter

VOLUME 6, 2018

1 T
<<<<<<<< a=1, b=1
091 —-—-a=1,b=2| |
a=2, b=3
081 Gaussian | |
0.7 n 7
h
06 h 8
[
w H
S 05F I i
o [
| |
i
6 8 10

Values of samples

FIGURE 1. PDFs of standard normal distribution, and of the JSU
distributions corresponding to various settings of the shape
coefficients a and b.

databases are given in Section IV. In Section V, some
numerical simulations are conducted to validate the advan-
tages of the proposed model. Finally, Section IV summarizes
this work and draws the conclusion.

II. NOVEL CLUTTER MODEL
It is assumed that the clutter measurements are described by
the following ARMA-NGARCH process y;

p q
Yr = Z Yiyr—i + Z‘I)ﬂh—j + n: 3)
i=1 =1

e = Vhe, @
m n 6

o+ Y i+ 3 () ®)
i=1 j=1

where positive integers p, g, m, and n are model orders;
@; and ¢; are AR and MA coefficients of the conditional
mean, respectively. g > 0, ;7 > 0, and ; > O are
coefficients of conditional variance &, while the restrictions
on them guarantee the positivity of A;. § is the nonlinear
coefficient of the conditional variance /;. The innovation term
&; is specified as the JSU RV with mean zero and unit vari-
ance. More specifically, assuming z is a standard normal RV,
¢ satisfies the JSU distribution if

¢ = sinh (Z;“> (6)

where sinh(x) = (¢ — ¢7*)/2 is the hyperbolic function,
a and b are shape parameters controlling the skewness and
kurtosis with —0o < a < oo and b > 0. That is, a positive
(negative) value of a induces a negative (positive) skewness,
while smaller (higher) values of b are associated with larger
(smaller) kurtosis values. Fig. 1 shows some PDFs of the JISU
distributions corresponding to different shape coefficients a
and b.

e
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The inverse of the transform (6) is given by
z=a+ bsinh™'(¢) (7

In [29], it is shown that the expected value and variance
of ¢ can be expressed as the following closed form

M; = —\/wsinh(Q) (8)
Ve = %(a)— 1)l cosh(2Q) + 1] )

where cosh(x) = (¢*+¢7%)/2, w = exp(1/b%),and Q = a/b.
Therefore, we can define &; as a standardized JSU RV, which
can be written as [30]

& — Mg
VVe
Comparing with the direct form of (6), the definition of (10)
makes 7; a zero-mean RV with conditional variance #,, and

therefore, makes the interpretation of the GARCH variances
more concise [30].

(10)

&t =

lll. PARAMETER ESTIMATION

Under many circumstances, the maximum likelihood esti-
mators have a number of desirable properties. However,
it is generally infeasible to pursue a full exact likelihood
approach, since the joint distribution of a sequence of obser-
vations (y1, ..., yn) from a nonlinear ARMA-GARCH pro-
cess driven by JSU innovations is very difficult to derive.
Instead, conditional maximum likelihood estimation is quite
straightforward to implement. The resulting conditional max-
imum likelihood estimates, often called quasi-maximum
likelihood estimates (QMLESs), are always consistent and
asymptotically normally distributed under some mild condi-
tions [31]. For the proposed ARMA-NGARCH-JSU process,
the conditional log-likelihood function (LLF) for the residu-
als 1, can be written as

1 N N
L:-E;Inh,—k;lnf& (11)

where f;, is the probability density function (PDF) of &;. Since
&; 1s a transformation of the standard normal RV, f;, can be
obtained by taking advantage of the following relationship

8Zt

de; (12)

Jer =Jz %

where f;, is the PDF of a standard normal RV. According to
(7) and (10), we can write z; = a + bsinh™! (M; + &4 /Vg).
Ignoring the constant term, (11) can then be written as

N N
1 1 :
L=—3 k-3 [a+bsinh_1 (M; +81\/V{):|
=1

t=1

N
N 1 2
+ IV +NInb— > In [(M; +eVr) + 1}

t=1

(13)
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FIGURE 2. Time histories of clutter amplitude in a range cell for randomly
selected four groups of data. (a) Range cell 85 of data 005. (b) Range cell
88 of data 012. (c) Range cell 1 of data 021. (d) Range cell 1 of data 026.

where h; is defined by (5). Then, the QMLEs are obtained
by maximizing (13), which can be completed through some
numerical methods (e.g., Newton and quasi-Newton meth-
ods). In this paper, the popular Broyden-Fletcher-Goldfarb-
Shanno (BFGS) quasi-Newton method is adopted due to its
convergence and superlinear convergence rate, see [32] for a
detailed introduction.

IV. STATISTICAL ANALYSES OF PRACTICAL

SEA CLUTTER DATABASES

To evaluate the fitting accuracy of the proposed ARMA-
NGARCH-JSU model for practical data, a clutter database
is utilized in this paper. That is, the Council for Scientific
and Industrial Research (CSIR) database, which contains a
significant amount of suitable data recorded under different
environment conditions, the geometry of the radar deploy-
ment site, and the radar system operating parameters [33].

In 2007, the X-band monopulse radar was deployed on Sig-
nal Hill, 33°55'15.62” S, 18°23/53.76" E, 308 m above mean
sea level. The shortest distance to the coast line was 1250 m at
a bering of 288° N. The site provided 140° azimuth coverage
from 250° N to 20° N, of which a large sector spanned
open sea whilst the remainder looked towards the West Coast
coastline from the direction of the open sea [34]. Specifically,
we obtain 13 groups of clutter measurements recorded in
November 4th. The radar transmitting frequency is 8.8 GHz
and the range resolution is 15 m. Other radar setups and
environment conditions are summarized in Table 1, including
height and direction of the wave, elevation angle and azimuth
angle of the antenna, etc.

Fig. 2 shows time histories of the clutter amplitude in dif-
ferent range cells from randomly selected four groups of data.
Clearly, there is a significant difference between different
data sets. Since both transmitted and received signals have
vertical polarization, the sea clutter is not very spiky. How-
ever, the presence of spikes is evident. It is known that the in-
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TABLE 1. Summary of radar setups and environment conditions of the CSIR database recorded in November 4th, 2007.

Data PRF (kHz) Duration (s) Range (m) Grazing Angle (°)  Wave (Significant wave height) ~ Antenna Azm. (°)  Antenna Elv. (°)
005 2 121.095 1499 3.76 to 5.56 2.84 m, 264 N (4.7 m) 352.9 to 3544 N -5.131 to -4.916
010 2 32.0775 1499 5.56 to 10.6 2.84 m, 264 N (4.7 m) 311.2 to 313.7 N -8.399 to -8.174
011 2 342225 1499 4.67 to 7.78 2.62 m, 261.7 N (4.5 m) 293.2 to 293.3 N -5.845 to -5.62
012 1 29.502 1499 4.49 to 7.29 2.62 m, 261.7 N (4.5 m) 293.4 to 293.6 N -5.433 to -5.246
014 2 60.2175 1499 3.53 to 5.08 2.62 m, 261.7 N (4.5 m) 289.8 to 292.4 N -4.4 to -4.175
016 2 55.2825 1499 2.99 to 4.02 2.62 m, 261.7 N (4.5 m) 287.5 to 288 N -3.499 to -3.384
017 1 49.17 1499 2.84 to 3.76 2.62 m, 261.7 N (4.5 m) 289 to 289.6 N -3.252 to -3.159
018 1 52.832 1499 2.71 to 3.53 2.62 m, 261.7 N (4.5 m) 289.7 to 290.1 N -3.148 to -3.126
020 2 68.82 1499 2.53to 3.24 2.62 m, 261.7 N (4.5 m) 288.3 to 288.5 N -2.966 to -2.884
021 2 322775 1499 2.84 to 3.76 2.62 m, 261.7 N (4.5 m) 288.3 to 288.9 N -3.323 to -3.186
022 1 36.058 1499 2.71 to 3.53 2.64 m, 262.7 N (4.5 m) 289.8 to 290.3 N -3.219 to -3.115
025 2 32.3375 599.6 2.53 to 2.77 2.64 m, 262.7 N (4.5 m) 286.3 to 286.5 N -2.714 to -2.637
026 2 41.943 539.6 2.39 to 2.58 2.64 m, 262.7 N (4.5 m) 284.4 to 285.5 N -2.587 to -2.521
TABLE 2. Statistics for data 018.
Range Cell Component Jarque-Bera Q2%(1) Q2%(5) Q%(10) Q?%(20) Q2(30)
1 I 349.45 43974.05  90807.85  92773.01 9287195 92884.81
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
1 Q 14343 43642.80 87165.57 88147.74  88159.35  88175.19
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
10 1 493.85 42129.12  79404.63  80678.96  80783.12  80808.79
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
10 Q 470.04 4214031  79532.38  80886.94  80916.81  80940.20
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
30 I 203.79 42569.70  83603.05  84285.05 84313.18  84320.64
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
30 Q 99.70 42780.52  85841.52  87027.40  87284.25  87354.54
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
80 I 194.44 42471.03  80040.76  81180.63  81589.99  81639.11
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
80 Q 118.77 42407.60  79457.53  80349.21  80440.43  80508.99
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
100 I 31.62 43088.70  80064.03  80241.17  80287.53  80318.82
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
100 Q 28.98 43029.90  79425.32 7959726  79680.41  79691.88
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

! The p-values are reported in parentheses.

phase (I) and quadrature (Q) components of high resolution
sea clutter data at low grazing angles have a non-Gaussian
PDF, and hence, the amplitude of received clutter measure-
ments is not Rayleigh distributed. For quantitative analysis
of deviation of the CSIR data from Gaussian, we analyze the
skewness and kurtosis of empirical PDFs of I and Q compo-
nents. Skewness characterizes the degree of asymmetry of a
distribution around its mean value, and kurtosis measures the
peakedness or flatness of a distribution. The skewness and
kurtosis of a RV Z are respectively defined as follows [35]

(V3Z>[)Q _E {[ZLQ —E (Z1,0)] }

Ellzio-E (Z[,Q)]2}3/2
(yf)I,Q -

4
Ef[z10-E(2.0)]')
212
E{[ZI,Q —E(Z1.0)] }
For the normal distribution, the skewness is 0 and the kurtosis
is 3. The values of skewness and kurtosis of data 011, for

(14)

(15)
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example, is shown in Fig. 3. We use the first 35 range cells
which contain clutter only. It is seen that in most cases,
the asymmetry is significant and the peakedness is larger
than 3.

Next, we analyze the temporal and spatial correlation prop-
erties of the CSIR data. In Fig. 4, the temporal autocorrela-
tion functions (ACFs) of I component of data 018 from lag
0 to 50 are plotted. Four range cells are randomly chosen,
i.e., range cell 4, 20, 60, and 100. The blue lines show
95% confidence interval for the estimated sample ACF if
the clutter measurements are independently and identically
distributed (IID). Taking Fig. 4(a) as an example, the first
five lag autocorrelations are 0.9304, 0.8058, 0.6587, 0.5235,
and 0.4177, respectively, which are significant positive.
About 43% of the autocorrelations stay outside the confi-
dence interval, which proves the strong temporal correlations
in practical clutter measurements. Moreover, the autocorrela-
tion characteristics for different range cells have considerable
discrepancy, which demonstrates that the CSIR data is inho-
mogeneous.
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Fig. 5 shows the spatial correlation properties of I com-
ponent of data 018. The four subplots correspond to four
randomly selected pulses. Due to the fact that the radar range
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resolution is 15 m, the spatial correlation is relatively weak,
comparing with the temporal correlation. This is also the
reason that we restrict the proposed model to the 1D case.
Note that we ignore the analysis of Q components, since
the autocorrelation characteristics of which is similar to that
of I components.

Taking data 018 as an example, the more comprehensive
test results for different range cells are reported in Table 2.
In statistics, the Jarque-Bera test is a goodness-of-fit test
of whether sample data have the skewness and kurtosis
matching a normal distribution, see [36] for more details.
The test results show that the null hypotheses of normality
are strongly rejected for both I and Q components of
all data from five range cells. Also, the Ljung-Box
Q-test [37] on the squared series, Q2(1) to Q2(3O),
reported in the last five columns of Table 2 indicate sig-
nificant presence of volatility clustering or time depen-
dent heteroscedasticity in clutter returns at lag length
of 1 to 30.
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V. SIMULATION RESULTS

In this section, we investigate the capabilities of the proposed
ARMA-NGARCH-JSU model to fit the practical comple-
mentary cumulative distribution function (CCDF) for vari-
ous data sets. For comparative purpose, we chose Weibull
distribution and CG distribution (with inverse Gamma tex-
ture) as the benchmarks, which both have been widely used
for sea clutter modeling, see, e.g., [8], [11], [38], [39] and
the references therein. The PDF of a Weibull RV is written
as [40]

k k—1
frn=3(3) e r=0 (16)

And the PDF of a CG RV with inverse Gamma texture is
expressed as [38]

2rpl'(v + 1)
(or2 + "'y’

where v and p are shape and scale parameters, respectively.

r>0 (17)

feg(r) =
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First, we carry out the fitting comparisons of the proposed
model against the Weibull and CG distributions, using four
groups of randomly selected data, that is, the 1st range cell of
data 005 and 011, the 20th range cell of data 020, and the 35th
range cell of data 026. Intuitively, as show in Fig. 6 to Fig. 9,
we observe that the fitting to these data using the proposed
ARMA-NGARCH-JSU models is better than that using other
two distributions, especially for the tail part. It is noted that
the model orders used for these simulations are chosen as
(1,1,1,0), since according to a large number of simulated
results, the estimates of coefficient f; in conditional variance
is less than 1073, which do not appear to be statistically
significant. Moreover, increasing the order of AR and MA
terms does not necessarily improve modeling accuracy, since
higher order model requires larger amount of training data,
which is subject to the radar dwell time and PRF. Also,
the parameter estimation will be more time-consuming.

To quantitatively evaluate the fitting accuracy, the
Kolmogorov-Smirnov (K-S) statistical distance [41] is
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data 026.
calculated, which is expressed as
Dgs = max [F(x;) — F(x;)| (18)
1<i<N

where F(x;) and F(x;) are the empirical and theoretical CDF,
respectively, and N is the number of samples. Using the
same data as in Fig. 6 to Fig. 9, the statistical results are
reported in Table 3. It is seen that the ARMA-NGARCH-JSU
process always achieves the minimum value, which indicates
the applicability and flexibility of the proposed model. This
improvement is common not only for the selected data, but
also other available measurements when the same procedures
are conducted, including other range cells of the selected data
and other data sets.

Moreover, taking range cell 35 of data 026 as a example,
Fig. 10 displays the quantile-quantile plot (QQ-plot) [42] of
the quantiles of the clutter amplitude versus the quantiles of
the synthetic ARMA-NGARCH-JSU samples using the coef-
ficients estimated from the practical clutter measurements.
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TABLE 3. Results of K-S statistical distance for various data sets.

Data (Range cell) ARMA-NGARCH-JSU  Weibull CG
005 (1) 0.0065 0.0077 0.0093
011 (1) 0.0070 0.0202 0.0100
020 (20) 0.0169 0.0234 0.0182
026 (35) 0.0092 0.0123 0.0104
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FIGURE 10. QQ-plot of the quantiles of clutter amplitude (range cell 35 of
data 026) versus the quantiles of a synthetic ARMA-NGARCH-JSU process.
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FIGURE 11. Temporal ACF of practical clutter, and of an ARMA-
NGARCH-JSU process, using (a) range cell 1 of data 016, (b) range cell 1 of
data 020, (c) range cell 1 of data 025, and (d) range cell 35 of data 026.

The purpose of the QQ-plot is to determine whether the
samples of two processes come from the same distribution.
If the samples do come from the same distribution (same
shape), even if one distribution is shifted and re-scaled from
the other (different location and scale parameters), the plot
will be linear [43]. It is seen that the quantiles of the proposed
model is linear in a wide range, which means that the ARMA-
NGARCH-JSU model can accurately model the practical
clutter amplitude.

Finally, we check the modeling effect of temporal auto-
correlation characteristics, using four data sets, i.e., range
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cell 1 of data 016, range cell 1 of data 020, range cell 1 of
data 025, and range cell 35 of data 026. It is seen from Fig. 11
that the decorrelation time of practical clutter are accurately
captured by the proposed model, and the variation tendencies
are essentially the same.

VI. CONCLUSION

In this paper, we model the sea clutter as an ARMA time
series with GARCH errors. The ARMA terms are used for
modeling the temporal correlation, and the GARCH part
is used for modeling the heteroskedasticity and volatility
clustering. The innovation term is assumed to satisfy the
JSU distribution, which is a a monotonic transformation
of the normal distribution and is capable of modeling the
skewness existing in practical sea clutter measurements. The
coefficients of the proposed model are estimated by QMLE
method. By systematically analyzing a large number of
practical sea clutter data sets, we show that the proposed
ARMA-NGARCH-JSU model fits the data better than some
commonly used statistic-based distributions, such as the
Weibull and CG distributions.

On-going research is focused in the subsequent detec-
tion schemes. It is known that the (unconditional) PDF of
GARCH-type process do not have explicit expression, and
only conditional PDF is available. In traditional generalized
likelihood ratio test (GLRT), the corresponding likelihood
functions under different hypothesis need to be replaced by
their conditional versions. The detection performance also
needs further study.
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