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ABSTRACT Efficient sharing of the network spectrum is required tomeet the exponentially growing demand
of wireless communications, and the role of the medium access control (MAC) protocols has been becoming
more important. In this regard, a novel MAC protocol called the renewal access protocol (RAP) was recently
proposed. It was shown that the RAP achieves optimal throughput, high short-term fairness, and near-optimal
delay performances when the number of nodes in the network is known to all nodes. However, it is not easy
for a node to know the number of nodes in the network. So we propose an adaptive version of the RAP called
the adaptive renewal access protocol (A-RAP) in this paper. A node equipped with the A-RAP estimates the
number of nodes utilizing two dimensional backoff selection state, the estimated number of nodes and phase,
based on its transmission results. We carefully determine two key parameters of the A-RAP, the adjustment
probabilities and the numbers of phases. We also tackle the outlier problem in the A-RAP that is recently
found and provide a solution to the problem. Numerical and simulation results are provided to verify that
the proposed A-RAP achieves good throughput as the RAP. The results also show that the A-RAP achieves
better short-term fairness than other MAC protocols proposed in the open literature.

INDEX TERMS Adaptive MAC protocol, backoff, distributed coordination function, estimated number of
nodes, short-term fairness, throughput.

I. INTRODUCTION
According to recent studies, mobile data traffic will signifi-
cantly increase in a few years [1]–[3]. Such growth in mobile
data traffic is driven by the worldwide spreads of smart
devices such as smartphones or the Internet of Thing (IoT)
devices. One of the most severe adverse effects of the explo-
sion of mobile data traffic is the spectrum shortage and hence
a more efficient scheme in spectrum usage than existing wire-
less access schemes, should be provided to resolve it. As a
promising solution, efficient sharing of the network spectrum
has been more intensively considered in recent years. For
instance, the use of 5GHz unlicensed band by LTE networks
is being ahead of the commercialization [4].

The efficiency of a spectrum sharing scheme is more con-
spicuous when multiple users coexist in the same channel.
In such a channel, sharing can be referred to as schedul-
ing and MAC protocols have crucial roles for it. Moreover,
recent trends for using unlicensed or free bands (due to the
shortage of licensed spectrum bands) emphasize the necessity

of efficient scheduling schemes in distributed manners. For
instance, in unlicensed or free spectrum bands, any users
can grab the channel without any regulations provided that
a few technical standards are satisfied. Therefore, in such
circumstances, the contentions of active users (users having
data to send) usually occur in disorder and it is obvious that a
distributed scheduling scheme is more suitable for scheduling
them.

Among various distributed scheduling schemes random
access schemes have been extensively studied from various
perspectives. Whereas random access schemes have some
advantages such as relatively easy implementation, they have
a crucial and inevitable disadvantage of packet loss due to
packet collision. Accordingly a random access scheme should
be equipped with efficient collision resolution techniques.
Among such techniques, random backoff, which randomly
distributes the access instants of users, and Listen-Before-
Talk, which enables the protection of ongoing transmissions,
have been widely used and still get much attention for
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designing efficient random access schemes. A representative
random access scheme using both techniques is Carrier Sense
Multiple Access (CSMA) and it is usually implemented in the
Wireless Local Area Network (WLAN). Therefore, analyzing
the MAC protocol in the WLAN is a good starting point to
design a new scheme for future random access networks.

The IEEE 802.11 distributed coordination function (DCF)
is the de facto standard for the MAC protocol in
today’sWLAN. The key component of the IEEE 802.11 DCF
is the binary exponential backoff (BEB) and it determines
the network performance. In a seminal paper [5], a widely
adopted model for the IEEE 802.11 DCF was provided.
It was shown in [5] that the BEB can achieve quite favorable
throughput performance if the initial backoff window is
carefully selected. However, it has been also addressed in
the literature that the BEB shows very poor performance in
the fairness perspective [6]–[8]. This fact motivated a large
number of research works that provided several modified
backoff schemes improving the performance [9]–[11].

Recently a new MAC protocol called the Renewal Access
Protocol (RAP) was proposed in [12]. In the RAP, each
node selects a new backoff counter value based on a
so-called selection distribution and transmits its packet when-
ever the backoff counter value becomes zero as in the
IEEE 802.11 DCF. Note that the RAP allows any proba-
bility distribution as its selection distribution. It was shown
in [12]–[14] that, if a Poisson distribution is used as the selec-
tion distribution, then the resulting RAP achieves optimal
throughput, high short-term fairness, and near-optimal delay
performances. However, deriving the optimal parameters in
the RAP requires knowing the number of active nodes in the
network and it is not easy for a node to know the exact number
of active nodes in the network. Therefore, to accommodate
the time varying number of nodes with the RAP, we need to
design an adaptive version of the RAP.

The adaptivity of the backoff scheme in WLAN has been
studied extensively in the literature. Existing adaptive backoff
schemes can be categorized into two groups depending on
whether it utilizes a metric to measure the occupancy of
the channel: passively or actively. A node with a passive
scheme adjusts its backoff parameters using transmission
results without further extra works like calculating the col-
lision probability or observing network status. The BEB is
a representative example of a passive scheme. Due to the
simplicity of passive schemes, there have been a large number
of research works on diverse variations of the BEB which are
still passive.

These passive schemes can be further classified into two
subgroups based on whether or not each node uses the trans-
mission results of other nodes: individually or cooperatively.
In most of the passive schemes, when a packet transmission
occurs, only the transmitting nodes adjust backoff parameters
and the other nodes just keep their parameters. Such examples
include polynomial backoff (PB) [15], exponential increase
and exponential decrease (EIED) [16], and schemes provided
in [10], [11], and [17]–[19]. On the contrary, there are some

schemes where nodes overhear transmission results of other
nodes and update their backoff parameters [9], [20], [21].
Generally cooperative update of backoff parameters shows
better performance than individual update.

On the other hand, in active schemes, each node observes
the network to gather data and actively employs them for
measuring network status such as the number of active nodes
in the network [22]–[28]. In general, protocols of this group
introduce metrics to gauge the occupancy of the channel
and use the matching backoff parameter. For example, in the
idle sense [25], each node adjusts its contention window by
counting the number of time slots in the idle period. Thus
they provide more favorable performance, but have higher
complexity compared to the first group (passive schemes).
Filter algorithms were also proposed to tune the CW size
based on the estimated number of active nodes [29], [30].

However, all these algorithms but a Bayesian approach [27]
require that every node agrees to use the same adjusted
backoff parameters. This involves a serious problem that a
new node entering the network needs to know ‘‘the backoff
parameters.’’ Although the Bayesian work is an exceptional
case since it includes a distributed scenario with the help
of game theory, it requires additional tasks to detect the
‘‘rogue’’ terminal and adjusts only the minimum contention
window size [27]. From this standpoint, the improved version
of the idle sense proposed in [31] is a distinguishing exam-
ple because each node has a different contention window
based on its own estimate, and still achieves good network
performance.

In this work, while cooperative updating or active backoff
schemes accomplish good performance in general, we focus
on individual updating passive backoff schemes. This is
largely due to the recent trends of pursuing simple imple-
mentation. For instance, utilizing unlicensed or free spectrum
bands is open yet to any kinds of devices. Thus, such bands
can be used by some devices with the minimum and sim-
plest technical standards. In this regard, designing a backoff
scheme which can be implemented as simple as possible is
desirable for future scalability or interoperability issues.

In this work, we design a new adaptive MAC protocol
based on the RAP, called the Adaptive Renewal Access Pro-
tocol (A-RAP). The A-RAP is a hybrid version of the above
two groups (passive and active) that achieves the benefits of
each group. It operates as a passive individual scheme, but is
still able to estimate the number of active nodes as an active
scheme. That is, each nodewith theA-RAP adjusts its backoff
parameters individually only when it transmits a packet and
adjusts the backoff counter selection distribution based on the
estimated number of active nodes in the network.

Each node has a two dimensional ‘Backoff Selection
State (BSS)’ (m, i) to adjust its backoff behavior. To make
use of the advantages of the RAP, each node with the
A-RAP selects a backoff counter value according to the Pois-
son selection distribution whose parameter is determined by
its BSS. The first element of the BSS, m, is called ‘Estimated
Number of Nodes (ENN)’. The ENN indicates each node’s
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estimation for the number of active nodes in the network.
Each active node selects a backoff counter value according
to its ENN value, i.e., the parameter of the Poisson selection
distribution is determined by the ENN. The second element
of the BSS, i, is called ‘phase’. The phase is used to control
the transition speed between adjacent ENN values. In other
words, the ENN is adjusted only when the phase moves
beyond given boundary values that we will explain later.

The main contributions of this paper are summarized as
follows.
• We develop a novel adaptive MAC protocol, the A-RAP,
in which each node can estimate the number of active
nodes in the network using its own transmission results
without extra calculations such as the estimation of the
collision probability.

• The A-RAP is an autonomous adaptive MAC protocol
in which a node adjusts its backoff parameters indepen-
dently without sharing information with other nodes.

• The way of adjustments of the BSS is elaborately
designed based on the mathematical analysis. We model
the adjustment process of the BSS as a lazy randomwalk
and provide some conditions for a desirable adjustment.

• The A-RAP is built based on the RAP, thus it shows high
short-term fairness and energy efficiency benefited from
the RAP [12]–[14].

Our proposed A-RAP is shown to achieve good net-
work performances including throughput and short-term fair-
ness as the RAP. However, we recently observed that the
A-RAP has so-called the outlier problem. That is, nodes that
hold its ENN larger than the ENNs of other nodes, called
outliers, appear sometimes especially when the number of
nodes in the network is large. To resolve this outlier problem
in the A-RAP, we introduce a method of forcing a node
that keeps its ENN unchanged during a certain time period
to decrease its ENN. We analyze the trade-off between the
beneficial effects and the side effects to determine a proper
length of the time period.

The rest of the paper is organized as follows. We pro-
vide a general description of the A-RAP in Section II.
In Section III we elaborate on rigorous analysis to determine
the parameters for the A-RAP. We also explain the outlier
problem in the A-RAP and offer a solution. We compare the
performance of theA-RAPwith that of other backoff schemes
and validate our analysis through numerical and simulation
studies in Section IV. Finally, we provide our conclusions
in Section V.

II. DESCRIPTION OF THE A-RAP
In this section we first describe the adaptive MAC protocol
based on the RAP, called the A-RAP, that is adaptive to the
time varying network environment such as the number of
nodes. As said before, the RAP in [12] requires knowing the
number of active nodes in the network to achieve the optimal
throughput. This is because the optimal access probability
(or the optimal expectation of the Poisson selection distri-
bution) is shown to be a function of the number of nodes.

To tackle this issue, we combine the RAP in [12] with an
adaptive scheme while still providing good performance as
the RAP.

The main characteristics and operations of the A-RAP are
summarized as follows.

1) Each node has a two dimensional ‘Backoff Selection
State (BSS)’ (m, i). The first element of the BSS, m,
is called ‘Estimated Number of Nodes (ENN)’ and it
describes each node’s estimation for the number of
active nodes in the network. The second element of the
BSS, i, is called ‘phase’ and it is used to control the
transition between adjacent ENN values.

2) The ENN determines the backoff counter selection
distribution. That is, when a node has m as its ENN,
it selects a backoff counter value according to the Pois-
son selection distribution with mean µm where µm is
the optimal expectation given in [14] for a network
consisting ofm nodes. If the ENN values of some nodes
are the same, their backoff behaviors are the same
regardless of their phase values.

3) Each ENN value has a number of phases and upper
and lower boundaries for phases. For each node the
transition between adjacent phases is determined by
its packet transmission result, and the ENN is adjusted
only if the phase moves beyond one of the two bound-
aries of the ENN.

In what follows, we provide a detailed description of
the A-RAP.

A. GENERAL DESCRIPTION
With the A-RAP, each node maintains BSS (m, i).
We assume m ≥ 2 since we are interested in a con-
tending network. We denote ENN-m to indicate that the
value of the ENN is m(≥ 2). A node with ENN-m can
take values on {−bLm/2c, . . . ,−1, 0, 1, . . . , b(Lm − 1)/2c}
for its phase where Lm ≥ 1. The node accesses the
channel with a backoff counter selection distribution with
the expectation µm regardless of its phase value. In this
paper we use the Poisson distribution as the selection dis-
tribution to exploit the results in [12] and µm is the opti-
mal expectation given in [14] for a network consisting of
m nodes.
We now explain the motivation of the A-RAP and describe

the transition of the BSS in the A-RAP. Ideally, the A-RAP is
optimized when all nodes have the same ENN values exactly
equal to the actual number of nodes in the network. In this
case, the nodes experience more successful packet transmis-
sions than collided packet transmissions. This implies that
the current value of the ENN might provide a good estimate
for the number of nodes in the network when a node has a
successful packet transmission and hence there might be no
need to adjust the current ENN value. On the other hand,
when a node has a collided packet transmission, it is likely
that the current ENN value might not provide a good estimate
for the number of nodes in the network and hence the node
should adjust its ENN value. From this viewpoint, the A-RAP
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FIGURE 1. Transition diagram of the BSS at time t . The probability that a
node with the BSS (m,0) increases its phase is equal to pc (t); The
probability that it decreases its phase is equal to am(1− pc (t)).

is designed to adjust its ENN value slowly when a node has
a successful packet transmission but to adjust its ENN value
relatively fast when a node has a collided packet transmis-
sion. To this end, we introduce the adjustment probabilities
{am}m≥2 to adjust the BSS slowly in the A-RAP when a
node has a successful packet transmission. On the other hand,
a node adjusts its BSS immediately when it has a collided
packet transmission.

We tag an arbitrary node, called the tagged node. Let the
tagged node be in BSS (m, i). The tagged node can adjust
its BSS (m, i) only after its packet transmission and the
adjustment depends on the transmission result. The following
describe the detailed operations of the tagged node with
the A-RAP.

1) After a successful packet transmission
a) When −bLm/2c < i ≤ b(Lm − 1)/2c, the tagged

node decreases its phase value by one with
probability am.

b) When i = −bLm/2c, the tagged node decreases
its ENN value by one and sets its phase value to
zero with probability am.

2) After a collided packet transmission
a) When −bLm/2c ≤ i < b(Lm − 1)/2c, the tagged

node increases its phase value by one.
b) When i = b(Lm − 1)/2c, the tagged node

increases its ENN value by one and sets its phase
value to zero.

The transition diagram of the BSS of the tagged node at
time t is illustrated in Fig. 1 where pc(t) denotes the collision
probability at time t .

B. BACKOFF COUNTER SELECTION DISTRIBUTION
As mentioned above, to exploit the results in [12], the
A-RAP uses the Poisson selection distribution to select a
backoff counter value. That is, when a node is in BSS (m, i),
the node selects a backoff counter value X that satisfies
X = Z + 1 where Z is a Poisson random variable with
parameter µm − 1.

To determine the value of µm, we consider a wireless
network consisting of N homogeneous nodes with the RAP
and let τ ∗(N ) be the optimal access probability which max-
imizes the throughput. Here, the throughput is defined by
the fraction of time that the channel is used to successfully
transmit payload bits as given in [12]. We also define c∗ by
the unique solution of the following equation [14]:

(1− c)ec −
E[Bc]

1+ E[Bc]
= 0 (1)

where E[Bc] denotes the average duration of a time period for
a collided packet transmission. Since it can be easily verified
that 0 < c∗ < 1 for all practical values of E[Bc], we assume
0 < c∗ < 1 from now on. The following theorem provides
the relation between τ ∗(N ) and c∗.
Theorem 1 [14]: limN→∞ Nτ ∗(N ) = c∗.
It is shown in [14] that τ ∗(N ) and c∗/N are almost the

same for a large set of different values of N and E[Bc].
Moreover, it is also shown that the expectation µ of the
Poisson selection distribution and the corresponding access
probability τ have the relation of τ = 1/µ.1 Since the
A-RAP is an adaptive version of the RAP that mimics the
RAP by trying to accurately estimate the number of nodes in
the network, for a node with ENN-m, it is reasonable to select
its backoff counter value according to the Poisson selection
distribution with expectation µm := m/c∗.

Before we go further, we have to discuss how to compute
c∗ because it is necessary to get E[Bc] for it. In a practical
wireless network, due to the adaptive coding scheme based
on the channel conditions it might be difficult to get a priori
the expected length of E[Bc]. Therefore, each node should
first observe some collided packet transmission results in
the network and estimate E[Bc] based on the observation
results when it is initially connected to the wireless network.
Obviously, the estimation contains some error and hence it is
important to investigate the impact of the error in E[Bc] on
throughput performance. Fortunately, we see that the impact
of the error inE[Bc] is not significant. To see in detail, we first
consider rE[Bc](r > 0) instead of E[Bc] in eq. (1) and solve
the equation to get a solution, denoted by c∗r . We then use the
solution c∗r for τ ∗, i.e., τ ∗ = c∗r /m when the ENN is m and
simulate the wireless network to get throughput performance.
The results when N = 30 is plotted in Fig. 2. In the figure we
use 0.4 ≤ r ≤ 1.6. Note that we use the exact values of

1Embedded epochs in [12] are revised. We consider the embedded epochs
where the backoff counter value is decremented by one and exclude time
points where the backoff counter value is newly selected. With the new
embedded epochs, if we follow the same derivation as in [12], we can easily
obtain that τ = 1/µ.
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FIGURE 2. The impact of the errors in the value of E [Bc ] on throughput.

E[Bc] and τ ∗ when r = 1. As seen in the figure, the impact
of the error in E[Bc] on throughput is not significant and we
can conclude that the estimation of E[Bc] is not an issue and
some initial estimation on E[Bc] for each node is enough to
get c∗.

III. DETERMINATION OF PARAMETERS OF THE A-RAP
A. ADJUSTMENT PROBABILITIES
To achieve the optimal throughput and high short-term fair-
ness as the RAP, we need to carefully determine the adjust-
ment probabilities {am}m≥2. To this end, let N be the actual
number of nodes in the network, and (mk , ik ) denote the BSS
of node k , 1 ≤ k ≤ N . In this case, node k uses the Poisson
selection distribution with expectation mk/c∗ − 1, and hence
its access probability τk is c∗/mk .
For our purpose, we consider the embedded time epochs

where packet transmissions occur in the network and the
embedded time epochs are indexed as t = 1, 2, · · · . In this
section we simply use the term time to indicate an embedded
time epoch. When node j with BSS (mj, ij) transmits a packet
at time t , the collision probability, denoted by pc,j(t), is given
by

pc,j(t) = 1−

N∏
k=1

(1− c∗/mk )

1− c∗/mj
.

So, when node j transmits a packet at time t , am(1 − pc,j(t))
is the probability that node j decreases its BSS, i.e., decreases
either its ENN value or its phase value. On the other hand,
pc,j(t) is the probability that node j increases its BSS,
i.e., increases either its ENN value or its phase value. It is
worth noting that, when am(1 − pc,j(t)) ≥ pc,j(t), node j is
more likely to decrease its BSS. Otherwise, node j is more
likely to increase its BSS. For later use, we say that node j has
a negative net drift if am(1− pc,j(t)) ≥ pc,j(t) is satisfied and
has a positive net drift if am(1− pc,j(t)) < pc,j(t) is satisfied.
The key idea to determine the adjustment probabilities
{am}m≥2 is that the adjustment in the ENN values of nodes
should be performed to guarantee the convergence of the

FIGURE 3. Three possible scenarios on the net drifts of the nodes in the
network where ‘+’ and ‘-’ denote a positive net drift and a negative net
drift, respectively. The ENN values are denoted by mk for 1 ≤ k ≤ N and
mk ’s are arranged in the ascending order.

ENN values toward the actual number of nodes in the net-
work. To this end, we consider two arbitrary nodes in the
network. Without loss of generality we consider node 1 and
node 2 with ENN-m1 and ENN-m2, repectively, and assume
m1 ≤ m2. For the convergence of the ENN values of nodes
in the network, we first provide a sufficient condition under
which it is impossible to occur the event where node 1 (having
a smaller ENN value) has a negative net drift while node 2
(having a larger ENN value) has a positive net drift. Note
that if such an event occurs, the ENN values of two nodes
are likely to diverge.
Theorem 2: Suppose that {(am + 1)/(1− c∗/m)}m≥2 is an

increasing sequence. Consider node 1 and node 2 with ENN-
m1 and ENN-m2, respectively, and assume m1 ≤ m2. Assume
further that the packet transmissions in the network do not
change the ENN values m1 and m2 (but change the phase
values of two nodes). Then the following statements hold.
(i) If node 1 has a negative net drift, then node 2 also has

a negative net drift.
(ii) If node 2 has a positive net drift, then node 1 also has

a positive net drift.
Proof: The proof is given in Appendix A.

From now on, we assume that {(am+1)/(1−c∗/m)}m≥2 is
an increasing sequence. To illustrate Theorem 2 we provide
Fig. 3 that covers all the possible scenarios on the net drifts
of the nodes in the network.

We next consider the following observation. It is reason-
able that, if the ENN values of all nodes are greater than the
actual number of nodes N , then the values of {am}m≥2 should
be determined to guarantee negative net drifts for all nodes.
Similarly, if the ENN values of all nodes are smaller than N ,
then the values of {am}m≥2 should be determined to guarantee
positive net drifts for all nodes. The following theorem is
inspired by this important observation and provides upper and
lower bounds for {am}m≥2.
Theorem 3: Let N be the actual number of nodes in the

network. If {am}m≥2 satisfies

1
(1− c∗/m)m−2

− 1 ≤ am <
1

(1− c∗/m)m
− 1, m ≥ 2,

(2)
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then the following statements hold.
(i) Every node has a negative net drift if N < mk for

1 ≤ k ≤ N.
(ii) Every node has a positive net drift if mk < N for

1 ≤ k ≤ N.
Proof: The proof is given in Appendix B.

The following theorem provides the values of {am}m≥2
for which the sequence {(am + 1)/(1 − c∗/m)}m≥1 becomes
increasing, which is crucial in our analysis.
Theorem 4: Suppose

am =
1

(1− c∗/m)m−r−1
− 1, m ≥ 2. (3)

If r ∈ [c∗, 1], then {(am+1)/(1−c∗/m)}m≥2 is an increasing
sequence.

Proof: The proof is given in Appendix C.
Note that the main purpose of backoff adjustments is the

contention resolution. In this regard, lowering access aggres-
siveness (by taking the minimum possible value of am) is
more desirable for the network. Therefore, we propose to use
the values of {am}m≥2 in (3) when r = 1, that is,

am =
1

(1− c∗/m)m−2
− 1, m ≥ 2. (4)

The importance of Theorem 2 and Theorem 3 is explained
in the following from the viewpoint of the convergence in the
ENNs of all nodes. Let m̃ and m̂ denote the minimum and
the maximum values among the ENN values of all nodes in
the network, respectively. Then we consider two nodes, say,
node 1 and node 2 with respective ENN values m̃ and m̂ and
the following three cases.

1) m̃ ≤ m̂ < N : Since both nodes have a positive net
drift by Theorem 3, the ENN values are likely to move
toward N .

2) N < m̃ ≤ m̂: Since both nodes have negative net drifts
by Theorem 3, the ENN values move toward N .

3) m̃ ≤ N ≤ m̂: In this case we first focus on
a node with m̃ and suppose that the node has
a negative net drift. Then, by Theorem 2 all
nodes have negative net drifts. This implies that,
for 1 ≤ j ≤ N ,

(amj + 1)
N∏

k=1,k 6=j

(
1−

c∗

mk

)
≥ 1 (5)

and all mj’s are likely to decrease. Then, for any j,
since {am}m≥2 is an increasing sequence, the left hand
side of (5) is likely to decrease. Since all nodes cannot
have negative net drifts in the long run (by Theorem 3,
statement (ii)), the node with m̃ should have a positive
net drift at some time point.
We next focus on a node with m̂ and suppose that
the node has a positive net drift. Then, by Theorem 2
all nodes have positive net drifts. This implies that,

FIGURE 4. A path in a lazy random walk with two absorbing barriers.

for 1 ≥ j ≥ N

(amj + 1)
N∏

k=1,k 6=j

(
1−

c∗

mk

)
< 1 (6)

and all mj’s are likely to increase. Then, for any j,
since {am}m≥2 is an increasing sequence, the left hand
side of (6) is likely to increase. Since all nodes cannot
have positive net drifts in the long run (by Theorem 3,
statement (i)), the node with m̂ should have a negative
net drift at some time point.

From the above observation, we expect that the ENNvalues
of all nodes are likely to converge to the actual number of
nodes in the network. We will verify the convergence through
simulation.

B. THE NUMBER OF THE PHASES FOR EACH ENN
In this section we discuss how to determine the number
of phases, i.e., {Lm}m≥2. This issue is important because it
significantly affects the convergence speed of the ENN value
and hence the stable and effective operation of the A-RAP.
That is, if there are too many phases for each ENN, it might
take too much time for all ENN values of nodes to move
toward N . On the other hand, if there are very few phases
for each ENN, the changes in the ENN value might occur too
frequently, which is not desirable.
To go further in our discussion and for simplicity we limit

ourselves to the scenario where there are N nodes in the
network and the ENN values of nodes are all equal to m.
We tag an arbitrary node, called the tagged node, and
observe its behavior. Let the phase of the tagged node be 0.
For a technical purpose, we assume that the other nodes’
ENN values are remained unchanged until the tagged node
adjusts its ENN. With this assumption, the collision proba-
bility of the tagged node also remains unchanged because it
depends only on the ENN values of the other nodes. Then the
collision probability pc,N ,m is given by

pc,N ,m = 1−
(
1−

c∗

m

)N−1
.

We mathematically model the behavior of the phase of
the tagged node as a lazy random walk with two absorbing
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barriers. Refer to Fig. 4. In other words, each step adds
up 0,+1 or −1 to the current phase value until the phase
reaches either of the two barriers. In what follows, we inves-
tigate the lazy random walk in detail. It can take values on

{LB,−bLm/2c, . . . ,−1, 0, 1, . . . , b(Lm − 1)/2c,UB}

where LB and UB denote the lower barrier and the upper
barrier. The barriers LB and UB mean that the tagged node
changes its ENN value tom−1 andm+1, respectively.When
the packet transmission of the tagged node is successful,
the phase goes down by one with probability am and remains
unchanged with probability 1 − am. Thus, the probability α
that the phase goes down is given by

α = (1− pc,N ,m)am =
(
1−

c∗

m

)N−m+1
−

(
1−

c∗

m

)N−1
where am in (4) is used. On the other hand, the phase goes
up by one when the packet transmission of the tagged node is
collided. This occurs with probability β given by

β = pc,N ,m = 1−
(
1−

c∗

m

)N−1
.

If we consider−bLm/2c−1 and b(Lm − 1)/2c+1 as LB and
UB, respectively, then the transition probabilities are given as
follows:

pi,i−1 = α,

pi,i = 1− α − β,

pi,i+1 = β

for i ∈ {−bLm/2c, . . . ,−1, 0, 1, . . . , b(Lm − 1)/2c} and 0
otherwise.

We let P̂N ,m denote the probability that the tagged node
eventually changes its ENN value to m − 1, i.e., the random
walk hits the LB first. Then 1− P̂N ,m denotes the probability
that the tagged node eventually changes its ENN value to
m + 1. These probabilities P̂N ,m and 1 − P̂N ,m have a key
role in determining {Lm}m≥2. For simplicity, we assume that
Lm is an odd number. Using the gambler’s ruin probability,
we derive the following formulas. The proof is given in
Appendix D.

P̂N ,m =
1

1+ (β/α)(Lm+1)/2
,

1− P̂N ,m =
1

1+ (α/β)(Lm+1)/2
. (7)

Now, we are ready to determine {Lm}m≥1. We first derive
an asymptotic condition for Lm under which the tagged node
adjusts its ENN value in the desirable direction. For given
m ≥ 2, to derive the condition we introduce the following
inequalities

P̂N ,m ≥ γ1 for all k1 ≥ 1 if N = m− 1− k1,

1− P̂N ,m ≥ γ2 for all k2 ≥ 1 if N = m− 1+ k2, (8)

where γ1 and γ2 are two constants in (1/2, 1). The reason for
the introduction of two inequalities is obvious. That is, when

N = m−1−k1, it is reasonable that P̂N ,m, the probability that
the ENN value decreases, should be at least as large as 1/2.
Similarly, when N = m − 1 + k2, it is also reasonable that
1−P̂N ,m, the probability that the ENN value increases, should
be at least as large as 1/2. We begin with the first inequality
in (8). Suppose N = m − 1 − k1. Then we have α > β.
We rewrite β/α as follows:

β

α
=

1− (1− c∗/m)N−1

am(1− c∗/m)N−1

=
1− (1− c∗/m)N−1

((1− c∗/m)−m+2 − 1)(1− c∗/m)N−1

=
(1− c∗/m)−N+1 − 1
(1− c∗/m)−m+2 − 1

=
(1− c∗/m)−m+2+k1 − 1
(1− c∗/m)−m+2 − 1

=

(
1−

c∗

m

)k1
+

(1− c∗/m)k1 − 1
(1− c∗/m)−m+2 − 1

' 1−
k1c∗

m
−
k1c∗

m

(
1

ec∗ − 1

)
= 1−

1
m

(
k1c∗

1− e−c∗

)
.

Thus (
β

α

)m
' e−k1ρ where ρ =

c∗

1− e−c∗
> 0.

Taking log on both sides yields

log
(
β

α

)
' −

k1ρ
m
.

From the first inequality in (8), we have

Lm + 1
2
≥

log(1/γ1 − 1)
log(β/α)

' −
log(1/γ1 − 1)

k1ρ
m. (9)

Note that − log(1/γ1 − 1) > 0 since 1 ≥ γ1 > 1/2 and
ρ > 0. It is worthwhile to note that ρ depends on c∗, and is
irrelevant to m.

If we replace k1, γ1 by−k2, γ2, thenwe can derive a similar
result for the second inequality of (8) as follows:

Lm + 1
2
≥

log(1/γ2 − 1)
log(α/β)

' −
log(1/γ2 − 1)

k2ρ
m. (10)

Considering the adjustment speed of the ENN value, it is
better to choose Lm as small as possible. When γ = γ1 = γ2,
the smallest possible value of Lm occurs when k1 = k2 = 1
and is given by

Lm ' −2 log(1/γ − 1) ·
1− e−c

∗

c∗
· m.

With the above observation, for the A-RAPwe propose to use

Lm = b
1
3
mc, m ≥ 2

In the conference version of this paper [32] we proposed to
use Lm = m, but in order to make the adjustment speed faster
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we propose to use the above value for Lm. In this case, from
ρ = c∗/(1− e−c

∗

) we see

γ ' 1/(1+ e−ρ/2) ' 0.5516.

We will verify through simulation that the A-RAP with
Lm = b 13mc provides a good performance.

C. OUTLIER PROBLEM IN THE A-RAP
In this subsection, we identify the outlier problem of the
A-RAP and provide a solution for it. As aforementioned in
the introduction, the A-RAP simplifies the estimation of the
number of active nodes by only considering the transmission
results and hence it is inevitable to have some error in the
estimation. In most cases the error is shown to be not signifi-
cant because the A-RAP provides similar short term fairness
and throughput as the RAP as in Section IV-A. However,
we recently find that outliers sometime appear who have
much larger estimates of the number of active nodes than
others in the A-RAP. The outlier problem becomes more
significant when the number of active nodes are relatively
large.

To explain the reason why the outlier problem arises in
the A-RAP, we consider a saturated network in steady state
where the ENNs of all nodes are close to the number of
active nodes in the network. Assume that the number of active
nodes is relatively large. We now add a new node with the
ENN that is much larger than the number of active nodes,
which is called the tagged node. Ideally, the tagged node
must decrease its ENN in the A-RAP, but it rarely changes
its ENN. This is because the large ENN of the tagged node
makes it prevent packet transmissions too much and hence
it has much less chances to decrease its ENN than the other
nodes. Furthermore, since the number of active nodes is
relatively large and the tagged node transmits its packets less
frequently, the impact of the tagged node to the network is
not significant. Therefore, it is difficult that the other nodes
realize the existence of the tagged node. In a similar way, if a
node happens to have a large ENN value, it has a high chance
of being an outlier.

One way to solve the outlier problem is to decrease the
outlier’s ENN intentionally under some situations. To this
end, we propose to force a node whose ENN is maintained
the same value over its 0 packet transmissions to decrease
its ENN until reaching the minimum value of 2 as follows:

ENN← max (dENN× δe, 2) (11)

where δ is a constant and dxe is the smallest integer greater
than or equal to x.
The reason why we use δ in (11) is explained in the

following. From the perspective of the convergence of ENN’s,
it is reasonable to decrease ENN in proportion to the current
ENN value. Obviously, 0 and δ are important parameters
because they affect the performance significantly, i.e., it has
some beneficial effects as well as some side effects. When
δ is too large, we can easily expect the A-RAP behav-
iors too aggressively. Our simulations confirm that

δ = 7/8 performs quite well in all scenarios and hence
we propose to use δ = 7/8 in this paper. For convenience,
we name the improved A-RAP using 0 and δ as the A-RAP+

to distinguish it from the A-RAP without using them.
In what follows we focus on the determination of a suitable

value of 0. Our main approach toward it is to use a random
walk model. To start with the discussion on 0, we first
consider the beneficial effects and the side effects of the
introduction of 0. The beneficial effects are listed as follows:
(B1) Outliers do not appear by intentionally forcing their

ENNs to decrease.
(B2) A node might decrease its ENN faster when it

needs to.
(B3) Fairness performance is improved with the rearrange-

ment of ENNs of nodes as well as the outlier. That is,
all nodes maintain their ENN values almost invariant in
steady state. So, by forcing some nodes with relatively
high ENNs to decrease their ENNs, they transmit their
packets a little bit aggressively, which results in the
increase in the ENNs of some other nodes. So all
ENNs of nodes have chances to be close to the actual
number of active nodes.

From the above beneficial viewpoint, it is desirable to choose
a small value of 0 because a small value of 0 speeds up
the changes of the ENNs of nodes as mentioned in (B1)
and (B2). Moreover, rearranging the ENNs of nodes in (B3)
occurs more often and it has an advantage in terms of fairness.
Note that there obviously exist differences in the ENNs of all
nodes, but the ENNs remains almost invariant in steady state.
This implies that, if a node happens to have a relatively large
ENN in steady state, the node has less chances to transmit its
packets and this is undesirable from the fairness perspective.
Therefore, it is desirable to rearrange the ENNs of nodes to a
certain extent to get better short term fairness.

On the other hand, there are also some side effects as
follows:
(S1) A node might decrease its ENN when it has to increase

because a failure to increase its ENNwithin its0 packet
transmissions forces the node to decrease its ENN.

(S2) A node might decrease its ENN when it does not need
to, i.e., its ENN is close to the actual number of active
nodes N .

From the viewpoint of the above side effects, it is necessary
to guarantee the minimum time required to decrease the
ENN intentionally, that is, 0 should not be too small.

To determine a suitable value of 0 to alleviate these side
effects as much as possible, we first consider the following
simple scenario where there are N nodes in the network and
they are saturated. Suppose that every node has the same
BSS (N − d, 0) for a given positive integer d . We tag an
arbitrary node and assume that the other nodes maintain their
ENNs invariant. Let S(N , d) denote the number of packet
transmissions of the tagged node until it changes its ENN,
i.e., it changes its ENN after S(N , d) packet transmissions.
The behavior of the BSS of the tagged node can bemodeled as
a lazy random walk as in Section III-B. Its transition diagram
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FIGURE 5. Expected number of transmissions required for a node to
change its ENN when there are N active nodes whose ENNs are
the same as N − d .

is the same as given in Fig. 1 where m = N − d and pc(t) is
given by pc(t) = 1−(1− c∗/m)N−1. Then S(N , d) represents
the sojourn time of the lazy random walk during which its
ENN remains unchanged. The computation of S(N , d) is
important to determine the value of0 because a node needs as
many packet transmission as S(N , d) to increase its ENN and
hence 0 should be at least as large as S(N , d). Since S(N , d)
is a random variable, for our purpose to determine the value
of 0, we simply focus on the expected value E[S(N , d)].

To obtain a closed formula for E[S(N , d)], we define v(x)
by the expected sojourn time of the tagged node with the
initial BSS (m, x) while the other nodes maintain their ENNs
as m. Then the expected value of S(N , d) can be obtained by
solving the following recursive equations:

v (−bm/2c − 1) = v (b(m− 1)/2c + 1) = 0, (12)

v(x) = αv(x − 1)+ (1− α − β)v(x)

+βv(x + 1)+ 1 (13)

for x = −bm/2c, · · · , b(m−1)/2c. By the definition of v(x),
we have E[S(N , d)] = v(0) and obtain

E[S(N , d)] =
m+ 1
β − α

(α/β)bm/2c+1 − 1
(α/β)m+1 − 1

−
bm/2c + 1
β − α

(14)

where α = (1−pc(t))am = (1− c∗/m)d+1− (1− c∗/m)N−1,
β = pc(t) = 1−(1−c∗/m)N−1. We plot E[S(N , d)] in Fig. 5
for various values of N and d .

From the above discussion and results, it is reasonable to
set 0 = E[S(N , 0)] which can alleviate the side effects (S1)
and (S2). Since nodes have their ENNs as m = N − d , they
will change their ENNs after E[S(N , d)] packet transmis-
sions on average. If 0 < E[S(N , d)], then the performance
might be degraded because the introduction of 0 prevents
nodes from increasing their ENNs and forces to decrease

FIGURE 6. Trajectories of ENNs of nodes. (a) the number of active nodes
N = 10, (b) the number of active nodes N = 30.

their ENNs. On the other hand, if 0 > E[S(N , d)], the intro-
duction of0 does not prevent the increase of the ENN, i.e., the
side effect of (S1) is much alleviated. Similarly, if we suppose
that every node has the same ENN value of N , then 0 must
be at least E[S(N , 0)] to avoid the unnecessary decrease
of the ENN, i.e. the side effect of (S2) is alleviated. Since
E[S(N , 0)] > E[S(N , d)] as seen in Fig. 5, it is reasonable
to set 0 = E[S(N , 0)]. When we limit ourselves to scenarios
where N is not greater than 50, from our extensive simulation
we propose to use 0 = 100 ' E[S(50, 0)]. In the next
numerical section, it will be shown that our careful choice
of 0 guarantees that the performance of the A-RAP+ is still
good.

Before we go further, we verify that nodes using the
A-RAP+ are able to adaptively estimate the number of nodes
in the network by showing the simulation results on their
ENN trajectories in Fig. 6. In the simulation, to see if the
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TABLE 1. Network parameters.

A-RAP+ adaptively estimates the number of nodes well even
in a bad situation, we consider a scenario where each node
selects its initial ENN uniformly on [2, 50] and adjusts its
ENN over time. As seen in the figure the ENNs of nodes
gradually approach to the actual number of nodes and then
move up and down near it. It can be also seen that even a
node whose initial ENN is relatively large decreases its ENN
to the actual number of nodes, which implies that the outlier
problem is well resolved in the A-RAP+.

IV. NUMERICAL VALIDATION
In order to evaluate the performance of the proposed
A-RAP+, we use MATLAB to conduct our experiments
under a Rayleigh-lognormal fading channel with parameters
given in Table 1. We consider variable physical data rates
from 6.5 Mbps to 65 Mbps determined by the channel con-
dition depending on the Rayleigh-lognormal fading. In the
figures, otherwisementioned, each result is an averaged value
for 30 different seed values and the corresponding 99% con-
fidence interval is also given. We investigate the performance
of the A-RAP+ from three perspectives.

Firstly, we examine the throughput and short-term fairness
of the A-RAP+. Secondly, we measure the transmission effi-
ciency of a node that is defined by the ratio of the number
of successfully transmitted packets over the total number of
transmitted packets from the node. The transmission effi-
ciency is a goodmetric to evaluate the performance of a proto-
col in terms of energy efficiency. For a comparison purpose,
we also measure the performance of other backoff schemes
proposed in the open literature. Among various schemes we
choose EIED [16], and quadratic backoff (QB) [11] since
they are individual updating passive backoff schemes as
the A-RAP+. We also consider the RAP [14] with the actual
number of active nodes to confirm that the A-RAP+ inherits
the benefits of the RAP. Hence we compare the performances
of the RAP, BEB, QB, EIED, A-RAP and A-RAP+ in steady
state. Detailed descriptions of EIED, and QB are given in
Appendix E. Lastly, we investigate how adaptively and fast
each node with the A-RAP+ adjusts its ENN to the varying

FIGURE 7. Throughput comparison of the RAP, BEB, QB, EIED, A-RAP, and
A-RAP+ versus the number of active nodes N .

number of nodes in the network. In fact, we observe the
trajectory of the ENN values of an arbitrarily tagged node
while changing the number of nodes in the network.

A. THROUGHPUT AND SHORT-TERM FAIRNESS
We evaluate the throughput defined as the fraction of time the
channel is used to successfully transmit payload bits as in [5].
Fig. 7 shows the throughput performances of the RAP, BEB,
QB, EIED, A-RAP, and A-RAP+. As shown in the figure,
the throughputs of the A-RAP+ and the RAP are almost the
same and they have the highest throughput when N > 30.
In the case ofN = 10, 20, and 30, even though the throughput
of the EIED is slightly higher than that of the A-RAP+,
the fairness of the EIED is very low as seen in Fig. 8.
In addition, we see that the A-RAP+ achieves the most stable
throughput performance for various numbers of nodes. Note
that the RAP, BEB, QB, and EIED are not adaptive,2 so
we use in the figure fixed parameter values proposed in the
literature for each case. Even though only the A-RAP+ is
adaptively changing its parameters, i.e., BSS, the throughput
of the A-RAP+ is very close to that of the RAP3 and higher
than the throughputs of other backoff schemes. This shows
the strong point of the A-RAP+.
To evaluate the short-term fairness, the Jain’s Fairness

Index (JFI) is introduced in [33]. The JFI is defined by

FW =

(∑N
i=1 γ

i
W

)2
N
∑N

i=1(γ
i
W )2

(15)

where γ iW is the throughput of node i estimated during a
time period of length W . We say that perfect fairness is

2To the best of the authors’ knowledge, there are not adaptive and individ-
ually updating passive backoff schemes in the literature

3It is shown in [14] that the throughput that the RAP achieves is almost
the same as the theoretical optimal throughput.
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FIGURE 8. Fairness index of the RAP, BEB, QB, EIED, A-RAP, and A-RAP+
versus sliding window size W . (a) the number of active nodes N = 20,
(b) the number of active nodes N = 40.

achieved when the JFI is equal to one. In simulation, we use
the sliding window method as in [12]. The results are plotted
in Fig. 8. The figure shows that the A-RAP+ achieves a
similar fairness performance as the RAP and outperforms all
other backoff schemes including the A-RAP. There are two
main reasons for the improvement in fairness. The first reason
is that the absence of the outliers obviously improves the
short-term fairness, i.e., (B1), and the second reason is that
the short term fairness is also improved by mixing the ENNs
of nodes, i.e., (B2). Moreover, the little difference between
the RAP and A-RAP+ implies that the ENNs of all nodes
are not significantly different. Thus, we conclude that the
A-RAP+ inherits the benefit of the RAP aswell in the fairness
perspective.

FIGURE 9. Transmission efficiency of the RAP, BEB, QB,EIED, and A-RAP
versus the number of active nodes N .

B. TRANSMISSION EFFICIENCY
In this section, we measure the transmission efficiency and
compare the transmission efficiency of the A-RAP+ with
those of other backoff schemes. From Fig. 9 we see that
the A-RAP+ achieves similar transmission efficiency as the
RAP and surpasses the BEB and QB. This is because each
node with the A-RAP+ uses the near-optimal backoff counter
selection distribution and thus it experiences less packet col-
lisions compared to other backoff schemes. As discussed
in [14], since the transmission efficiency implies the energy
efficiency and both the A-RAP+ and the RAP have similar
transmission efficiency, we conclude that the A-RAP+ is
energy efficient in packet transmission.

Note that only the EIED shows the transmission efficiency
higher than that of the A-RAP+ when there are 40 or 50 nodes
in the network, but this is because the EIED with N = 40, 50
transmits packets much less aggressively. This results in more
packet transmission successes, but the channel utilization is
quite low as seen in the throughput performance.

C. ADAPTIVITY TO CHANGING NETWORK
ENVIRONMENTS
In this section, we observe the trajectory of the ENN values
of nodes when changing the number of nodes in the network.
We assume that, when a node enters the network, it begins
contending for the channel with the initial BSS (2, 0) for
convenience. The number of nodes in the network, N , varies
as 10, 30, and 20, and the changes occur every 30 seconds.
We evaluate the throughput, fairness, and collision proba-
bility during the time interval [0, 30], [30, 60], [60, 90] and
the results are provided in Table 2. Table 2 shows they are
close to the steady state results given in Section IV-A. In the
table, the columns for ‘N = 10’, ‘N = 30’, and ‘N = 20’
denote the steady state results when N = 10, 30, and 20,
respectively.
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TABLE 2. Adaptivity of the A-RAP.

FIGURE 10. Trajectory of ENN’s of the tagged node; the initial number of
nodes is 10; the number of nodes increases to 30 at 30s and decreases
to 20 at 60s.

To demonstrate the adaptivity of the A-RAP+ explicitly,
we tag an arbitrary node and observe the trajectory of the
ENN value of the tagged node. Fig. 10 provides the trajectory
of the ENN value of the tagged node. As seen in Table 2
and Fig. 10, the A-RAP+ performs adaptively well enough
to chase the varying number of nodes. Moreover, it achieves
the steady state performance. Thus, we conclude that the
A-RAP+ is robust to the varying number of nodes in a prac-
tical network.

V. CONCLUSIONS
In this paper, we proposed an adaptive version of the Renewal
Access Protocol, called the A-RAP. Two key parameters of
the A-RAP, the adjustment probabilities and the numbers
of phases, were carefully determined through mathematical
analysis, so that the estimated numbers of nodes move toward
the actual number of nodes in the network on average. The
benefits of the A-RAPwere verified through intensive numer-
ical and simulation studies. In fact, the A-RAP achieves high
throughput, short-term fairness, and adaptivity even in the
time varying network. We also tackle the outlier problem of
the A-RAP and propose an improved version of the A-RAP,
called A-RAP+. The A-RAP+ resolves the outlier problem
by introducing a method to intentionally decrease the ENN
of a node where its ENN remains invariant for a certain

time period. Simulation results are provided to validate our
analysis and the improvement in the A-RAP+.

APPENDIX A
PROOF OF THEOREM 2
Let pc,1 and pc,2 be the collision probabilities of node 1
and node 2, respectively, when they transmit packets, and
q :=

∏N
k=1(1 − c∗/mk ). Since we assume that the packet

transmissions in the network do not change m1 and m2,
we drop the time index t in the proof for simplicity.
If m1 = m2, both node 1 and node 2 have net drifts with
the same sign because

pc,1 = 1−
q

1− c∗/m1
= 1−

q
1− c∗/m2

= pc,2.

Next, consider the case of m1 < m2. If node 1 has a negative
net drift, we then have

am1

q
1− c∗/m1

≥ 1−
q

1− c∗/m1

which is equivalent to

q ≥
1− c∗/m1

am1 + 1
.

This leads to

q ≥
1− c∗/m2

am2 + 1

because {(am + 1) / (1− c∗/m)}m≥2 is an increasing
sequence. So node 2 also has a negative net drift. Similarly,
it is easy to show that, if node 2 has a positive net drift, then
node 1 also has a positive net drift.

APPENDIX B
PROOF OF THEOREM 3
For later use, we prove that {am}m≥2 is an increasing
sequence. Since {(am + 1)/(1− c∗/m)}m≥2 is assumed to be
an increasing sequence,

am + 1 ≤
1− c∗/(m+ 1)

1− c∗/m
(am + 1) ≤ am+1 + 1. (16)

(i) Suppose N < mk for 1 ≤ k ≤ N . From (2) with
m = N + 1, we have

1
(1− c∗/(N + 1))N−1

− 1 ≤ aN+1. (17)

Let q :=
∏N

k=1(1 − c
∗/mk ). The statement (i) is equiv-

alent to

amk
q

1− c∗/mk
≥ 1−

q
1− c∗/mk

, 1 ≤ k ≤ N
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from which we obtain
1− c∗/mk

q
− 1 ≤ amk , 1 ≤ k ≤ N . (18)

Note that (1−c∗/mk )/q is maximized whenmj = N+1
for j ∈ {1, 2, · · · ,N }\{k}, and the maximum value of
(1− c∗/mk )/q is given by

1
(1− c∗/(N + 1))N−1

.

Then, for any set of mk > N , 1 ≤ k ≤ N , from (16)
and (17), we have

1− c∗/mk
q

− 1 ≤
1

(1− c∗/(N + 1))N−1
− 1

≤ aN+1
≤ amk

which shows that (18) is satisfied. This implies that
every node has a negative net drift if (2) is satisfied.

(ii) Suppose that mk < N for 1 ≤ k ≤ N . From (2) with
m = N − 1, we have

aN−1 <
1

(1− c∗/(N − 1))N−1
− 1. (19)

The statement (ii) is equivalent to

amk <
1− c∗/mk

q
− 1, 1 ≤ k ≤ N . (20)

Note that (1− c∗/mk )/q is minimized when mi = N −1
for i ∈ {1, 2, · · · ,N }\{k}, and the minimum value of
(1− c∗/mk )/q is given by

1
(1− c∗/(N − 1))N−1

.

Then, for any set of mk < N , 1 ≤ k ≤ N from (16) and
(19), we have

amk ≤ aN−1

<
1

(1− c∗/(N − 1))N−1
− 1

≤
1− c∗/mk

q
− 1

which shows that (20) is satisfied. This implies that
every node has a positive net drift if (2) is satisfied.

APPENDIX C
PROOF OF THEOREM 4
Suppose

am =
1

(1− c∗/m)m−r−1
− 1, m ≥ 2.

From Theorem 3, the values of {am}m≥2 satisfying the condi-
tion in (2) are represented as follows:

am =
1

(1− c∗/m)m−r−1
− 1, for some r ∈ [−1, 1].

Then (am + 1)/(1− c∗/m) = 1/(1− c∗/m)m−r .

Let f (x) := (1 − c∗/x)x−r for x ≥ 1. Then the sequence
{(am + 1)/(1 − c∗/m)}m≥2 can be represented by {1/f (m),
m ≥ 2}. Since f (x) > 0 for x ≥ 2, it suffices to show that
(log f (x))′ ≤ 0. Note that

(log f (x))′ =
(
(x − r) log(1−

c∗

x
)
)′

= log(1−
c∗

x
)+ (x − r)

c∗/x2

1− c∗/x
. (21)

Let t := c∗/x, then 0 < t < 1. Then, in (21), the former term
is given by

log(1−
c∗

x
) = log(1− t) = −t −

t2

2
−
t3

3
−
t4

4
− · · · ,

and the latter term is given by

(x − r)
c∗/x2

1− c∗/x
=

(
c∗

t
− r

)
t2/c∗

1− t

=

(
c∗

t
− r

)
t2

c∗
(1+ t + t2 + · · · ).

Then we have

(log f (x))′ = log(1− t)+
(
c∗

t
− r

)
t2/c∗

1− t

=

(
−t −

t2

2
−
t3

3
− · · ·

)
+ (t + t2 + t3 + · · · )

−
r
c∗

(t2 + t3 + · · · )

=

(
1
2
t2 +

2
3
t3 + · · ·

)
−

r
c∗

(t2 + t3 + · · · )

=

(
1
2
−

r
c∗

)
t2 +

(
2
3
−

r
c∗

)
t3 + · · · .

Thus r/c∗ ≥ 1 implies that f (x) is a decreasing function and
{(am + 1)/(1− c∗/m)} is an increasing sequence.

APPENDIX D
FIRST HITTING PROBABILITY P̂N,m
Let {Xn}n≥1 be the lazy random walk with state space
{LB,−bLm/2c, . . . ,−1, 0, 1, . . . , b(Lm − 1)/2c,UB}. Then
transition probabilities are given by

P(X1 = l − 1 | X0 = l) = α,

P(X1 = l | X0 = l) = 1− α − β,

P(X1 = l + 1 | X0 = l) = β

for l ∈ {−bLm/2c, . . . ,−1, 0, 1, . . . , b(Lm − 1)/2c} and
0 otherwise.

We consider the embedded time epochs where there
occur changes in the value of {Xn}n≥1 and the embed-
ded time epochs are indexed as n1, n2, · · · . Then the
embedded process {X̃j := Xnj}j≥1 becomes an usual
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TABLE 3. Optimal values of δ.

random walk. Transition probabilities of X̃j are given as
follows:

P(X̃1 = l − 1 | X̃0 = l) =
P(X1 = l − 1 | X0 = l)

P(X1 ∈ {l + 1, l − 1} | X0 = l)

=
α

α + β
,

P(X̃1 = l + 1 | X̃0 = l) =
P(X1 = l + 1 | X0 = l)

P(X1 ∈ {l + 1, l − 1} | X0 = l)

=
β

α + β

for l ∈ {−bLm/2c, . . . ,−1, 0, 1, . . . , b(Lm − 1)/2c} and
0 otherwise. Using the formula for the gambler’s ruin proba-
bility in [34], we obtain

P̂N ,m =
(α/β)(Lm+1)/2 − (α/β)Lm+1

1− (α/β)Lm+1

=
(α/β)(Lm+1)/2 − (α/β)Lm+1

1− (α/β)(Lm+1)/2 + (α/β)(Lm+1)/2 − (α/β)Lm+1

=
1

1+ (β/α)(Lm+1)/2
.

APPENDIX E
DESCRIPTION FOR EIED, AND QB
The EIED scheme is summarized by the following set of
equations:{

x ← max(x/2δ,CW0) upon transmission success,
x ← min(2x,CWmax) upon collision.

(22)

Parameter δ is chosen to be the optimal value in the fairness
perspective. The values of δ used in the simulation are given
in Table 3.

The QB scheme is summarized by the following set of
equations:{
x ← CW0 upon transmission success,
x ← (1+min(d,K ))2CW0 upon d successive collisions.

(23)

Smaller K refers to better fairness performance. In [11], it is
shown that K = 4 is good enough to approach the limiting
throughput withK = ∞. Hence, we useK = 4 in Section IV.
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