
Received November 4, 2017, accepted January 10, 2018, date of publication February 12, 2018, date of current version May 2, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2805365

DOE-AND-SCA: A Novel SCA Based on DNN With
Optimal Eigenvectors and Automatic Cluster
Number Determination
JINYIN CHEN, YANGYANG WU , XIANG LIN, AND QI XUAN
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Corresponding authors: Jinyin Chen (chenjinyin@163.com) and Yangyang Wu (2111603080@zjut.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61502423 and Grant 61572439.

ABSTRACT Spectral clustering algorithm (SCA) is one of the widely used clustering algorithms (CAs),
which is proved to be efficient in many applications including unsupervised image identification and gene
prediction. However, most SCAs are confronted with several problems: 1) It is difficult for SCAs to handle
multi-scale data sets; 2) It is difficult to set cluster number in advance for various applications; 3) It is
also difficult to choose the most appropriate eigenvectors to reflect the data distribution; and 4) Moreover,
SCAs are sensitive to the parameters. To handle these problems, we propose a novel SCA based on dynamic
nearest-neighbors (DNN) with optimal eigenvector and automatic cluster number determination, namely
DOE-AND-SCA. There into, first, we design a novel similarity function based on DNN for multi-scale
data, making the similarity metric more accurate; Second, the cluster number is automatically determined,
and the cluster centers are also automatically determined by normal fitting, based on the density and
minimum distance distribution of the data points; Third, the optimal eigenvectors are selected on the basis
of global and local features of the data set for more accurate data distribution reflection; Fourth, two main
parameters, including the optimal density difference threshold and the number of intervals, are self-adaptive.
The efficiency of DOE-AND-SCA is testified on abundant of simulation data sets, by comparing with other
outstanding algorithms. And finally, DOE-AND-SCA is also applied to image recognition problems.

INDEX TERMS Spectral clustering algorithm, dynamic nearest-neighbors, automatic cluster number
determination, optimal eigenvector, parameter self-adaptive, image recognition.

I. INTRODUCTION
Clustering is one of the essential problems in many research
fields. Among proposed CAs, SCA [1]–[3], a basic CAwhich
is based on spectral theory [4], frequently yields better per-
formance comparing to the other CAs, for example, K-means
algorithm [5].

Much effort has been devoted for developing novel SCAs
in recent years. There are some classical SCAs, e.g., the
Ng-Jordan-Weiss algorithm (NJW) [6] proposed by Ng et al.
In NJW, optimal eigenvectors are selected based on K eigen-
vectors with largest eigenvalues of Laplacian matrix to reflect
the responding data distribution between raw data original
distribution and its feature space. Elhamifar and Vidal pro-
posed the sparse subspace clustering algorithm [7] to cluster
the data points that located in the low-dimensional subspaces.
Fowlkeset et al. proposed theNyström algorithm (NJWN) [8]
which is based on the NJW algorithm. It can effectively

reduce the complexity of SCA. But NJWN algorithm relies
heavily on the selection of the initial points. Zhao et al.
developed a fuzzy similarity measure for SCA [9], by uti-
lizing the partition matrix, which is obtained by the fuzzy
c-means clustering algorithm. It is quite effective and stable,
but the space complexity of this algorithm is relatively high.
Wang et al. designed an ascertainable clustering number algo-
rithm using SCA [10]. It can automatically determine the suit-
able clusters number, but the proposed algorithm is sensitive
to its parameters. Chen and Cai [11] proposed the landmark-
based spectral clustering algorithm. This proposed algorithm
selects some representative data points as the landmarks and
represents the original data points as the linear combinations
of these landmarks. Graph-based relaxed clustering, as one
of the SCAs, is sensitive to the parameters of the adopted
similarity measure. In order to overcome this shortcoming,
Qian et al. proposed the fast graph-based relaxed clustering
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algorithm [12] based on the constrained GRC developed by
using the core-set-based minimal enclosing ball approxima-
tion. Xia et al. proposed the robust multi-view spectral clus-
tering algorithm [13], which handles the noise points in the
multi-view data set and constructs the transition probability
matrix via sparse decomposition. Tremblay et al. [14] pro-
posed a compressive spectral clustering algorithm. It speeds
up the step of selecting eigenvectors and running K-means.
However, the clustering effect of this algorithm is disap-
pointing when processing multiple-scale data sets. Moreover,
Passalis and Tefas [15] proposed a spectral bag-of-features
clustering algorithm. It views the histogram space as an inter-
mediate space between the feature and the spectral space. But
it needs to manually determine the number of clusters as well.

Generally, although a number of improved versions of
SCAs have been proposed, there are still several major chal-
lenges for these SCAs as follows.
• Multi-scale data sets are quite common in real appli-
cations, which usually consist of sparse clusters and
dense clusters. For most SCAs, it is quite challenging to
construct an appropriate similarity matrix to reflect the
distribution of the multi-scale data set.

• Most SCAs need to manually determine the number of
clusters, which may lead to bad clustering results in real
applications.

• Currently, most SCAs choose eigenvectors purely
depending on the eigenvalues of Laplacian matrix
which, however, may not reflect the actual data distri-
bution.

• Many SCAs are sensitive to the predefined parameters,
which may lead to overfitting, and thus decrease their
efficiency.

In order to handle these raised problems, in this paper,
we propose a novel SCA based on DNN with optimal eigen-
vector and automatic cluster number determination, which is
called DOE-AND-SCA. Firstly, we design a novel similarity
function based on DNN for multi-scale data; Then, the clus-
ter centers are automatically determined by constructing a
normal distribution function for density-minimum distance;
Next, the optimal eigenvectors are selected according to
eigenvalues and Laplace scores; Finally, the optimal density
difference threshold and interval number, which are two main
parameters in DOE-AND-SCA, are self-adaptive.

The rest in this paper is organized as follows. In Sec. II,
we introduce the previous works related to the SCA.
In Sec. III, we describe our DOE-AND-SCA in detail.
In Sec.IV, we experimentally evaluate the performance of the
DOE-AND-SCA on several artificial data sets. We then apply
the DOE-AND-SCA on several real data sets in Sec. V, and
finally conclude this paper in Sec. VI.

II. RELATED WORKS
Given a set of n points x1, x2, · · · , xn ∈ Rm, SCA first
constructs an undirected graph according to its similarity
matrix S = (Sij)ni,j=1, where Sij > 0 is the similarity between
xi and xj. The degree matrix D is a diagonal matrix, and its

diagonal elements is represented by Dii =
∑

j Sij. Let L =
D−1/2SD−1/2. Then, SCA selects the top K (clusters number
K ) eigenvectors based on the related eigenvalues. Finally,
the K-means algorithm is applied to obtain the clustering
result according to the selected eigenvectors. Although SCA
work well when processing complex data sets, there are still
some problems with it.

A. HANDLING MULTI-SCALE DATA SETS
Compared with the traditional CAs, SCA can better handle
the data sets of complex shapes. It does not require estimat-
ing an explicit model of data distribution, but only needs
a spectral analysis of point-to-point similarities. However,
traditional SCAs may still be ineffective when clustering
multi-scale data set.

In order to better handle multi-scale data sets, many SCAs
optimized the similarity matrix. Yang et al. proposed a den-
sity sensitive spectral clustering algorithm [16], which can
squeeze the distances in high density regions and widen the
distances in low density regions. Zhang et al. proposed a
SCA with local density adaptive similarity [17], which uses
point-to-point local density difference to scale the Gaus-
sian similarity function. The proposed similarity measure
has effect of enlarging intra-cluster similarity and reducing
inter-cluster similarity. Beauchemin [18] proposed a density-
based similarity matrix construction for SCA. The idea of
defining similarity from nonparametric density estimator was
discussed in [19], where a link between graph-cut and kernel
density estimation was established.

Although these SCAs have optimized the similarity matrix
in various ways, the authors often neglect the division of
boundary points between clusters in multi-scale data set.

B. DETERMINING THE NUMBER OF CLUSTERS
How to determine a suitable number of clusters is a common
problem for almost all CAs, certainly including SCAs. The
number of clusters is manually chosen for many SCAs, but
there are also several approaches to automatically determine
the cluster number.

Wang [20] proposed a novel SCA, which is determined the
number of clusters from the slope difference distribution of
the data set. This proposed method is composed of two parts:
computation of the slope difference distribution from the data
distribution and selection of the peaks of the slope distribution
as the cluster centers.Manor and Perona proposed a SCA [21]
that automatically computed the number of clusters by mini-
mizing the cost of aligning a set of eigenvectors with a canon-
ical coordinate system.Mur et al. proposed the spectral global
silhouette algorithm [22]. GS uses SCA together with the Sil-
houette Validity index [23] and the concept of local scaling,
which allows finding the number of clusters automatically.
Wacquet et al. [24] proposed a new K-way semi-supervised
spectral clustering method. The authors used a criterion
based on an outlier number minimization to automatically
determine the number of clusters. Borjigin et al. proposed
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FIGURE 1. The overall framework of the DOE-AND-SCA algorithm.

a non-unique cluster number determination methods in
SCA [25]. This algorithm utilized SCA to cluster data set for
an initial the number of clusters K at first. Then, the standard,
which is the ratio of the multiway normalized cut criterion of
the obtained clusters and the sum of the leading eigenvalues
of the stochastic transitionmatrix, is chosen to decidewhether
K is the optimal clusters number.

Most SCAs tried to design evaluation criteria to deter-
mine the number of clusters by iteration, which may largely
increase the time complexity of the algorithms.

C. SELECTING EIGENVECTORS
SCAs utilize the eigenvectors of the Laplacian matrix to clus-
ter data set. NJW algorithm is one of the most popular SCAs.
For a K clustering problem, NJW algorithm always partitions
data using the K eigenvectors, which is selected according
to the eigenvalues of the Laplacian matrix. Although the
spectral relaxation solution of normalized cut criteria lies in
the subspace spanned by these eigenvectors [26], it is not
guaranteed that this subspacematches the structure of the data
well.

Xiang and Gong [27] were the first to utilize eigenvec-
tors selection to improve the clustering effect of SCA. The
proposed algorithm firstly finds the Kk eigenvectors with the
largest eigenvalues and the relevance of each eigenvector is
estimated according to how well it can partition the data
points. Eventually it preserves all the relevant eigenvectors.
Jiang and Ren [28] proposed a novel eigenvector evaluation
criterion based on the perturbation analysis. To evaluate the
importance of a eigenvector, the authors perturbed the value
of this eigenvector by introducing a perturbation factor to
it for all the data points. In this proposed algorithm, if a
small perturbation of one eigenvector causes a great distur-
bance of all the eigenvectors, this eigenvector is important
for SCA. Hosseini and Azar proposed a novel strategy [29]
of mitigating the undesired properties of high dimensionality
to develop SCA. The proposed algorithm focused on intro-
ducing an objective function based on three measurement
functions which evaluated the ability of each eigenvector in
data set, i.e., the compactness of clusters, the interval between
clusters, and the stability of clustering to recognize the best
using eigenvectors. Zhao et al. [30] proposed an eigenvector

selection method based on entropy ranking for SCA. In the
proposed algorithm, according to the importance of eigenvec-
tors on clustering, all the eigenvectors are ranked at first. And
then a suitable eigenvector combination is obtained from the
ranking list.

Similarly, these SCAs used the iterative way to determine
the eigenvectors based on the evaluation index, and thus the
time complexity is relatively high. In order to select the
eigenvectors more quickly, we should evaluate how much
information can be provided about each eigenvector.

D. PARAMETER DEPENDENCY
The clustering results of many SCAs are particularly depen-
dent on the selection of parameters.

Fowlkeset et al. proposed an algorithm [8] which substan-
tially reduces the computational requirements of grouping
algorithms based on SCA. It allows one to extrapolate the
complete grouping solution using only a small number data
points. But this algorithm relies heavily on the selection of
the initial sample points, and its clustering result is unstable.
Nguyen et al. proposed an automatic unsupervised spike
sorting method using the landmark-based spectral cluster-
ing algorithm (LSC) [31], which is based on the locality
preserving projection technique that utilize to extract fea-
tures. Before the LSC method can be performed, Gap statis-
tics [32] is used to determine the number of clusters. But
the LSC algorithm is sensitive to the parameter, which is the
number of landmarks. Arias-Castro et al. [33] proposed a
SCA based on the PCA method. After performing the PCA
method [34] in selected neighborhoods, this algorithm builds
a nearest-neighbor graphweighted according to a discrepancy
between the principal subspaces, and then applies SCA. But
it has many parameters that need to be determined manu-
ally, e.g., the neighborhood size and the projection scale.
Tremblay et al. proposed a novel SCA [35] that avoids the
computational bottleneck of extracting the Laplacian’s eigen-
vectors. However, the impact of the error of the polynomial
approximation on the algorithm is largely unknown.

III. DOE-AND-SCA ALGORITHM
In order to handle the four problems that many SCAs
are confronted with, we proposed the DOE-AND-SCA
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algorithm, with the overall framework shown in FIGURE 1.
The main contributions of our method include the following
four aspects:
• For multi-scale data sets, those data points at the bound-
aries of different clusters may have relatively high sim-
ilarity of traditional metrics, which may lead to bad
clustering results. We thus propose a novel similarity
metric based on DNN, to reduce the similarity between
the boundary points with large density difference, so as
to better reflect the actual data distribution.

• We design a mechanism to automatically determine the
number of clusters and the cluster centers. Based on the
density and minimum distance distribution of the data
points, we first identify the singular points by a normal
fitting, and then filter the singular points according to
certain conditions. The remaining singular points are set
to cluster centers, and thus the number of clusters is also
automatically determined.

• We choose the optimal eigenvectors based on the global
and local features of the data set, to better reflect the
data structure. In particular, the principal eigenvectors
are chosen according to the eigenvalues to reflect the
global data feature, while the required non-principal
eigenvectors are chosen from the rest according to the
Laplace scores to reflect the local data feature.

• We design a mechanism to make the two main parame-
ters, including the optimal density difference threshold
and the number of intervals, self-adaptive.

A. DNN BASED SIMILARITY METRIC
Typically, a multi-scale data set is of quite different distribu-
tion densities in different clusters. Most SCAs don’t seriously
consider the division of the boundary points of clusters, it is
difficult for them to achieve satisfied clustering results on
multi-scale data sets.

FIGURE 2. Examples of multi-scale data sets.

Here we give an illustration to show how the similarity
metric based on DNN works. FIGURE 2 shows two multi-
scale data sets, both consisting of a sparse cluster on the right
and a dense cluster on the left. The data points a, b, c and d
are the four boundary points.

Traditionally, the Gaussian similarity function of SCA is
defined as

Sij = exp
[
−d2(i, j)
2σ 2

]
, (1)

where d(i, j) represents the distance between data points i and
j, and σ is the scaling parameter.

In FIGURE 2 (a), assuming d(a, b) = d(a, c), based on
Eq. (1), we will have Sab = Sac. That is, the similarity

between data points a and b is equal to the similarity between
data points a and c. In fact, for any data point, the similarity
with the data point in same cluster is higher than the similarity
with the data point in different cluster. So, this is clearly
inconsistent with the fact that a and c belong to the same clus-
ter while a and b belong to different clusters. In other words,
the similarity metric defined by Eq. (1) fails to distinguish
such difference.

In order to solve this problem, Zelnik-Manor and Per-
ona proposed a self-tuning spectral clustering algorithm
(STSC) [21], where local-scale parameter, rather than global-
scale parameter, is used in the Gaussian kernel function.
The similarity matrix thus is expected to better reflect the
data structure. The Gaussian similarity function of the STSC
algorithm is defined as

Sij = exp
[
−d2(i, j)
2σiσj

]
, (2)

where σi = d(i, t) represents the distance from the data point
i to its t-th nearest-neighbor.

According to the definition of the local-scale parameter,
we can find that σc > σb > 0 and σaσc > σaσb > 0
in FIGURE 2 (a). Then, based on Eq. (2), we can find that
Sab < Sac, consistent with the fact here.
In FIGURE 2 (b), assuming d(d, b) = d(d, a), based on

the definition of the local-scale parameter, we can find that
σa > σb > 0 and σaσd > σbσd > 0. Thus, according to
Eq. (2), we can find the similarity Sad between a and d is
larger than the similarity Sbd between b and d , which however
is inconsistent with the fact that the similarity Sbd between b
and d is larger than the similarity Sad between a and d .

In other words, although the similarity metric defined by
Eq. (2) seems better than that defined by Eq. (1), it could
still be further improved. We thus propose a novel similarity
metric based on DNN.
Definition 1: For each data i, its density is defined as

ρi =
∑
j

f (d(i, j)), (3)

f (x) =

{
1 x ∈ SD
0 x /∈ SD

(4)

where the set SD is composed of the npercent smallest values in
the distance matrix, percent is the ratio of the average density
of the data points.

By observing FIGURE 2, we can find the data points a and
c should be grouped into the same cluster because a and c are
two boundary points with similar density. Since the density
difference between data points has an impact on the similarity
between them, we propose a novel similarity metric based on
DNN.
Definition 2: The DNN set Ti for each point i is defined

Ti = {j ∈ Ni|d(i, j) < min
k∈Gi

(d(k, i))}, (5)

Gi = {j ∈ Ni||ρi − ρj| > θ}, (6)
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where Ni is the set, which is composed of initial nearest-
neighbor for the data point i, θ is the density difference
threshold.

Thus, the proposed similarity function is defined as

Sij =

exp
[

−d2(i, j)

2
(
max{σ̄i, σ̄j}

)2
]

j ∈ Ti

0 j /∈ Ti

(7)

σ̄i =
∑
j∈Ti

d(i, j)
ti

(8)

where ti is the number of data points in the set Ti. The
local-scale parameter of each data point, defined in Eq. (8),
is determined by the average distance with its DNNs. The
maximum local-scale parameter for data points i and j is
represented by max{σ̄i, σ̄j}.
At this time, as we can see in FIGURE 2, b and d are

located in dense clusters, while a and c are located in sparse
clusters. Assuming that |ρa − ρb| > θ , |ρa − ρd | > θ ,
|ρa − ρc| < θ , and |ρd − ρb| < θ , Based on the definition
of DNN set, we can conclude that a /∈ Tb, a /∈ Td , c ∈ Ta,
and b ∈ Td . Therefore, according to Eqs. (7) and (8), we can
get Sac > Sab = 0 and Sbd > Sad = 0, and these results are
consistent with the fact.

Another problem of SCAs is that the authors always store
the whole similarity matrix, leading to relatively high space
complexity. In this paper, we construct a sparse similarity
matrix to solve this problem.

In particular, we only consider those significant relation-
ships between DNNs. Three ways are adopted to shrink the
storage space. First, the whole data sampling space is divided
into multiple intervals. Only the distances between the data
points in each interval and all the data points are calculated in
each iteration. Second, for each data point, only its similar-
ities with the DNNs will be stored instead of its similarities
with all the rest data points in the same interval. Third, sparse
matrix is adopted to keep all similarities. According to the
similarity metric based on DNN and all interval sparse dis-
tance matrices, we can get the sparse similarity matrix based
on DNN. Thus, the space complexity of the sparse similarity
matrix based on DNN isO(nb), where n is the number of data
points and b is the number of intervals.

B. AUTOMATIC CLUSTER NUMBER DETERMINATION
Fast density clustering algorithm (FDC) [36], introduced by
Rodriguez and Laio, has attracted much attention for its
outstanding performance but simple operation. According
to FDC, cluster centers, general cluster members and noise
points could be distinguished through the distribution map-
ping of density and distance of the data points. As the authors
described, cluster centers have relatively larger density and
larger distance from each other, cluster centers could be
found manually in different applications. Inspired by FDC,
we propose a method to determine the cluster centers and the
number of clusters, namely automatic cluster number deter-
mination (AND). Different from FDC where the clustering

centers were observed or manually selected from density-
distance mapping, in our method, the cluster centers and
the number of clusters are automatically determined by con-
structing a normal distribution function for density-distance
mapping to figure out all the singular points.
Definition 3: For each data point i, if the densities of data

points in Ti are all smaller than itself, the data point i can
be judged as the candidate point, otherwise, namely non-
candidate point. The minimum distance δi of each candidate
point i is defined as the minimum distance with the data point
that has higher density.

δi =

{
min{Dh(i)} ρi 6= max(ρ)
max(δ) ρi = max(ρ),

(9)

whereDh(i) is the set of distances between data point i and the
data points of higher density in Ti, max(ρ) is the maximum
density in data set, and max(δ) is the maximum minimum
distance of all the data points. The minimum distance of each
non-candidate point i is defined as

δi = min{Dn(i)}, (10)

where Dn(i) is the set of distances between i and its DNNs of
higher density.

In order to determine the cluster centers more accurately,
we further define a variable for each data point that con-
siders both the density and the minimum distance of the
data points. For each data point i, according to definitions
Eqs. (10) and (9), we define γi as:

γi = ρi × δi. (11)

As shown in FIGURE 3, there are corresponding relation-
ships among data original distribution, ρ − δ distribution,
and density distribution of γ for Iris data set. In FIGURE 3,
cluster centers are represented as A1, A2, and A3. They have
relatively larger ρ, δ and γ values. The rest data points have
smaller ρ or δ values. The curve of the density distribution of
γ is fitted and it is found that the fitting curve of the density
distribution of γ is similar to a normal distribution curve.
The confidence interval can be easily determined according
to the normal fit curve, and use this confidence interval to find
singular points. As shown in FIGURE 3(c), it is obvious that
these cluster centers are all singular points.

Suppose γ follows a Gauss distribution, with its mathemat-
ical expectation denoted byµ and the variance denoted by σ 2.
First, we calculate the sample mean x̄ and sample variance
S̄, then we can get µ and σ 2 according to the principle of
moment estimation.

µ = x̄, σ 2
=
N − 1
N

S̄. (12)

However, when we analysis the density distribution of γ ,
we find that all the values of γ are non-negative, indicating
that the density distribution of γ is not strictly normal distri-
bution. Therefore, to accurately estimate the values of µ and
δ, we need to compensate for the value of γ in the negative
half axis based on symmetry.

20768 VOLUME 6, 2018



J. Chen et al.: DOE-AND-SCA: Novel SCA Based on DNN With Optimal Eigenvectors and Automatic Cluster Number Determination

FIGURE 3. Mapping relationships among the data original distribution, ρ − δ plane, and density distribution of γ .

Thus, we first calculate the mean of all the data points,
denoted by x̄1, and select the points in interval [0, 2x̄1]. Then,
we obtain the mean of these points, denoted by x̄2. Again,
we select the points in interval [0, 2x̄2]], and obtain the mean
of these points, denoted by x̄3, and so forth. This iteration
process is terminated until the mean value keeps relatively
stable. We denote the final mean value as x̄0. According to the
principle of symmetry, we map the data points in the interval
[x̄0,∞] to the interval [−∞, 0] by using x = x̄0

2 as the
axis of symmetry. Finally, we calculate the sample variance
S̄0 and use Eq. (12) to calculate the expectation µ and the
variance σ 2.
Now let’s determine the cluster centers. Typically, the sin-

gular points have greater γ value than normal data points. The
experiments show that the number of singular points selected
by this method is larger than the number of real clusters
in the data set. So, we need to further filter the selected
singular points. We find that some singular points have either
relatively large ρ or relatively large δ. In combination with the
physical meaning of the ρ − δ plane, it is easy to know that
these points are either close to the clustering centers or just
noises, i.e., they are not clustering centers. In other words,
the true clustering centers can be found by filtering out these
points. In reality, we first normalize the values of ρ and δ
of data points, obtaining ρ̄ and δ̄, and set the filter ratio ω.
For data point i, if 1/ω < ρ̄i/δ̄i < ω, the singular point will
be selected as a cluster center. Based on this idea, the AND
algorithm is presented in Algorithm 1.

Algorithm 1 The AND Algorithm
Input: Interval distance matrices
Output: Cluster centers
1: According to interval distance matrices, calculate ρ, δ
and γ for each point;
2: Draw ρ − δ plane and the density distribution of γ ;
3: Calculate the mean of points, denoted by x1, and select
the data points in [0, 2x1] to calculate µ and σ about γ ;
4: Make use of the normal distribution curve of γ through
µ and σ , and find the confidence interval;
5: Use this confidence interval to find cluster centers.
6: return Cluster centers

C. OPTIMAL EIGENVECTOR SELECTION
When we obtain the sparse similarity matrix S and its Lapla-
cian matrix L, a popular solver called ARPACK [37] can be
adopted to quickly get the firstK eigenvectors of L. But many
researchers pointed out that the first K eigenvectors of the
Laplacian matrix may be uninformative and inappropriate for
SCA. In order to select the eigenvectors which can better
reflect the data structure, we propose an optimal eigenvector
selection algorithm (OE): First, according to the eigenvalues,
the principal eigenvectors are selected, which can express
the global feature of the data set. Then, the required non-
principal eigenvectors are selected according to the Laplace
score method, which can reflect the local features of the data
set. The steps ofOE algorithm are presented inAlgorithm 2.

Algorithm 2 The OE Algorithm
Input: The DNN based sparse similarity metric S
Output: K eigenvectors;
1: Calculate degree matrix D and Laplacian matrix L;
2: Use ARPACK to obtain first 2K eigenvectors of L;
3: Select eigenvectors with eigenvalues of 1, its number is
p;
4: Calculate the Laplace score of the remaining eigenvec-
tors, and select the K−p eigenvectors with least Laplacian
score;
5: return K selected eigenvectors.

Since Laplacian matrix L is block diagonal, its eigenvalues
and eigenvectors are the union of the eigenvalues and eigen-
vectors of its blocks. The formula for the calculation of the
block Laplacian matrix is shown in Eq. (17), whereD denotes
the degree matrix and S ij denotes the block similarity matrix
between the data points in the ith region and in the jth region.
Assume the data set has n data points and K clusters. The
data could be divided into p (1 ≤ p ≤ K ) regions. Since the
distances between the data points in the ith (i = 1, · · · , p)
region and the data points in other regions are relatively large,
we have the block similaritymatrix S ij ≈ 0 (i 6= j). According
to Eq. (17), we have the block Laplacian matrix L ij = 0
(i 6= j). It can be observed that L ij has a strictly positive princi-
pal eigenvector with eigenvalue 1. This principal eigenvector
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can help to distinguish the data points in the ith region from
the data points in other regions [38].

S =

 S11 · · · S1n
...

. . .
...

S11 · · · Snn

 =
 S

11
· · · S1p

...
. . .

...

Sp1 · · · Spp

 (13)

D =

D11
. . .

Dnn

 (14)

L =

 L
11
· · · L1p

...
. . .

...

Lp1 · · · Lpp

 (15)

Dii =
∑
j

Sij (16)

L ij = (Dii)−
1
2 S ij(Djj)−

1
2 (17)

Moreover, we need to select the non-principal eigenvectors
which can better reflect the local features of the divided
regions. Here, Laplace score method [39] is used to select
non-principal eigenvectors. The Laplace score method can
represent the local retention ability of the non-principal
eigenvectors to the DNNs. The Laplace score of the r−th
eigenvector Lr is defined as:

Lr =

∑
i,j(fri − frj)

2Sij∑
i(fri − ur )2Dii

, (18)

where fri is the r th feature of data point i, ur is the mean value
of fri (i = 1, · · · , p), Sij is the similarity between data points i
and j. The smaller Laplace score of the eigenvector, the better
the eigenvector can preserve local structure information.

D. OPTIMAL DENSITY DIFFERENCE THRESHOLD
In DOE-AND-SCA, different density difference thresholds
will result in different DNN sets. Moreover, it also has a
certain effect on the structure of the sparse similarity matrix
and the clustering result. So, the selection of the density
difference threshold is very important.

As usual, we assume that a better clustering effect corre-
sponds to the smaller distance within the cluster while the
larger distance between clusters. As described in Eqs. (19)
and (20), the mean distance between all the data points in
each cluster and the corresponding cluster center are adopted
to represent the global average intra-cluster distance. And the
mean distance between different cluster centers is used to
represent the global average inter-cluster distance.

ζi =
∑
j∈Ci

d(j, αi)
|Ci|

(19)

η(Ci,Cj) = d(αi, αj) (20)

where αi is the clustering center of cluster Ci, and |Ci| is the
number of data points in the cluster.

We design a fitness function, as presented in Eq. (21),
to measure clustering effect.

Fitness =
2

(K − 1)K

K−1∑
i=1

K∑
j=i+1

ζi + ζj

η(Ci,Cj)
(21)

Generally, give a density difference threshold, we can cal-
culate the above fitness value. Smaller fitness value is, the
better the clustering effect for the density difference thresh-
old. Thus, we can determine the optimal density difference
threshold.

E. INTERVALS NUMBER DETERMINATION
In order to reduce the space complexity of the algorithm,
we divide the sampling space into multiple intervals. How-
ever, increasing the number of intervals will be accompa-
nied by increasing the time complexity of the algorithm.
So, we need to consider the balance between time complex-
ity and space complexity when determining the number of
intervals.

The time complexity of the step, which is related to
the number of intervals in the DOE-AND-SCA algorithm,
is O(nmb + nb log t), while the space complexity of our
algorithm is O(n2/b), where n is the number of data points,
m is the dimensionality of each data point, b is the number
of intervals, and t is the average number of nearest-neighbors
for all data points. Due to the limited storage space of the
computer, the space complexity of the DOE-AND-SCA algo-
rithm should be less than the space complexity threshold
O(Smax). Thus, we can prove that the number of intervals is
determined as:

b =


n2

Smax

(
n3 (m+ log(t))

) 1
2 > Smax(

n
m+ log(t)

) 1
2 (

n3 (m+ log(t))
) 1
2 ≤ Smax

(22)

Proof: Denoting by Space = nmb + nb log t and Time =
n2/b, we define the mixed complexity functionMcf as:

Mcf = Space + Time = nmb+ nb log(t)+
n2

b
(23)

Then, the second-order partial mixed derivative of Mcf with
respect to b can be calculated by

∂2Mcf

∂b2
= 2

n2

b3
(24)

Since ∂2Mcf

∂b2
> 0, the mixed complexity O(Smax), which

is composed of the time complexity Time and the space
complexity Space, is minimal when the number of intervals

is b = bbest =
(

n
m+log(t)

) 1
2
. Note that, if bbest ≥ n2

Smax
,

the space complexity of our algorithm will be lower than the
space complexity threshold O(Smax) when we set the number
of intervals b = bbest . This makes the mixed complexity
Mcf minimum. If bbest < n2

Smax
, we will set the number

of intervals b = n2
Smax

to ensure that the space complexity
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TABLE 1. The time complexities of various algorithms.

Space of our algorithm is lower than the space complexity
threshold O(Smax).

F. COMPLEXITY ANALYSIS
In this section, we provide a complexity analysis of DOE-
AND-SCA algorithm. Suppose we randomly select n data
points, each data has t DNNs on average, the number of
intervals is b, the number of clusters is K and the number
of iterations to select the optimal density difference is iter .
Let’s investigate each step.

1) To construct the sparse similarity matrix, we need to
find the DNNs of each point. Thus, the time complexity
of this step is O(nmb+ nb log t).

2) The calculation of ρ and δ takes up most time com-
plexity of the AND algorithm, and its time complexity
is O(nt).

3) The time complexity of selecting eigenvectors is com-
posed of using ARPACK to obtain the first 2K eigen-
vectors of L and calculating the Laplace score. Thus,
the time complexity of this step is O(27K 3

+ 6nK 2).
4) The time complexity of selecting the optimal density

difference is related to the number of iterations iter .
The space complexity of the DOE-AND-SCA algorithm

lies mainly on the space complexity required to calculate the
interval distance matrix. So, its space complexity is O(nb).

The steps of the DOE-AND-SCA algorithm is listed in
Algorithm 3. By comparison, the time complexities and the
space complexities of various algorithms are presented in
TABLE 1 and TABLE 2, respectively.

Algorithm 3 The DOE-AND-SCA
Input: Input data set
Output: Output clustering result
Determine the number of intervals;
for iter do

Calculate the sparse similarity matrix based on DNNs;
Call the AND algorithm to determine the number of

clusters;
Call the OE algorithm to select the appropriate eigen-

vectors;
Apply K-means to get the clusters;
Calculate the fitness value and update the density dif-

ference threshold;
return The clustering results with lowest Fitness value.

TABLE 2. The space complexities of various algorithms.

TABLE 3. The summary of real-world data sets.

TABLE 4. The summary of artificial multi-scale data sets.

FIGURE 4. The clustering results of the DOE-AND-SCA on: (a) Aggregation,
(b) Jain, (c) Spiral, and (d) Flame.

IV. EXPERIMENTS
The operating system for experiments is Windows 7, the inte-
grated development environment is Matlab2012a, CPU is
Intel Core I5 2.5GHz and the memory is 4GB. The maximum
number of elements allowed in a matrix on this version of
MATLAB is 2.1475 × 109. So, we can set the space com-
plexity threshold O(Smax) = 109.
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FIGURE 5. The clustering results of the D-AND-SCA algorithm on: (a) ZM3, (b) ZM5, and (c) ZM9.

FIGURE 6. The clustering results of the STSC algorithm on: (a) ZM3, (b) ZM5, and (c) ZM9.

Simulations are carried out on 11 real-world data sets from
UCI database and their learning libraries. TABLE 3 pro-
vides a summary description about these real-world data sets.
TABLE 4 shows three 2-D multi-scale data sets introduced in
Zelnik-Manor.1 These artificial data sets are challenging and
selected here due to their multiple scales.
Clustering accuracy and clustering purity are adopted

to evaluate the algorithm’s performance. Clustering accu-
racy [40] is defined as

Accuracy =

∑K
i=1 ai
n
× 100 (25)

where ai is the number of data points which have been
correctly classified to cluster Ci, K is the number of clusters,
n is the number of total data points; while the clustering purity
is defined as

Purity =
K∑
i=1

|Pdi |

K |Pi|
× 100 (26)

where |Pdi | is the number of data points which have been
correctly classified, |Pi| represents the total number of data
points in cluster i.
Several two-dimensional artificial data sets, including

Aggregation, Jain, Spiral and Flame, are used to demonstrate
the performance of our DOE-AND-SCA algorithm. We find

1http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

that, indeed, DOE-AND-SCA can achieve expected cluster-
ing results for the data sets of various shapes, as shown in
FIGURE 4. Moreover, since several new operations were
added in the DOE-AND-SCA algorithm, we would like to
investigate their contributions one by one by simulations.

A. NUMERICAL ANALYSIS OF SIMILARITY FUNCTION
Here, we use the multi-scale data sets ZM3, ZM5, ZM9.
Comparing the clustering results obtained by D-AND-SCA
(the simplified version of DOE-AND-SCA, which only select
the K eigenvectors with the largest eigenvalues), STSC, and
SCA, as shown in FIGUREs 5-7, we find that D-AND-SCA
with similarity function based on the DNNs can achieve
relatively better clustering results.

B. NUMERICAL ANALYSIS OF AND
Automatic cluster number determination plays an important
role in DOE-AND-SCA. Here, we will testify how it works.
FIGUREs 8-10 show the overall process to determine the
number of clusters. We set filter ratio ω = 3 here, because
through the analysis of some experimental data sets, we find
when ω = 3, we can obtain the true cluster centers with
higher probability. The specific experimental steps are:
• First, plot the ρ− δ plane and the density distribution of
γ , as shown in FIGUREs 8 and 9.

• Second, obtain the normal distribution curves fitted
according to the density distribution of γ and get the
confidence interval, as shown in FIGURE 10.
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FIGURE 7. The clustering results of the SCA algorithm on:(a) ZM3, (b) ZM5, and (c) ZM9.

FIGURE 8. The ρ − δ planes for: (a) Aggregation, (b) Flame, and (c) Seeds.

FIGURE 9. The density distribution of γ for: (a) Aggregation, (b) Flame, and (c) Seeds.

FIGURE 10. The normal distribution curve about γ for: (a) Aggregation, (b) Flame, and (c) Seeds.

• Third, find out the data points falling outside the con-
fidence interval as the singular points in the density
distribution of γ .

• Finally, use the screening method to filter
out selected singular points, and get the cluster
centers.
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TABLE 5. Comparison of the clustering accuracy of various algorithm for different data sets (%).

TABLE 6. Comparison of the clustering purity of various algorithm for different data sets (%).

In FIGUREs 8-10, the green lines are used to filter the
ineligible singular; the red dotted lines represent the confi-
dence intervals; the blue data points are the ineligible singular
points; and the red data points are the final cluster centers.

C. NUMERICAL ANALYSIS OF OE
In order to investigate the contribution of OE, we com-
pare the clustering results of various algorithms, including
D-AND-SCA, DOE-AND-SCA, STSC algorithm, OE-STSC
algorithm (the STSC with optimal eigenvector selection),
NJWN algorithm, OE-NJWN algorithm (the NJWN with
optimal eigenvector selection), as shown in FIGURE 11.

FIGURE 11. Comparison of the three algorithms with and without the OE
operation on clustering accuracies.

We can find that, in most cases, the algorithms with OE
operation have higher clustering accuracy. This is because the

eigenvectors selected by the OE algorithm can better capture
the structure of the data set.

D. NUMERICAL ANALYSIS OF OPTIMAL DENSITY
DIFFERENCE THRESHOLD
For a given data set, the density difference between nearest-
neighbors is relatively small, as described in [3] and [14].
FIGURE 12 shows the relationships between fitness val-
ues, clustering accuracy, and density difference threshold.
General, the fitness values and the clustering accuracy have
the opposite trend with density difference threshold, and the
clustering accuracy is maximized when the fitness function
takes the minimum value.

E. PARAMETER SENSITIVITY ANALYSIS
Here, we present how the number of data points in the initial
nearest-neighbor set affect the algorithm performance. Here,
the number of data points in the initial nearest-neighbor set is
the maximum number of data point in the DNN set for each
data point. The results are shown in FIGURE 13. We find
that the clustering accuracy increases first and then decreases
with the number of the initial nearest-neighbors for all the
four considered data sets. This is reasonable because too
small number of the initial nearest-neighbors may cause that
the DNN set could not fully express its local characteris-
tics, while too large number of the initial nearest-neighbors
may let DNN set contain many data originally belong to
other clusters, both of which may lead to poor clustering
accuracy.
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FIGURE 12. The relationships between fitness values, clustering accuracy, and density difference threshold for: (a) Aggregation, (b) Breast Cancer,
(c) Flame, (d) Seeds, (e) Wine, and (f) Iris.

FIGURE 13. The relationship between the clustering accuracy and the
number of initial nearest-neighbors.

FIGURE 14. Examples of handwritten image.

FIGURE 15. Examples of Frontal face image.

F. PERFORMANCE COMPARISONS OF SCAS
In this section, we focus on the following data sets: PenDig-
its, Aggregation, BreastCancer, Jain, Dermatology, Spiral,
Haberman, Flame, Seeds, Wine, and Iris. DOE-AND-SCA
is compared with SCA, NJWN, STSC and FDC in clustering
accuracy and clustering purity, as shown in the TABLE 5 and
the TABLE 6.

TABLE 5 gives the simulation results carried out on eleven
data sets about the clustering accuracy. Clustering accu-
racies of DOE-AND-SCA are higher than those of other
algorithms, i.e., DOE-AND-SCA, SCA, NJWN, STSC and
FDC give average clustering accuracy of 96.43%, 85.05%,
81.92%, 90.94% and 92.82% when dealing with these data
sets. DOE-AND-SCA is more 14.51% and 3.61% accurate
than the NJWN and FDC algorithm, respectively. As shown
in TABLE 6, there are the experimental results carried out
on eleven data sets about the clustering purity. The average
clustering purity of these comparison algorithms are 96.47%,
86.56%, 83.31%, 92.02% and 93.51%. DOE-AND-SCA is
more 13.16% and 2.96% accurate than the NJWN and FDC
algorithm, respectively.

The reason that our algorithm has better clustering
effect is as follows: (1) Similarity function based on DNN
can more rationally divide the boundary points. (2) The
eigenvectors selected by the optimal eigenvector selec-
tion algorithm can better express the data structure of the
data set.

V. APPLICATIONS
Supervised methods have gained great success in image
recognition area, especially CNN and its improved versions.
In practical applications, however, a large number of images
are created by minutes, and most of them are not labelled.
How to identify those images without labels? Unsupervised
method such as clustering may provide an efficient solu-
tion. Here, we use our DOE-AND-SCA to cluster images to
improve recognition rate.

A. EXPERIMENTAL DATA SET
MNIST data set is consisted of 70000 number handwrit-
ing images. Randomly select 100 handwritten pictures for
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FIGURE 16. Clustering process of MNIST data set: (a) ρ − δ decision graph (b) Density distribution of γ (c) Normal distribution curves (d) Clustering result
of MNIST data set (The same color images belong to the same cluster, the black image represents misplaced images).

each number to form 1000 handwritten images data set.
The selected MNIST image for each number is shown in
FIGURE 14.

B. IMAGE RECOGNITION BASED ON DOE-AND-SCA
Since the image similarity cannot be measured by the
ordinary distance, SSIM [41] is used for calculating the
relative distance between images. The specific steps for
image recognition based on DOE-AND-SCA are shown
as Algorithm 4.

Algorithm 4 Image Recognition Based on DOE-AND-SCA
Input: Input image data set
Output: Output clustering result
Determine the number of intervals;
for iter do

Calculate interval sparse distance matrix based on
SSIM algorithm;

Calculate the sparse similarity matrix based on DNNs;
Call the AND algorithm to determine the number of

clusters;
Use the optimal eigenvector selection algorithm to

select appropriate eigenvectors;
Apply K-means to get the clusters;
Calculate the Fitness value and update density differ-

ence threshold;
return The clustering results with lowest Fitness value.

C. CLUSTERING RESULT ANALYSIS
The experimental results of those main steps for MNIST data
set and Frontal face data set clustering based on DOE-AND-
SCA are shown in FIGURE 16 and FIGURE 17, respectively.

Frontal face data set is collected by Markus Weber at
California Institute of Technology. We select 10 people, with
each having 15 face images.

TABLE 7. Comparison of the clustering accuracy of various algorithms on
MNIST data set and Frontal face data set (%).

TABLE 8. Comparison of the clustering purity of various algorithms on
MNIST data set and Frontal face data set (%).

As shown in FIGURE 16 (a)-(c), ten cluster centers are
automatically selected by DOE-AND-SCA. And the exper-
imental results show that the ten clustering centers repre-
sent ten images of different numbers, respectively, which
testify that DOE-AND-SCA can accurately get the num-
ber of clusters automatically. FIGURE 16 (d) shows the
experimental results of DOE-AND-SCA for MNIST data
set. The clustering accuracy of DOE-AND-SCA is 92.2%
and clustering purity is 91.4%, better than the other meth-
ods, as presented in the TABLE 7 and the TABLE 8,
respectively.

As shown in FIGUREs 17 (a)-(c), ten clusters are also
automatically selected by DOE-AND-SCA for the Frontal
face data set. And the experimental results show that the
ten clustering centers represent ten images of different
people, respectively. This time, the clustering accuracy of
DOE-AND-SCA is 92% and clustering purity is 92.6%, also
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FIGURE 17. Clustering process of Frontal data set: (a) ρ − δ decision graph (b) Density distribution of γ (c) Normal distribution curves
(d) Clustering result of Frontal data set (The same color images belong to the same cluster, the gray image represents misplaced images).

better than the other methods, as presented in the TABLE 7
and the TABLE 8, respectively.

VI. CONCLUSION
Most SCAs are confronted with several challenges, such as
multi-scale data, the determination of the number of clusters,
appropriate selection of eigenvectors, and parameter sensi-
bility for practical applications. In this paper, we put for-
ward three mechanisms to solve these problems and proposed
a novel clustering method, namely DOE-AND-SCA. This
method can handle multi-scale data, determine the number
of clusters automatically, select optimal eigenvectors, and
adjust parameters self-adaptively. Abundant of simulations
and application experiments are carried out to testify its
performances. The results show that our DOE-AND-SCA
behaves better, by comparing with other excellent SCAs.

However, the DOE-AND-SCA still has some limitations,
for example, the time complexity of the DOE-AND-SCA is
relatively high. In order to reduce the time complexity of the
DOE-AND-SCA, we will consider reducing the time com-
plexity of the algorithm from following two parts: determin-
ing the cluster centers and selecting the optimal eigenvectors.
And we will apply the proposed algorithm to other real-world
data sets.
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