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ABSTRACT Cyber-physical-social system (CPSS) has drawn tremendous attention in industrial applications
such as industrial Internet of Things (IIoT). As the fundamental component of IIoT, bearings play an
increasingly important role in CPSS for IIoT. Better understanding of bearing working conditions and
degradation patterns so as to more accurately predict the remaining useful life (RUL), becomes an urgent
demand for industrial prognostics in IIoT. The data-driven approach has indicated good potential, but the
prediction accuracy is still not satisfactory. This paper proposes a new method for the prediction of bearing
RUL based on deep convolution neural network (CNN). A new feature extraction method is presented
to obtain the eigenvector, named the spectrum-principal-energy-vector. The eigenvector is suitable for
deep CNN. In the prediction phase, we propose a smoothing method to deal with the discontinuity problem
found in the prediction results. To the best of our knowledge, we are the first to propose such a smoothing
method for bearing RUL prediction. Experiments show that our method can significantly improve the
prediction accuracy of bearing RUL.

INDEX TERMS Cyber-physical-social system, industrial big data, deep learning, RUL prediction, deep
convolution neural network.

I. INTRODUCTION
Cyber-Physical-Social System (CPSS) is considered as a
newly emerged paradigm encompassing the cyber world,
physical world and social world [1]. The Internet of
Things (IoT), bridging the physical world and cyber world,
has become an essential part of CPSS, providing the sup-
port for sensing, monitoring, and interpreting the environ-
ment. As a typical application of IoT in industry, Industrial
Internet of Things (IIoT) has drawn much attention recently
and provides new research opportunities for CPSS in indus-
try. As the fundamental component of most industrial rota-
tional equipment, bearings play an increasingly important
role in IIoT. The health conditions of bearings have major
impacts on the reliability and the operation accuracy of CPSS
for IIOT: bearing failures could seriously reduce the pro-
duction precision and even result in the equipment failure.
Due to many complex factors such as material features and
working environment, same types of bearings by the same
manufacturer, working in same type of equipment, could have
very different life expectancy and degradation pattern [2].

Many different factors have different impacts on the remain-
ing useful life (RUL) of bearings [3]. Unfortunately, many of
these factors cannot be quantitatively measured and analyzed,
which makes the prediction of bearing RUL still a signifi-
cantly challenging task [4]. How to improve the accuracy in
the prediction of bearing RUL becomes an urgent problem
and has attracted increasing amount of attention among prog-
nostics researchers.

Recently, most proposed methods for the prediction of
bearings RUL mainly fall into two categories: model-based
approach and data-driven approach [5]. We observe that
methods in the model-based approach are difficult to fur-
ther improve the prediction accuracy (detailed discussions in
Section II). On the other hand, in the data-driven approach,
increasing amount of relevant data, such as temperature, load,
speed, and bearing vibration amplitude, are being captured
while the bearing is working [6]. The collected data can then
be analyzed for the prediction of RUL. The core idea of data-
driven approach is to analyze the current working condition of
the bearing, with an attempt to find the relationship between
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the operating status and RUL expectancy [7]. The data on
the operating status can effectively reflect the degradation
of the bearing due to material defects and other factors.
Therefore, in the data-driven approach, we can use these
data reflecting degradation instead of directly quantifying the
material defects and many other complicated factors. In this
way, the data-driven approach becomes a more promising
approach to the RUL prediction challenge, supported by the
good results of recent proposed data-driven methods.

Due to the large amount of data, high data dimension,
high interference noise and complicated mapping relation-
ship, the traditional signal processing method and even the
traditional machine learning method cannot capture implicit
relations between different features in the bearing vibration
data set. So, the prediction accuracy is not high. Due to the
development of the deep learning technology [8], the ability
to analyze complex data is greatly improved, and the deep
learning method is increasingly used in prediction prob-
lems [9]. Deep learning technology can dig out the deeper
level of information [8], so as to prominently improve the pre-
diction accuracy. Convolution Neural Network (CNN) [10]
plays an increasingly important role in deep leaning. Com-
pared with deep neural network, CNN can use fewer parame-
ters to achieve the same functionality or precision. Therefore,
CNN is a good fit for high dimensional data, which is themost
outstanding feature of bearing RUL data.

In this paper, we use the deep CNN model to predict the
RUL of bearing. The experimental results showed that, in the
bearing RUL prediction problem, our method can get better
prediction accuracy. The contributions can be summarized as
follows:

(1) We present a new feature extraction method, namely
Spectrum-Principal-Energy-Vector, to obtain the eigenvector.
This eigenvector can represent the decay of bearing vibration
signal with the use time and is suitable for the structure of
convolution neural network.

(2) Based on the characteristics of convolutional neural
network, we propose a new prediction framework of the
remaining life of bearing.

(3) We propose a post-smoothing method to address the
discontinuity problem in prediction results. To the best of
our knowledge, we are the first to propose such a smoothing
method for the prediction of bearing RUL.

(4)We have conducted a comprehensive set of experiments
with different feature extraction methods and machine learn-
ing prediction models for the prediction of RUL, and per-
formed thorough comparisons. The experiment results show
that our new method can significantly improve the prediction
accuracy.

II. RELATED WORK
In data-driven bearing RUL prediction approach, the dispari-
ties between the different methods are mainly in two aspects:
1) feature vector, 2) prediction model.

The feature vector contains three types: time domain
features, frequency domain features, time-frequency domain

features [11]. The time domain features can characterize
the degradation of the bearing. The full life vibration signal
can be seen clearly. With the degradation of the bearing,
the amplitude is gradually increasing. However, the time
domain features are slow and fluctuating, so the life pre-
diction based on time domain features is often not good.
Frequency domain features have obvious advantages. Fre-
quency domain transformation can change complex differ-
ential relationship into a linear relationship, reducing system
complexity. At the same time, the frequency domain trans-
formation can make the signal and noise separation, which
can better suppress the noise information. However, since
the original signal is transformed into frequency domain,
the obtained frequency spectral information still has a high
dimension. So most of the methods extract the feature of the
spectrum, reducing the frequency domain feature dimension.
Most of the frequency domain information is lost by the
feature extraction of the spectrum. And this will reduce
the prediction accuracy of the bearing’s RUL predic-
tion. The time-frequency domain feature is obtained
by wavelet decomposition. Similar to the frequency
domain feature processing method, the result of wavelet
decomposition is still to be extracted, and the high-
dimensional information is reduced to low-dimensional
information.

These feature processing methods are mainly based on
the traditional machine learning algorithm, and these meth-
ods meet the characteristics of the shallow machine learn-
ing model. If the feature dimension is high, the tradi-
tional machine learning algorithm, such as support vector
machine [12], will show poor generalization ability. Thus,
lower-dimensional features are suitable for traditional
machine learning methods. The deep learning model has
a good ability to deal with high-dimensional features. But
with the traditional low-dimensional features, deep learning
model can not improve the prediction accuracy. Because the
traditional low-dimensional features loss too much informa-
tion, and the low-dimensional features become the bottleneck
of the prediction accuracy. Therefore, how to deal with the
signal to ensure that information loss as small as possible
is a key issue to improve the prediction accuracy. In this
paper, a new feature construction method is proposed for the
deep CNN.

In this paper, the method, transforming the original sig-
nal into the input features of the deep CNN, is proposed.
The features suitable for the deep CNN is obtained, which
is named as the Spectrum-Principal-Energy-Vector. After
obtaining the Spectrum-Principal-Energy-Vector, it is input
to the deep CNN. The deep CNN analyzes the input data and
obtains a series of eigenvectors. Afterwards, the deep neural
network model is used for regression prediction to obtain the
RUL of the bearing.

III. METHODOLOGY
The framework for bearing RUL prediction is shown in the
figure 1.
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FIGURE 1. Bearings RUL Prediction Framework.

In the stage of feature extraction, begin with the original
discrete vibration signal, the vibration signal is first subjected
to Fast Fourier Transform (FFT) to produce the discrete
frequency spectrum. The spectral dimension and the orig-
inal vibration signal are 2560 dimensions. After the high-
dimensional spectrum is obtained, the spectrum is divided
into 64 blocks. In the frequency band in each block, the
maximum amplitude in the frequency band is selected as
the eigenvalue of the frequency band. The 64-dimensional
Spectrum-Principal-Energy-Vector is obtained. In the stage
of CNN, for each sampling time point, taken 63 samples from
the front 63 sampling time points, the 64 Spectrum-Principal-
Energy-Vectors will be combined into a feature map, and this
feature map has the shape of (64*64). The feature map will
be put into the deep CNN, get 360-dimension vector. Finally,
in RUL Predict stage, using the 360-dimensional vector as
input, the deep neural network will get the final prediction
result.

A. FEATURE EXTRACTION
The original signal is the vibration signal of running bear-
ing in many models [14], [15]. The traditional signal fea-
tures have a large loss of information, such as the classic
time domain features, the frequency domain features, and
the time-frequency domain features. To ensure the integrity
of information, it is important to mine information from
the original data as far as possible. However, if using the
2560-dimensional vibration signal as a model input, it will
lead to a large network structure. If the time step effect was
considered, the input feature even reaches the million, and the
huge networkwill lead to training difficulties, over-fitting and
other shortcomings. In addition, the vibration signal contains
a lot of noise information, and the noise information will
seriously affect the prediction accuracy of themodel. Because
the vibration signal is difficult to separate the noise or useful
information, so the traditional filtering method may cause

the loss of key signal. But without de-noising, it will make
the forecast network spend huge capacity to resolute noise,
and it will have some impact of prediction accuracy. Time
domain information is not suitable for forecasting model
input directly. Taking the lack of time domain features into
account, this paper uses frequency domain information for
life prediction.

The vibration signal is subjected to discrete Fourier trans-
form to obtain the spectrum of the signal. The spectrum has
2560 dimensions and so as to the vibration signal. In order
to improve the prediction accuracy, this paper increases the
number of prediction steps. The features of k time points,
t − k + 1, t − k + 2, . . . , t , are predicted as the total feature
when the RUL at time t is predicted. The time step cannot
be too long. In principle, it should be less than 100, because
the total life of some bearings is between 100 to 200, too
long a time-step will lead to the scope of application limit.
The step in this paper is 64. But the structure of 2560 * 64
is clearly not suitable for deep CNN, because it will lead to
a larger network, and it will incur difficulties in the subse-
quent parameter settings. Too large input shape will lead to
a huge training model. In addition, in the 2560-dimensional
spectrum information, there are many information have low
correlation with RUL. In the frequency spectrum, the higher
the amplitude is, the higher energy distribute. Therefore,
this paper proposes the Spectrum-Principal-Energy-Vector to
optimize the 2560-dimensional frequency spectrum.

The calculation of the Spectrum-Principal-Energy-Vector
is as follows.
x(i) for i = 1, 2, . . . , n is vibration signal. FFT is used to

obtain the spectral sequence, z(t) for t = 1, 2, . . . , n.

z(t) =
N−1∑
n=0

A(n)W nk
N , k = 0, . . . ,N − 1 (1)

WN = e(−j2π/N ) (2)

Performs a modulo operation on z(t) to obtain a spectral
sequence s(j) for j = 1, 2, . . . , n. And the SPEV index,
XSPEV (k), will be calculated as:

XSPEV (k)

= max{s(64 ∗ k − 64), s(64 ∗ k − 63), . . . , s(64 ∗ k − 1)}

(3)

Where, k = 1, 2, . . . ,K , and K = 64 in this paper. s(j) is
equally divided into 64 segments. XSPEV is a 64-dimensional
column vector.

After the 64-dimensional Spectrum-Principal-Energy-
Vector is obtained, vector in this time point will combine the
63 vectors before this time point into a (64 ∗ 64) feature map.
Then the feature extraction step is completed.

B. MODEL CONSTRUCTION
1) CONVOLUTION NEURAL NETWORK
CNN is a feedforward neural network, which is composed
of several convolution layers and pooling layers. At present,
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FIGURE 2. CNN Structure.

variant CNN has been widely used in image processing. Con-
volution layer of the CNN has a good perception of the local
characteristics of the image, and it can sense the relationship
between the pixel and the surrounding pixels [16]. At the
same time, the CNN has the characteristics of weight sharing.
When the convolution window function is convoluted on
the whole feature graph, its parameters remain unchanged,
this greatly reduce the number of parameters and reducing
the difficulty of training. The pooling layer compresses the
convolution results, causing the local features to converge,
enabling the discovery of higher levels of law at further
convolution [17].

In this paper, the 64 * 64 Spectrum-Principal-Energy-
Vector feature map is the input features of the deep CNN. The
transverse texture and longitudinal texture are rich, if deep
CNN is used to solve the feature map, it can better find
the local changes in the law, which can find the relationship
between features and the RUL.

The deep convolution neural network (CNN) can extract
complex information from the feature map. According to the
results of several experiments, this paper chooses the most
suitable network structure. The network structure is depicted
in figure 2.

The CNN consists of 8 layers, which consists of three
convolution layers, three pooling layers, one flatten layer.
The network structure is [Convolution Average Pooling Con-
volution, Dropout, Average Pooling, Convolution, Dropout,
Average Pooling]. Since the original feature map contains a
lot of detail information, these details are not all necessarily
valid for bearing RUL prediction. The function of the network
is to find the details from the feature map and to filter use-
ful information from the detail information. In the forward
propagation process of the deep CNN, the feature map is
gradually blurred, but the overall information of each fea-
ture map will be gradually highlighted.The last Flatten layer
(fully connected layer) transforms the final information into
a feature vector containing 360 elements, and the eigenvector
will be used for regression prediction. Each layer uses the
ReLU activation function, and the Average Pooling template
is 2 * 2.

Rectified linear unit, ReLU, has weakened the drawback
of the gradient vanish in training and is currently widely used
in convolution networks. The expression is

XSPEV (k) = max{0, x} (4)

FIGURE 3. DNN Structure.

2) DEEP NEURAL NETWORK
The CNN model extracts high-level features from the fea-
ture map, which can reflect the change of the RUL. But,
it still need to be added the regression prediction between
the high-level characteristics and the RUL. In many classifi-
cation and regression problems, the CNN is often followed
by several layers of fully connected deep neural networks
for classification or regression prediction [9]. In the 6-layer
deep neural network, network nodes number of each layer
is [200,100,50,30,8,1] and the activation function of each
layer is the ReLU function. We followed the previous work
to design the network [9].

In this paper, deep neural network (DNN) will be used as
prediction model. The structure is depicted in figure 3.

360-Dimensional feature vector obtained by the CNN will
be fed into the DNN model , and the RUL is obtained by
neural network nonlinear regression prediction.

Another function of the fully connected network is to
calculate the prediction error in the training step, the error
is the mean square error of the output of the fully connected
network and the actual value of the RUL. Through the back
propagation of the error, the full connection deep neural net-
work and the deep convolution network layer weight update,
to achieve the network learning function.

C. SMOOTHING
The RUL predicted by the prediction network is often not
continuous, but the actual bearing RUL is often continuous.
This paper uses the forward prediction data to linearly smooth
the current forecast data to alleviate the problem of disconti-
nous predicted RUL.

The relationship between the RUL of the bearing and the
running time is linear. The linear regression method is used to
smooth the forward prediction result. At the time t, the RUL,
Rt, is predicted by the prediction model, and the RUL at ten
time-points, t − 9, t − 8, t − 7, . . . , t − 1, t, is performed a
linear regression. And the regression RUL result at time t will
be set as the final predicted value.

The smoothing has almost no impact on prediction error,
and has the advantage of the treatment obverse. When long-
termmonitoring of the bearings, the forecast output is smooth
and will not appear fluctuations in the result, and this is in line
with the real situation of the bearings RUL.
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FIGURE 4. PRONOSTIA Experimental Platform [18].

IV. EXPERIMENT AND ANALYSIS
A. DATA DESCRIPTION
The data used in this Experiments are from the IEEE
PHM2012 Predictor Challenge experiment data provided by
the FEMTO-ST Institute in France [18]. The experimen-
tal equipment is shown in Figure 4. The main role of the
equipment is to provide experimental data of rolling bearing
life. The platform mainly consists of an asynchronous motor,
a speed sensor, a temperature sensor, a pressure sensor, and a
NIDAQ data acquisition card [18].

The acceleration life test is carried out for each bearing,
and the relevant information of the whole life cycle of each
bearing is collected, which is mainly the vibration signal
in the horizontal direction (X direction) and the vibration
signal in the vertical direction (Y direction). All bearing
material, specifications, technology, etc. are identical, and
there is no initial defect in the bearing. Each bearing failures
in the different form, mainly by the material defects and the
impact of working conditions. Accelerated life degradation
experiments allows the bearing to complete the life cycle
degradation process in hours. The time interval for collecting
data is 10s, and the time of collecting data is 0.1s [18]. The
sampling frequency is 25.6KHz. There will be 2560 sampling
points for each sampling. That is, each vibration signal is
composed of 2560Y direction data and 2560Y direction data,
stored in a csv file. The following figure4 shows a bearing full
life vibration signal.

B. EXPERIMENT
1) FEATURE MAP CONSTRUCTION
Beginning with vibration signal, The FFT algorithm is used
to carry out discrete Fourier transform to obtain the frequency
spectrum. And the spectrum is depicted in Figure 5.

The original vibration signal has 2560 dimension, and
after FFT, the spectrum has 5120 dimension. Due to the
symmetry of the spectrum, and the 2560 dimension of
the spectrum can reflect all information. The spectrum
of the 2560 dimension is divided into 64 blocks, each
containing 40 dimensions of spectral information. The
maximum amplitude of each spectrum is obtained, and
the 64-dimensional Spectrum-Principal-Energy-Vector is

FIGURE 5. Frequency Spectrum.

FIGURE 6. Feature Map.

obtained. 64 time steps’ Spectrum-Principal-Energy-Vectors
are combined into a 64*64 feature map. The feature map is
depicted in Figure 6.

This feature map is the input of the deep CNN. In the
figure, the value of black part is small, which means that
the energy in the band is low and the white point represents
the highest energy. In horizontal view, the change of the
texture reflects the difference between the different frequency
bands, and in the vertical view, the change of the texture
reflects the same frequency band change between different
time points. Horizontal and vertical changes all can be used
as a basis for the prediction of the RUL. The change of the
feature map is complex and rich in texture, which is suitable
for the deep CNN.

2) MODEL PREDICTION
The CNN consists of 8 layers. The prediction model is a
6-layer deep neural network, with network parameters of
[200,100,50,30,8,1] and the activation function of each layer
is the ReLU function. The training loss function for the entire
network is ’mean squared error’ and the number of epoch
is 100.

The test set, never used in training stage, is input into a
trained network for RUL prediction, and the results are shown
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FIGURE 7. Prediction Results.

FIGURE 8. Smoothing Results.

in Figure 7. It can be seen from the figure that the prediction
results can reflect the trend of bearing degradation.

3) SMOOTHING
It can be seen from the above prediction results that the pre-
diction result is discontinuous.If the prediction results are not
smoothed, the RUL fluctuates greatly during the forecasting
process. In fact, the RUL should decrease with the use of the
bearing. But this phenomenon that the result discontinuous
in RUL prediction is common. In order to ensure that the
RUL of the bearing is reduced during the whole cycle of the
bearing, the prediction results are smoothedwith forward data
points. Bearings in test set are predicted, and the results are
in Figure 8.

The test set contains four bearings with a total mean square
error of 0.119. The results show that the method can reflect
the degradation trend of bearing performance in the RUL of
the bearing, and the method get a good accuracy.

C. COMPARISON AND ANALYSIS
The prediction method of bearing RUL mainly includes two
parts: feature extraction method and prediction model. In this
paper, a series of comparative experiments are done to verify

the validity of the feature and the validity of the model. In the
experimental part, the abscissa of each graph is the bearing
number, and the ordinate is the mean square error of the
predicted result.

1) THE VALIDITY OF THE FEATURE MAP
In this paper, we proposed a feature extraction method for
constructing the Spectrum-Principal-Energy-Vector. In order
to verify the validity of the feature, the following two groups
of experiments were done. The first group of experiments
illustrate the reason for each step of the method, and the rel-
evant comparison experiment is done to verify the rationality
of the feature extraction method. The second set of experi-
ments compare the Spectrum-Principal-Energy-Vector with
the traditional time-frequency domain features to illustrate
the effectiveness of the feature.

a: Analysis of feature extraction methods
The extraction of the Spectrum-Principal-Energy-Vector con-
sists of three steps: 1) FFT transform to obtain the signal spec-
trum information; 2) dividing the spectrum by equidistant
segmentation, every 40 discrete frequencies as one frequency
band; 3) taking the maximum value for each frequency band.

In the above process, the first step to transform the signal
to the frequency domain. The vibration signal is chaotic, and
the noise information is much [13]. Compression process will
lose the frequency information. And in the frequency domain,
it will be ensured that the low-frequency signal and noise will
be separated. In addition, the spectral amplitude information
can reflect the original vibration signal amplitude.

In the third step, the maximum value is taken for each
frequency band, because the maximum energy of the point
has the highest amplitude in the spectrum. The spectrum of
the middle frequency and low frequency band contains low
noise. So taking the maximum amplitude will not be affected
by noise too much. On the contrary, in the original vibra-
tion signal, taking the maximum value will be a huge noise
interference. In addition, between the maximum values and
mean values of the spectrum, it can be clearly seen that the
mean information makes the variation between the features
too smooth and cannot reflect the change information well.

In order to verify the Spectrum-Principal-Energy-Vector
suitable for the proposed model, this paper changes the first
and third steps of the feature extraction method compared
with Spectrum-Principal-Energy-Vector. We use two kinds
of features to compare with the Spectrum-Principal-Energy-
Vector, and use the Amplitude Mean Energy Vector extracted
from the original signal and the Spectral Mean Energy Vec-
tor. These two feature extraction methods are similar to the
Spectrum-Principal-Energy-Vector. The difference is that the
Spectral Mean Energy Vector uses the mean method when
compressing the 40-dimensional spectrum. The Amplitude
Mean Energy Vector is extracted from the original vibration
signal and is averaged using a 40-bit signal for compression.

The results are shown in the Figure 9. The following
figure shows the mean square error of the four bearings
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FIGURE 9. Extraction Methods Comparison.

TABLE 1. Extraction method result.

predicted lives. The four bearings are the horizontal
axis [7], [13], [19]. CNN_FeatureMap_Error (Blue line)
represents the Spectrum-Principal-Energy-Vector prediction
result used in this paper. CNN_AverageFFT_Error (Red
line) represents the result of Spectral Mean Energy Vector.
CNN_AverageAmoplitude_Error (Green line) represents the
result of Amplitude Mean Energy Vector.

The total error of the four sets of bearings is shown in
the following table 1. In the table, RMSE means Root Mean
Squared Error. It can be seen from the above table and the
graph that the prediction error of the Spectrum-Principal-
Energy-Vector(Blue line)is the lowest, which proves that the
Spectrum-Principal-Energy-Vector(Blue line) is suitable for
the RUL prediction of bearing in deep CNN. In addition,
the prediction error generated by the AverageFFT feature is
lower than the AverageAmplitude feature as a whole, and it
can be seen that the frequency domain feature has a greater
advantage over the time domain features in the bearing useful
life prediction.

b: Contrast with traditional features
In order to verify the validity of the feature, this paper com-
pares the classical time-frequency domain features [13] with
the Spectrum-Principal-Energy-Vector.

The Support Vector Machines (SVM) [20] and the Deep
Neural Network (DNN) are used as the prediction model to
test the validity of the two features respectively. The two
models are used to illustrate that the Spectrum-Principal-
Energy-Vector has a strong applicability. Figure 10 uses the
SVM model to compare the time-frequency characteristics
with the Spectrum-Principal-Energy-Vector.

Figure 11 uses the DNN model to compare the time-
frequency characteristics with the Spectrum-Principal-
Energy-Vector.

FIGURE 10. Feature Comparison in SVM.

FIGURE 11. Feature Comparison in DNN.

It can be seen from the results of the above two fig-
ures that the prediction effect of the Spectrum-Principal-
Energy-Vector is better than that of the time-frequency
domain features when using the SVM and the deep neural
network as the prediction model. It can be deduced that the
Spectrum-Principal-Energy-Vector feature has a wide range
of applicability. At the same time, when using the Spectrum-
Principal-Energy-Vector feature map to predict, SVM model
error between the different bearings change little, and DNN
model error changes seriously. It can be seen that DNNmodel
is over-fitting with high dimension input.

2) THE VALIDITY OF THE CNN MODEL
In order to verify the effectiveness of the CNNmodel, the fol-
lowing two groups of experiments were done. The first group
of experiments uses the same feature input, compared the
effect of different models to verify the effectiveness of the
CNNmodel. However, since the same feature is not necessar-
ily suitable for different models, the second experiments uses
the feature that are compatible with each model to verify the
effectiveness of the CNN model.

a: Model Comparison, with same feature
In this experiment, the deep neural network model and
SVM model are compared with the CNN model. The input
of threemodels is consistent, the Spectrum-Principal-Energy-
Vector. The results are shown in Figure 12.
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FIGURE 12. Model Comparison with Same Feature.

FIGURE 13. Model Comparison with different Feature.

The blue line in the figure shows the results of the deep
CNN model. In the three models, the deep fully connected
neural network is theworst, mainly due to the large input scale
and the serious over-fitting problem. Due to the existence of
themechanism of weight sharing, the same input size and net-
work layer, the deep CNN parameters are less than the deep
fully connected neural network [8], [21], largely avoiding the
over-fitting problem. At the same time, the support vector
machine model is much lower than the deep fully connected
neural network, which is more suitable for small-scale data
learning, and has some ability to grasp the law of the RUL.
However, the SVMmodel lacks the ability to find deep-seated
laws. So, the SVM model is worse than the deep CNN.

It can be seen that the predictive effect of each bearing by
the deep CNN is better than that of the other two models, and
the validity of the deep CNN model is verified.

3) MODEL COMPARISON, WITH DIFFERENT FEATURES
In the experiment with same feature, there may be cases
where the model does not match the features. Some clas-
sical models may only be suitable for classical features.
So, in this experiment, the input of the classical model is
classical feature, and the result will be compared with the
method proposed in this paper. In this experiment, time-
frequency features by wavelet transform will be set as the
input of SVM and DNN model. The results are shown in
Figure 13 and Table 2:

TABLE 2. Model result.

It can be seen from the above experiments that the deep
CNN model used in this paper can improve the prediction
accuracy of bearing RUL.

From the above series of experiments, the feature extrac-
tion method of the Spectrum-Principal-Energy-Vector can
improve the accuracy significantly for the bearing RUL
prediction. The prediction error is reduced from 0.334 to
0.16 in SVM. In addition, the prediction model based on
deep CNN can further improve the prediction accuracy, and
the prediction accuracy can reach 0.1190. It can be seen that
the Spectrum-Principal-Energy-Vector proposed in this paper
can have a better representation ability on the original data.
At the same time, the prediction model based on deep CNN
proposed in this paper can improve the prediction accuracy.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a new method based on deep con-
volution neural network for the prediction of bearing RUL.
Our analysis and experiments using real-world data have
shown significantly improved prediction accuracy. Our new
feature extraction method, the Spectrum-Principal-Energy-
Vector can better represent the information from the raw data.
This eigenvector can be combined with different prediction
models in different scenarios for different types of data in
both time and frequency domains. For the construction of
prediction models, we propose a new scheme based on deep
convolution neural network. In the stage of RUL prediction,
we present a post-smoothing method to address the discon-
tinuity problem in the prediction results, greatly improve the
interpretability of the prediction results.

We plan to further improve the feature extraction by refin-
ing the spectrum segmentation from 64 to 1 for our Spectrum-
Principal-Energy-Vector. We will also explore other deep
learning algorithms such as Recurrent Neural Networks,
RNN, for its advantages in time sequential data processing,
and will combine CNN with RNN to improve the accuracy.
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