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ABSTRACT In this paper, the authors propose a robust underwater acoustic field estimation of the time-
varying channel impulse response for simultaneous transmissions using multiple sources and multiple
receivers [multi-in multi-out (MIMO)] that closely follows the rapidly time-varying nature of the underwater
acoustic channel. The presented algorithm outlines a time-varying underwater channel estimation method
based on the channel sparsity characteristic. The method uses the MIMO P-iterative greedy orthogonal
matching pursuit algorithm and takes advantage of the sparsity of the underwater acoustic channel. This
technique is compared to a trended least square estimation method presented by the authors in a previous
publication. Both techniques are demonstrated in a fully controlled environment, using simulated and
experimental data, and the results in each case show a significant improvement in the estimation of the
channel impulse response.

INDEX TERMS Underwater channel estimation.

I. INTRODUCTION
The short-range and medium-range (up to 1 nautical mile)
shallow water underwater acoustic channels have rapidly
changing time-varying channel impulse response [1]. The
acoustic multipath is both pronounced and time-dependent,
which causes severe signal distortions between sources and
receivers. This issue applies to any bistatic sonar applica-
tion. For example, the data transmission rate of underwater
acoustic communication systems is severely limited due to
the time-varying multipath [2], [3].

Gaining knowledge of the time-varying channel impulse
response is highly beneficial in most underwater acoustic
applications, especially if this information is available for
spatially distributed sources and receivers. A well known
example in shallow waters is ocean acoustic tomogra-
phy (OAT) [4]–[6] at mid-frequency (around 2.5 kHz) using
a set of sources and receivers, that was introduced by Munk
and Wunsh [7] as a remote-sensing technique for large-scale
monitoring of the ocean interior using sound. Taking advan-
tage of multipath propagation to further improve the medium

coverage, OAT relies on the identification and tracking of
echoes’ arrivals, and it uses the time variations of each echo
to estimate the ocean variability. A time-delay mapping of
the underwater channel impulse response is then used in the
estimation of the medium physical properties, such as sound
speed variations or currents [8]–[10]. To identify and use an
echo in the tomography process, it is essential to track this
echo over time and to unambiguously associate this echo
with with a specific path [11]. As with most application of
underwater acoustics, OAT hasmainly relied on using low-to-
mid frequency sounds. However, ambient noise at frequencies
over 200 kHz is due to thermal agitation. Such noise is mostly
stationary has well-known statistical properties. By contrast,
lower frequency noise is often non-stationary, highly colored
and includes bursts. As a result, filtering and de-noising
routines are more effective at high-frequencies [12].

In addition, the underwater channel’s time variability
results in large Doppler spreading and this phenomenon
can dramatically affect the performance of traditional
channel estimation routines, such as the LS estimation
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approach [13], [14]. Therefore, for such diverse applica-
tions as shallow water acoustic tomography, underwater
acoustic communications, underwater acoustic source track-
ing (among others), there is a clear benefit to develop a
robust algorithm to track the time-evolving fluctuations of
the underwater acoustic environment at very-high frequencies
and in a MIMO configuration.

As a result, channel estimation techniques are of great
interest in underwater acoustic communications [15]–[24].
For example, in [15], the sparsity of the channel delay
Doppler spread function is exploited to estimate a
time-varying channel in a single source-single receiver trans-
mission at a carrier frequency of 18 kHz. However, in gen-
eral, the research remains mostly confined to applications
with frequencies lower than 30 kHz mostly using a single
source [15]–[18], [20]–[22]. On the other hand, exist-
ing references on high frequency underwater communica-
tions [19], [24] do not deals with MIMO channel estimation.

This paper propose a robust channel estimation tech-
nique for simultaneous transmissions at very-high frequency
using multiple sources and multiple receivers that closely
follows the rapidly time-varying nature of the underwater
channel. The proposed approach is to exploit the under-
water sparsity characteristics using an MIMO orthogonal
matching pursuit algorithm (MIMO-OMP) technique, which
isolates the most significant echoes and efficiently tracks
the quick time changes in the channel impulse response.
For this analysis, the underwater acoustic (UWA) chan-
nel is characterized by a limited number of dominant
echoes and is considered as a sparse channel, a feature
used by the iterative orthogonal matching pursuit (OMP)
algorithm.

The OMP algorithm is commonly used for estimation of
static UWA channels as it outperforms conventional least
squares methods in that case, i.e. when only the time of
arrivals is estimated. One major difference in this paper is
that the channel impulse response is dynamic, thus it is
estimated both as a function of time and time delay. This
method is compared to a previously proposed approach that
combines a trend extraction algorithm to the LS technique
that is called the trended-LS method [13]. The proposed
MIMO-OMP method would be a powerful tool for Doppler
spread measurement and UWA channel equalization at very
high frequencies. We again want to stress that the channel
estimation techniques in the UWA systems have been lim-
ited to applications with frequencies lower than 30 kHz and
have not been tested to perform correctly at much higher
frequencies. In addition, while the OMP algorithm forMIMO
systems has been well studied in terrestrial communication
channels [25]–[27], it has not been considered before in the
underwater acoustic channel. The novelty of this work is
twofold: First, it studies and analyzes the performance of
the OMP algorithm applied to MIMO underwater acoustic
communications at very high-frequencies (around 300 kHz).
Second, it tests and compares a newly developed technique,
the trended-LS algorithm, to the MIMO-OMP and the LS

techniques also in the context of MIMO systems at very
high-frequencies.

This paper is organized as follows: Section II presents a
background on acoustic communications and focuses on the
multipath aspect of the acoustic signal transmission.

Section III outlines the proposed algorithm for estimat-
ing high frequency multipath MIMO channels. For this pur-
pose, the UWA channel sparsity is used to estimate and
isolate each echo in every sub-channel of the MIMO channel
impulse response (CIR). In Section IV, the proposed MIMO-
OMP channel estimation technique is evaluated and com-
pared against two different methods using simulated chan-
nels: the LS method and the trended-LS method. We analyze
the performance of each algorithm according to the rela-
tive root mean error square (noted RMSE through the text)
produced between the modeled channels and their resulting
estimations. The performance is studied as a function of two
parameters: increasing noise level and increasing number of
iterations. In Section V, the proposed algorithm’s perfor-
mance is tested in actual MIMO experiments with two
sources and two receivers. Finally, Section VI summarizes
the main results and conclusions of this work.

II. MIMO TIME-VARYING CHANNEL ESTIMATION
OVERVIEW
In a MIMO transmission, for an unknown channel hij[n] of
length Lc sampled at time n between a transmitter i and
a receiver j, the relationship between a received signal rj
received on the jth receiver and a transmitted signal si sent
on the ith transmitter is formulated as:

rj[n] = S[n]hj[n]+ wj[n] (1)

where hj[n] =
[
hT1j[n] · · · h

T
Nt j[n]

]T
is the column vector

of the channel impulse response coefficients between all
transmitters and the jth receiver, S[n] is the augmented matrix
formed based on si[n] for i ∈ [1,Nt ]. We assume that the
signals si for all i and wj for all j are uncorrelated and that
S is known. Here, the CIR hj is the unknown, whereas the
transmitted signal serves as an aid for the estimation and are
known as ‘‘reference signals’’ or pilots. The objective is now
to calculate an estimate ĥj of hj of highest possible accuracy,
based on a measurement rj.
Since the CIR is typically non-stationary for underwa-

ter channels with relatively long durations, any channel
estimation method is typically applied to shorter time-
gated, overlapping sections of the source signal (as shown
in Figure 1), resulting in a time-varying estimation of the
channel. If the sections overlap by only one time sample,
we obtain an estimate of the CIR at every time index n. This
CIR estimation is performed over a total of Nw time windows
of equal length Lw. Sequential time windows are time-shifted
by Lov = Lw(1−Ow) elements, where Ow is the overlap ratio
between sequential time windows. Every time window starts
at time index n = kLov where k ∈ [0,Nw − 1] is the window
index.
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FIGURE 1. Channel estimation diagram.

If Lc is the length of the estimated CIR with Lc ≤ Lw,
the augmented source signal matrix Si[n] of size (Lw − Lc +
1)× Lc is represented as:

Si[n] =


si(n+ Lc − 1) si(n+ Lc − 2) · · ·

si(n+ Lc) si(n+ Lc − 1) · · ·

si(n+ Lc + 1) si(n+ Lc) · · ·

...
...

...

si(n+ Lw − 1) si(n+ Lw − 2) · · ·

. (2)

S[n] is of size (Lw − Lc + 1)×NtLc and is the concatenation
of the Si matrices as:

S[n] =
[
S1[n] S2[n] · · · SNt [n]

]
. (3)

rj represents the received signal of size (Lw−Lc+1)×1 such
that:

rj[n] =
[
rj[n+ Lc − 1] rj[n+ Lc] · · · rj[n+ Lw − 1]

]T
.

(4)

ĥj[n] represents the CIR estimate of sizeNtLc×1 at sampling
time n:

ĥj[n] =
[
ĥj[n, 0] ĥj[n, 1] · · · ĥj[n,Lc − 1]

]T
. (5)

where ĥj[n, l] =
[
ĥ1j[n, l] . . . ĥNt j[n, l]

]
. On the other hand,

wj[n] represents the noise array of size (Lw − Lc + 1) ×
1 at sampling times n and combines the ambient noise of
the channel and the uncorrelated echoes from prior parts of
the transmitted sequence. For each echo, the estimated CIR
coefficients are stored in a complex form. In order to easily
analyze the channel time variations in the following sections,
we define a new vector ĥij[l] of size Nw× 1 to containing the
time variation of the l th estimated echo, such that:

ĥij[l] =
[
ĥij[0, l] ĥij[Lov, l] · · · ĥij[(Nw − 1)Lov, l]

]
.

(6)

One of the most common channel estimation techniques is
the LS technique. It is a very powerful tool to estimate time-
varying CIR. Its application on a high-frequency transmis-
sion in underwater channels has already been investigated by

Real et al. [28]. An extension of this method, called trended-
LS, added a trend extraction algorithm to the traditional LS
method [13]. While the values for the relative Root-Mean-
Square Error (RMSE) achieved between the estimated chan-
nel and the real channel were encouraging, they could clearly
be improved.

III. EXPLOITING SPARSITY
A. OVERVIEW
Channels with a large delay spread but with few echoes
are described as having a sparse impulse response and are
encountered in a number of different applications. Underwa-
ter acoustic channels exhibit a similar response [29]. There-
fore, many channel estimation techniques exploit the sparsity
of the UWA channel using different algorithms, such as basis
pursuit (BP) [30]–[32], matching pursuit (MP) [33]–[35]
and orthogonal matching pursuit (OMP) [15], [36]. In [33],
an estimate of a single-input single-output (SISO) channel
obtained using a basic MP algorithm is shown to be more
accurate than an LS estimate of a channel where each of
the tap values will in general be nonzero. In [34], this MP
estimate is compared to a thresholded variant of the LS
channel (ThLS) estimate. The MP estimate is shown to be
computationally much simpler to implement and requires a
shorter known sequence to form an accurate channel estimate.
Rao [37] uses a sparse LS estimate (SpLS) that is obtained by
re-estimating the ThLS nonzero taps.

The accuracy of each of the techniques in [29],
[33], and [34] is compared in [35] and their effectiveness
quantified by considering their use in the UWA channel
equalization process. It is seen that there is no distinguishable
difference in performance between the MP and SpLS-based
estimators, while the complexity of implementing the MP
algorithm is much lower than that of the SpLS algorithm.
In addition, the MP estimate is more robust to drops in the
SNR than LS estimates for a same training sequence length.

In [36], the OMP algorithm for SISO channel estimation
is used. Not only does it eliminate the convergence problem
in the MP algorithm based on re-selection of the basis vec-
tors, but the re-selection process also produces more accurate
channel estimates. The performance of UWA channel equal-
izers using the MP and OMP algorithms indicates that the
OMP outperforms the MP, with a comparable computational
complexity.

In the following sections, the OMP algorithm is applied to
a time-varying MIMO transmission at very high-frequencies,
and its performance is evaluated and compared against both
the LS and the trended-LS methods.

B. ORTHOGONAL MATCHING PURSUIT
The OMP algorithm is an iterative process with P itera-
tions that searches for the closest matching projection of
the received signal onto a dictionary comprised of trans-
mitted signal data vectors. We first find the column in the
matrix which is best aligned with the received vector, then
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the projection of this vector along this direction is removed
and a residual vector is obtained. The algorithm proceeds
by sequentially choosing the column which best matches the
residual vector until some termination criterion is met. The
OMP algorithm also eliminates the convergence problem of
the simple MP algorithm [32], [38] caused by the possible re-
selection of the basis vectors in the dictionarymatrix. Another
advantage of the OMP algorithm is that we only need half the
number of pilots required in the LS estimation algorithm [39],
thereby improving the channel capacity. The pseudo-code
presented in algorithm 1 summarizes the main steps of
the OMP applied to a MIMO system, and is named the
MIMO-OMP algorithm.

Algorithm 1 MIMO-OMP Algorithm
1: procedure OMP(rj[n],S[n])
2: Initialize:

g0← rj[n], P total number of iterations,
A0 = [] , I0 = {}, iteration counter p = 1.

3: Identify:
- Find cp = argmax

k∈[1,NtLc],k 6∈Ip
|eTk S

H [n]gp−1|
2

with i = dcp/Lce, l = cp − (i− 1)Lc − 1 and
ek is the unit column vector with 1 at the k th

element and 0 elsewhere.
4: Compute and Construct:

- Compute ĥij[n, l] =
eTcpS

H [n]gp−1
|eTcpS[n]|

2 .

- Set Ap =

[
Ap−1 eTcpS[n]

]
, Ip = Ip−1 ∪ cp.

5: Update:
- Compute
gp =

(
ILw−Lc+1 − Ap(AH

p Ap)−1AH
p
)
rj[n],

where IN is the identity matrix of size
N × N .
- If p = P stop, otherwise set p = p+1 and
repeat from 3.

6: end procedure

IV. SIMULATION
In the following section, we evaluate the proposed MIMO
channel estimation routines and analyze their performance
when applied first to time-invariant then to time-varying
modeled channels. TheMIMOmodeled setup consists of two
sources s1 and s2 and two receivers r1 and r2. In an effort to
keep the paper concise, we focus the analysis on the estimated
CIR h12(τ ) between source s1 and receiver r2 in the time-
invariant case, and on the direct path of the estimated CIR
h12(t, τ ) in the time-varying case.

A. MODELED MIMO CHANNELS
The channels used to generate the simulated received signals
were modeled using a 3D stochastic model presented by
Kaddouri et al. [39], [40]. The model combines a method of
images in an enclosed 3-D environment, originally presented

FIGURE 2. Modeled MIMO setup.

TABLE 1. MIMO modeled channel simulation parameters.

in [41] and the Rayleigh stochastic model. The simulated
setup is shown in Figure 2 and the parameters of the simulated
channel are shown in Table 1.

The signals transmitted are 873.8 ms pseudo-noise (PN)
sequences phase-modulated using Binary Phase Shift Key-
ing (BPSK), pulse shaped using a conventional Root Raised
Cosine (RRC) filter with a roll-off factor of 0.25 and trans-
mitted between 262.5 kHz and 337.5 kHz (for a total band-
width of 75 kHz). The different sources transmit different PN
sequences. The resulting theoretical static channel impulse
responses amplitudes |h11(τ )|, |h12(τ )|, |h21(τ )| and |h22(τ )|
are presented in Figure 3.

The modeled channels generated using the method of
images comprise a number of non-zero coefficients denoted
NZ11 = 71, NZ12 = 55, NZ21 = 55 and NZ22 = 71 for each
of h11(τ ), h12(τ ), h21(τ ), and h22(τ ) respectively [39].

B. RESULTS
1) TIME-INVARIANT MIMO CHANNEL AND CHOICE OF P
In this section, we compare the performance of the
MIMO-OMP method and the trended-LS method in terms
of their robustness to noise. We also study the impact of
the number of iterations in the MIMO-OMP case. We apply
both the trended-LS method and the MIMO-OMP method
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FIGURE 3. Modeled impulse responses |h11(τ )|, |h12(τ )|, |h21(τ )| and |h22(τ )|.

to estimate the MIMO channel h12(τ ) modeled in Figure 3.
We first analyze the performance of both algorithms as the
ambient noise added to the signal increases. We assume that
the ambient noise can be modeled as an Additive White
Gaussian Noise (AWGN). Since the signal source level is
constant, the study is performed as a function of the Signal-
to-Noise Ratio (SNR). The number of iterations for the OMP
method is adjustable. The simulation parameters for the chan-
nel estimation processes are presented in Table 2.

TABLE 2. Simulation parameters.

The RMSE between the modeled channel, the trended-LS
channel estimate and the MIMO-OMP channel estimate are
shown in Figures 4 as a function of P for three SNR values
(80 dB, 30 dB and 10 dB). Note that the trended-LSmethod is
invariant with respect to P and varies only with respect to the
SNR. As a reminder, we define the RMSE between amodeled
CIR h(τ ) and an estimated CIR ĥ(τ ) as:

RMSE =

√√√√∑Lc−1
l=0 |h(τl)− ĥ(τl)|

2∑Lc−1
l=0 |h(τl)|

2
(7)

Figure 4 indicates that the trended-LS method becomes
significantly less accurate than the MIMO-OMP method
as the SNR drops. The apparent insensitivity of the
MIMO-OMP to noise in estimating the echoes present in the
channel comes from the fact that it only estimates the Pmost
powerful echoeswhile assigning a zero value to the remaining
echoes. As a result, the RMSE decreases as the number of
iterations increases since the echoes are updated after every
iteration. Moreover, an additional echo is estimated at every
increment of P, resulting in a better channel estimation and
a smaller RMSE between the modeled channel and the esti-
mated channel. We conclude that the MIMO-OMP method
estimation is much less sensitive to noise than the trended-
LS method when the SNR varies between 10 and 80 dB.
We also observe that at low SNR, the MIMO-OMP algorithm
produces a smaller estimation error than the trended-LS esti-
mation method does.

By analyzing the values of the RMSE as the number of
iterations P in the MIMO-OMP method increases, we find
that at first when P ≤ NZ , as P increases, more non-
zero echoes are estimated (so that less non-zero echoes are
turned into nulls), while all null echoes are assigned a null
value, therefore the RMSE decreases as P increases. When
the number of iterations P is exactly equal to NZ , all non-
zero echoes are estimated while all null echoes are assigned
a null value, and the RMSE reaches its minimal value.
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FIGURE 4. RMSE in estimating the time-invariant CIR, (a) SNR = 80 dB,
(b) SNR = 30 dB, (c) SNR = 10 dB.

As P exceeds NZ , more null echoes are estimated instead
of being automatically assigned a value of zero, causing the
RMSE to slowly increasewithP. Therefore, the optimal value
for the number of iteration P in the MIMO-OMP case is
exactly equal to the number of non-zero echoes present in the
channel.

2) TIME-VARYING MIMO CHANNEL
We evaluate the performance of the proposed time-varying
channel estimation algorithms by using the same modeled

FIGURE 5. Time-varying model of the direct path h12(t, τ0) with
fD = 1 Hz. (a) Re{h12(t, τ0)}, (b) Im{h12(t, τ0)}.

static MIMO channel specified in Table 1. In the considered
case of oscillating transducers, we introduce a sinusoidal
Doppler spread1f (t) on each echo of maximum value fD and
angular frequency � such that [13]:

1f (t) = fD cos(�t). (8)

We assign a maximum value fD = 1 Hz with � = 6π
rad/s and obtain a MIMO channel impulse response that
is dependent both on time and on time delay. The signals
transmitted at s1 and s2 are the same PN sequences used in the
time-invariant case. The added noise corresponds to an SNR
of 32 dB to match the experimental values presented in the
next section. In this analysis, we present the time-variations of
the direct path present in the channel h12(t, τ ) between s1 and
receiver r2. The time variations of the channel’s direct path,
occurring at delay index ł0 = 74, is denoted h12(t, τ0). The
real and imaginary parts of this modeled echo are presented
in Figure 5. In order to obtain a time-varying estimate of the
CIR, we apply overlapping sliding windows of length Lw =
2000 (≈ 26.7 milliseconds). This short duration is chosen to
ensure the stationarity of the channel within the observation
window. The number of iteration for the MIMO-OMP algo-
rithm is P = 126 to account for all non-zero echoes present
in h12(t, τ ). Figure 6 shows the MIMO-OMP estimated real
and imaginary parts of h12(t, τ0). Table 3 presents the RMSE
between the time-varying model of the direct path h12(t, τ0)
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FIGURE 6. MIMO-OMP estimation of the direct path h12(t, τ0) with
fD = 1 Hz. (a) Re{h12(t, τ0)}, (b) Im{h12(t, τ0)}.

and its estimations using the LS, the trended-LS and the
OMP-MIMO techniques.

TABLE 3. RMSE in h12(t, τ0) estimation using the LS, trended LS and
MIMO-OMP methods.

Table 3 clearly shows that at the given SNR, the
MIMO-OMP method tracks more closely the time-variations
in the CIR.

Next, we calculate the RMSE obtained for increasing val-
ues of added white Gaussian noise. We use five different
AWGN for each SNR value of 0 B, 10 dB, 20 dB, and
32 dB. Figure 7 shows the RMSE achieved in each of the
three methods as the SNR progresses from 0 dB to 32 dB.
The plots are created using a 3rd -order polynomial curve
fitting.

Figure 7 also shows that the MIMO-OMP technique not
only performs better than the Trended-LS and the LS tech-
niques, but is also far less sensitive to the ambient noise,
as it produces an almost constant RMSE for AWG noises
of identical noise power density but with different time
profiles, whereas the LS and the Trended-LS performances

FIGURE 7. Simulation result of the RMSE vs. SNR for the estimated direct
path between s1 and r2. (a) LS method. (b) Trended-LS method.
(c) MIMO-OMP method.

fluctuate from one noise profile to the other. Therefore
the MIMO-OMP technique is the most robust to AWG
noise out of the three proposed algorithms. While both the
Trended-LS and the MIMO-OMP methods perform bet-
ter than the LS algorithm, the difference in performance
between Trended-LS and MIMO-OMP is less pronounced.
However, the execution time of the MIMO-OMP routine
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FIGURE 8. Simulation result of the RMSE vs. SNR for the estimated direct
path between s1 an r2 using the MIMO-OMP method.

is much shorter than that of the Trended-LS for a similar
performance.

Next, we run the same algorithm using SNR values that
match those calculated in the experimental validation section:
25 dB, 28.5 dB, 30 dB and 32 dB. The results are plotted
in Figure 8. Once again, the RMSE decreases as the SNR
increases. This Figure is used for a comparative analysis in
the experimental validation section.

Finally, we calculate the RMSE obtained for different val-
ues of the Doppler spread. We test three values: fD = 1, 10
and 15 Hz and use five different AWG noises with a fixed
SNR= 32 dB. The results are curve-fitted using a polynomial
of order 3. The plots are shown in Figure 9.

We see that increasing values of Doppler spread cause the
RMSE to increase significantly in the LS and Trended-LS
cases, whereas the MIMO-OMP method provides steadier
values. These results mark another advantage of the MIMO-
OMP technique.

V. EXPERIMENTAL VALIDATION
A. SETUP
An experiment was conducted in the FAU outdoor test-pool
and the sources’ and receivers’ placement was the same as
in the simulation (Table 1). We use a broadband underwater
acoustic source and receiver developed at Florida Atlantic
University (FAU) [42]. The signals transmitted are identical
to those used in the simulation (Cf. Section IV-A).

Controlling and reproducing the motion of sources and
receivers is difficult. Therefore, we keep the transducers still
and introduce the Doppler spread directly in the source sig-
nals. To do so, the source signals are modulated using a fre-
quency fD = 1 Hz to simulate slowly oscillating transducers
and boundaries and obtain a channel estimate that depends
both on time and time delay (time-varying MIMO channel).
As in the simulation, the results presented are for the CIR
between source s1 and receiver r2.

FIGURE 9. RMSE vs. Doppler spread for the estimated direct path
between s1 and r2. (a) LS method. (b) Trended-LS method. (c) MIMO-OMP
method.

B. RESULTS
The two sources s1 and s2 transmit simultaneously to
r1 and r2.Without loss of generality, in our experimental anal-
ysis we present the results for the CIR between source s1 and
receiver r2, namely h12(t, τ ). We note that the received signal
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FIGURE 10. First four echoes between source s1 and receiver r2.

FIGURE 11. MIMO-OMP estimate of normalized real and imaginary parts,
Message 1. (a) h12(t, τ0), (b) h12(t, τ1).

at r2 comes from both s1 and s2. We focus the analysis on the
direct path of the CIR between s1 and r2, namely h12(t, τ0),
and on the first three echoes that each bounce off one of the
pool walls 52, 53 and 55. The corresponding propagation
times are τ0, τ1, τ2 and τ3. The source and the receiver
are placed respectively at coordinates (W/4,L/4, 0.1)
and (3W/4,L/2, 1.6). Because of the pool dimensions
(Figure 10), the two transducers are closer to the side wall53
and the bottom52 than to the front walls55, which produces
very close values for τ1,τ2.

FIGURE 12. MIMO-OMP estimate of normalized real and imaginary parts,
Message 1. (a) h12(t, τ2), (b) h12(t, τ3).

FIGURE 13. RMSE vs. SNR between s1 and r2 at a fixed time-delay using
the MIMO-OMP method and experimental data. The SNR is calculated
according to equation (8).

Next, we calculate the RMSE obtained for increasing val-
ues of SNR. The signal associated with the direct path is
received with an SNR of 32 dB. The SNR for every sub-
sequent path is computed as a function of the SNR of the
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direct path. For each path l, the SNR is calculated as:

SNRl = 32+ 10 log10

(
σ 2
h12(t,τl )

σ 2
h12(t,τ0)

)
[dB] (9)

where σ 2
h12(t,τl )

represents the variance of h12(t, τl). As in
the simulation section, we base our analysis on five different
messages. To keep the paper concise, we only show the time-
varying estimated echoes for message 1 in Figures 11 and 12.
Figure 13 shows the resulting RMSE vs. SNR plot for Mes-
sages 1 to 5. This plot is created using a 3rd -degree polyno-
mial curve fitting.

We observe in Figures 11 and 12 that the MIMO-OMP
method yields results that clearly show the expected time
fluctuation of the four echoes.

We notice by comparing Figure 8 and Figure 13 that
the results in the experimental part are close to the values
obtained in simulation. The estimation error is smaller in
simulation for the following reasons: (1) Inaccuracies in the
transducers placement in the experiment as it was not exactly
matching the simulation values; (2) Inaccuracies in the esti-
mation due to the presence of multiple echoes arriving at very
similar time of arrival.

FIGURE 14. Trended-LS estimate of h12(t, τ0), Message 1. (a) Real part,
(b) Imaginary part.

By contrast, Figures 14a and 14b show the real and imag-
inary parts of the estimated CIR direct path at time delay

τ = τ0 as a function of time obtained using the trended-LS
approach. Since the results for the direct path are already so
noisy, we do not show the results for the subsequent echoes.
Clearly, we can conclude that the MIMO-OMP technique
performs much better that the trended-LS technique when
applied to real data and is therefore a better choice for high
frequency MIMO channel estimation.

VI. CONCLUSION
This paper sought to address one of the challenges posed
by the underwater acoustic channel, namely finding a robust
channel estimation technique that closely tracks the time
variations of the echoes forming the MIMO channel impulse
response at very-high frequencies. We have proposed and
evaluated the performance of the suggested MIMO-OMP
algorithm on simulated data as well as on experimental
results. We first analyzed the use of the CIR estimation
techniques with time-invariant channels to show the opti-
mal choice for the number of iterations. We compared the
algorithm to both the LS and the trended-LS technique,
and the results obtained have shown that the MIMO-OMP
algorithm is the most robust with respect to added
noise.

In a second set of simulations, we modeled time-varying
MIMO channels with various values of Doppler spread. One
of the most interesting results in this respect is the perfor-
mance of the MIMO-OMP algorithm as the Doppler spread
fD increases: it is observed that the MIMO-OMP method
provides steady values of RMSE as fD varies, in strong
contrast to both the LS and trended-LS techniques where
the RMSE increases significantly as the Doppler spread
increases.

In analyzing the time variations of four specific paths
for estimated MIMO channels, the experimental data clearly
showed that the MIMO-OMP technique was able to track the
time-variations in the channel even as the SNR decreased.
In addition, it was demonstrated that the MIMO-OMP algo-
rithm remained robust in terms of achieved RMSE in time-
varying case as the SNR varied, matching in that aspect
the simulation results. A potential improvement on this
approach is to further exploit the sparsity of the under-
water acoustic channel by considering its delay Doppler
spread function, as proposed in [15], and apply it to MIMO
configurations.
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