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ABSTRACT This paper proposes a flotation performance recognition system based on a hierarchical
classification of froth images using both local dynamic and static features, which includes a series of
functions in image extraction, processing, and classification. Within the integrated system, to identify the
abnormal working condition with poor flotation performance (NB it could be significantly different with
the dynamic features of the froth in abnormal working condition), it is functioned first with building up
local dynamic features of froth image from the information including froth velocity, disorder degree, and
burst rate. To enhance the dynamic feature extraction and matching, this system introduces a scale-invariant
feature transform method to cope with froth motion and the noise induced by dust and illumination. For
the performance subdividing under normal working conditions, bag-of-words (BoW) description is utilized
to fill the semantic gap in performance recognition when images are directly described by global image
features. Accordingly typical froth status words are extracted to form a froth status glossary so that the
froth status words of each patch form the BoW description of an image. A Bayesian probabilistic model
is built to establish a froth image classification reference with the BoW description of images as the input.
An expectation-maximization algorithm is used for training the model parameters. Data obtained from a
real plant are selected to verify the proposed approach. It is noted that the proposed system can reduce the
negative effects of image noise, and has high accuracy in flotation performance recognition.

INDEX TERMS Froth flotation, static features, dynamics features, hierarchical classification, performance
recognition.

I. INTRODUCTION
Froth flotation is a widely usedmineral separation technology
to acquire high-grade concentrates. It has a long process flow
which involves complex physical and chemical reactions with
various influence factors. Due to reasons like fluctuation of
feeding conditions, maloperations and external disturbances,
a flotation process exhibits multiple working conditions with
different flotation performance. An accurate mathematical
model that could comprehensively and precisely describe the
dynamics of a froth flotation process, and thus to guide the
operation, is costly to obtain. As an alternative, surface froth
features, which are closely related to the final concentrate

grade and recovery rate, are utilized as the performance indi-
cator in practical production [1].

Performance recognition is crucial and fundamental in the
optimal operation of a flotation process. With the develop-
ment of machine vision and artificial intelligence, digital
image processing technologies have been widely applied in
the classification of froth surface images and recognition of
flotation performance [2]. Moolman et al. [3], [4] used digital
image analysis and an artificial neural network approach in
the classification of froth images. Hargrave et al. [5] stud-
ied the prediction of flotation performance through off-line
analysis of color, texture, and other visual features of coal
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and tin froth surface. Singh and Rao [6] first divided a froth
image into patches. Then extracted the RGB color informa-
tion of each patch, and used the information in the image
classification using a radial basis function neural network.
He et al. [7] and Zhu et al. [8] applied the probability den-
sity function (PDF) in the description of froth size distribu-
tion and the reagent dosage predictive control of a copper
flotation process. The above results indicate the effective-
ness of the static froth features, such as color, texture, size,
in the classification of froth images and identification of
flotation performance. On the other hand, researchers have
studied the relationship between dynamic froth features (e.g.,
froth stability, froth velocity) and technical indexes (e.g.,
concentrate grade, recovery rate). Ventura-Medina et al. [9]
verified that froth stability plays an important role in flota-
tion. They related changes in the fraction of air overflow
to the variations in the performance of a copper flota-
tion process. Barbian et al. [10] used the froth stability
column method to quantify froth stability on both labo-
ratory scale and industrial scale. The result indicated that
lower air flow rates resulted in better froth stability and
improved flotation performance [11]. Morar et al. [12],
Barbian et al. [13], and Runge et al. [14] verified that froth
stability measurements in combination with froth velocity
can predict concentrate grade without the use of color. They
concluded that froth stability is related to the concentration of
the attached material within the system, whereas the velocity
is related to the concentration of entrained material recov-
ered. Morar chose the burst rate of froth surface lamellae
to represent froth stability since each burst event signal is
not determined by bubble size or any other froth structural
features [15]. For a more detailed review of the application of
machine vision in flotation process monitoring and control,
the reader is referred to excellent reviews such as [16]–[18]
and the references therein.

As indicated by previous studies, dynamic features and
static features reflect flotation performance from different
aspects, and should be taken into consideration together in
flotation performance recognition. However, there are few
studies used both dynamic and static features in flotation
performance recognition [19]. For sulfur flotation process,
due to the high hydrophobicity of sulfur, the addition of chem-
ical reagents is not required. The operations mainly include
adjusting of air flow rate and pulp level. It is important to keep
the pulp level around optimal to assure that a sufficient part of
the valuable froth is collected while abnormalities like pulp
turning is avoided. According to expert experience, when
pulp overflows, the froth exhibits distinct dynamic features
compared with normal working conditions. This is verified
in [20]–[22] which concluded that the variation of pulp level
is reflected by the dynamic froth features including velocity,
disorder degree and burst rate.

This study utilized both local dynamic and static froth
features to detect the abnormal working condition and eval-
uate the sulfur flotation performance under normal work-
ing conditions. In Section II, the sulfur flotation process is

FIGURE 1. Cross-section diagram of a flotation cell.

introduced and analyzed, and a hierarchical flotation perfor-
mance recognition framework is proposed. In order to obtain
the dynamic features of froth and avoid the semantic gap in
performance recognition when images are directly described
by global image features, local froth image features are used
in this study. Section III studies the detection of abnormal
working conditions using local dynamic froth features. Three
local dynamic features of the froth, including froth velocity,
disorder degree, and burst rate, are extracted using the Scale
Invariant Feature Transform (SIFT) algorithm. Section IV
considers the evaluation of flotation performance under nor-
mal working conditions using local static froth features. The
local static features such as texture and color are extracted to
obtain the ’Bag of Words’(BoW) description. The flotation
performance is then recognized using a Bayesian probabilis-
tic model. By comprehensively considering the relationship
between flotation performance and local dynamic and static
froth features, a hierarchical sulfur flotation performance
recognition system is established. In Section V, the proposed
approach is tested through simulation experiments with data
collected from a real plant.

II. PROBLEM ANALYSIS
In metallurgy plants, sulfur flotation is used to recover valu-
able sulfur as a secondary product from leaching residues of
sulfide minerals. It is conducted by taking advantages of the
naturally strong hydrophobicity of sulfide ores. Addition of
chemical reagents is not necessary in sulfur flotation. The
operation of sulfur flotation mainly involves the adjusting of
pulp level and inlet air flow. As shown in Fig. 1, air is blew
into the flotation cell to enable the formation of air bubbles
with mineral particles attached. The sulfur concentrate is
recovered by collecting the mineralized froth at the overflow
of the flotation cell.

The thickness of froth layer has a large impact on the
concentrate grade. Increasing the thickness of the froth layer
can prolong the residence time of the solid particles in the
froth layer. It is beneficial to the detachment of gangue,
and thus improve the concentrate grade. The height of the
flotation cell is fixed, and equals to the sum of the pulp level
and thickness of the froth layer. If the pulp level is low, then
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FIGURE 2. The hierarchical performance recognition system based on
both local dynamic and static froth features.

the froth layer is thick, and vice versa. Therefore, pulp level,
which indicates and affects the flotation performance, is a key
variable in sulfur flotation.

Pulp level is related to a number of dynamic froth features.
When the pulp level is too high, the froth layer is extremely
thin. The froth mainly consists of blister and flows fast. This
may lead to the spillover of pulp and a low concentrate
grade. When the pulp level is too low, the froth layer is
excessively thick. The froth becomes sticky and difficult to
collapse or burst. This leads to a slow froth overflow, or even
non-overflow, resulting in low recovery. Hence, changes in
pulp level are directly reflected in the dynamic features of
froth image, including velocity, disorder degree, and burst
rate, which reflect flotation performance to a large extent.
On the other hand, froth images under different working
conditions exhibit different static features, such as the fine-
ness of froth texture, depth of grooves, etc. In addition,
the froth color reflects the quantity of minerals carried by the
froth.

Therefore, in order to improve the recognition perfor-
mance, a flotation performance recognition system based on
the hierarchical image classification using both local dynamic
and static froth features is proposed (Fig. 2). In order to detect
the abnormal working condition, a SIFT operator is incor-
porated in a feature matching approach to extract the local
dynamic features of sulfur flotation froth. When the process
is under normal working condition, static froth features are
utilized in the recognition. The local static features of froth,
such as texture and color, are transformed into codewords
which are then described using the BoW model. A Bayesian
probabilistic model is introduced with its parameters trained
using the expectation-maximization algorithm (EM).

III. DETECTION OF ABNORMAL WORKING CONDITION
In this section, a feature matching method based on SIFT
is devised to extract the local dynamic features of froth
image. First, three local dynamic features, i.e., speed, disorder
degree, burst rate, and their computing formulas are selected
and defined, respectively. Then, the relationship between
these features and flotation performance is analyzed using
froth images collected from a sulfur flotation plant. These
dynamic features are used to detect the abnormal work-
ing condition, which laid a foundation for the later ’static
features-based’ flotation performance subdividing under nor-
mal working conditions.

A. KEY POINTS EXTRACTION AND MATCHING
SIFT algorithm is a local feature descriptor based on scale
space theory [23], [24]. The main idea of scale pace theory is
to present the original image on different scales and to extract
the invariant key points, edge, corner, as well as other fea-
tures. SIFT is invariant to rotation, scaling, brightness change
and affine transformation of image, and holds a certain stabil-
ity towards angular variation and noise. For two consecutive
images to be matched, two vector sets of key points in the
two images can be obtained. Then, the vector similarity is
calculated to determine whether the two key points match.
Implementation of SIFT algorithm is as follows,
• The detection of key points in consecutive froth images;
• Accurate positioning of key points;
• Calculating the orientation parameters of key points;
• Generation of parametric statistics and the final descrip-
tion vector of key points.

The effectiveness of SIFT was tested under three typical
categories of froth statuses. In the first category, the moving
speed of froth is moderate and the moving direction is stable
and uniform. The froth has good surface adhesion and can
hardly burst. In the second category, froth moves faster with
disordered directions and less foam on the surface, resulting
in low concentrate grade. In the third category, froth moves
in a high speed which resulted in blurry froth surface and
poor flotation performance. The matching results are shown
in Fig. 3. In Fig. 3 (a), (c), and (e), red line depicts matching
result of the key points. The two endpoints of each red line
represent the two matched key points (Because of the large
number of matched points, the figure shows only part of the
key points). Fig. 3 (b), (d), and (f) show schematic views of
the velocity field of each category (the coordinates are pixel
coordinates).

B. LOCAL DYNAMIC FEATURES EXTRACTION
BASED ON SIFT
Consider two consecutive images, the key points are first
extracted. The pixel displacements in the X and Y directions
of the key point in unit time are obtained, as well as the
velocity of the froth. Take the pixel displacements of two con-
secutive images in the X direction as x, the pixel displacement
in the Y direction as y, the velocity in the horizontal direction
as Vx , the velocity in the vertical direction as Vy, the froth
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FIGURE 3. Schematic view of froth velocity field in different categories. (a) SIFT-based matching results in the first category.
(b) Froth velocity field of the first category. (c) SIFT-based matching results in the second category. (d) Froth velocity field of
the second category. (e) SIFT-based matching results in the third category. (f) Froth velocity field of the third category.

velocity as V , and the movement direction as θ . Then if the
sampling rate of the cameras in the plant is D frame images
per second, the equations for these variables are as follows,

Vx =
D−1∑
i=1

xi (1)

Vy =
D−1∑
i=1

yi (2)

V =
√
V 2
x + V 2

y (3)

θ = arctan
Vy
Vx

(4)

in which, xi and yi indicate the displacement in the X
and Y directions between the ith and the (i + 1)th frame
image respectively. The unit of the velocity’s magnitude and
velocity’s direction is pixel/sec (pixel per second) and deg/s
(degree per second), respectively. In addition, to describe the
disorder degree, express the froth velocity as,

V = V̄ + V ′ (5)

where V̄ is the average velocity of the froth over a period of
time, and V ′ is the fluctuation of froth velocity. Then, define
the following,

VT =

√
V ′2

V̄
(6)

The average value of VT over a certain period of time
is taken to represent the froth disorder degree. Besides the
fluctuation in velocity magnitude, the change in froth velocity
direction also reflects the disorder degree of froth movement
to some extent. It can be noted from Fig. 3 that, in Fig. 3 (d)
the change in froth movement direction is more obvious
than the change in Fig. 3 (b) and (f), which is relatively
stable.

Froth burst rate can be measured by the ratio of the
total number of key points and the number of matched
key points. The greater the ratio, the higher the burst
rate:

S =
N̄sum
Nmatch

(7)
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FIGURE 4. Sulfur flotation froth images under different performance categories. (a) Excellent. (b) Good. (c) General. (d)
Abnormal.

TABLE 1. Flotation froth appearance in different performance categories.

where N̄sum is the average number of key points in two
consecutive frames, and Nmatch is the number of matched key
points in two adjacent frames.

C. ABNORMAL WORKING CONDITION DETECTION
USING LOCAL DYNAMIC FEATURES
A flotation process has both normal and abnormal working
conditions, and according to the different grades of con-
centrate, the flotation performance under normal working
conditions can be divided into three categories as excellent,
good, and general, see Table 1. Froth images representing the
four performance categories are shown in Fig. 4.

Consider a froth image sequence collected from a plant in
three different time periods (denoted as A, B, and C), time

period A refers to normal performance, while time period
B and C refer to abnormal performance. The local dynamic
froth features under the three different time periods are
extracted using the SIFT image matching algorithm (Fig. 5).

As can be seen from Fig. 5, the dynamic features in the
three time periods exhibit great differences. Flotation per-
formance in time period A is normal. The velocity mag-
nitude stay in the range of 300-500 pixels/sec. Movement
direction is within a small range of 40-65 deg/s. However,
in time period B, the froth velocity magnitude is in the range
of 600-700 pixels/sec, which indicates a very high speed. The
movement direction varies in a smaller range of 20-35 deg/s.
Froth during this period is likely to burst, and this resulted in
unsatisfying flotation. In time period C, both froth velocity
and velocity direction fluctuate sharply. Froth movement is
disordered. This is due to pulp turning, which indicates poor
flotation performance and should be avoided.

IV. FLOTATION PERFORMANCE CLASSIFICATION
UNDER NORMAL WORKING CONDITIONS
Global features extracted from two distinct images could be
very similar, resulting in lower accuracy froth image classi-
fication and performance recognition. Moreover, when the
image is processed as a whole, describing the image using
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FIGURE 5. Local dynamic froth features in periods A, B, and C. (a) Froth velocity in period A. (b) Froth velocity direction in
period A. (c) Froth velocity in period B. (d) Froth velocity direction in period B. (e) Froth velocity in period B. (f) Froth
velocity direction in period C. (g) Froth burst rate in periods A, B, and C.
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global features is unintelligible. There exists a semantic gap
problem in the classification, i.e., the inconsistency between
global features and high-level semantic. In addition, due to
dust and illumination, the noises in froth images have diverse
impacts on different categories of froth images. Hence,
to improve the accuracy of image classification and perfor-
mance recognition, as well as to achieve optimal control of
sulfur flotation, local dynamic froth features are extracted and
utilized in this study. An image is first divided into patches.
The texture and color features of local patches are extracted,
and transformed into words of froth status. Then, the BoW
description of the images is obtained. The Bayesian probabil-
ity model is introduced, and EM (Expectation-Maximization)
algorithm is used for training the model parameters.

A. BoW DESCRIPTION OF FROTH IMAGE
The BoW description of froth images is inspired by the
BoW text classification model [25], [26]. BoW is a simpli-
fied representation model, in which a text (or document) is
represented as a bag of keywords and phrase. The gram-
mar and the order of words in the text are ignored. In a
document, the occurrence frequency of each key word is
a representation of the theme. Similarly, in image classifi-
cation, the occurrence frequency of each froth status word
indicates the theme of an image, i.e., the category an image
belongs to.

To start with, K-means clustering method is applied to
obtain the froth status glossary,
• Step 1: Select N frames of images from the image
library. The selected images should cover as much cate-
gories of flotation performance as possible;

• Step 2: Divide each image into m × m patches with the
same pixel size Lx × Ly;

• Step 3: Extract texture features (ASM, ENT, CON, IDM,
COR) and relative red component values of each patch
of each image to form a 1 × 6 dimensional feature
description vector;

• Step 4: Cluster all the feature description vectors using
K-means method to obtain D clustering centers, which
are the words of froth status. Then, the froth status
glossary is obtained.

After the establishment of the froth status glossary,
the BoWapproach can be adopted to describe the froth image.
BoW description of a froth image is a 1 × D dimensional
vector, in which each element illustrates the occurrence fre-
quency of corresponding froth status word in the patches. The
acquired BoW description of a froth image is shown in Fig. 6.
The acquisition steps are given as follows.
• Step 5: As each patch of the under processing image
has different local features, repeat steps 1-3 to acquire
feature vector description of each patch;

• Step 6: Obtain the similarity between the feature vector
of each patch with the words in the froth status glossary
by calculating the Euclidean distance. Then, choose the
one with the highest similarity as the froth status word
of the patch.

FIGURE 6. BoW description of froth images.

• Step 7: Calculate the frequency of each froth status word
to obtain the BoW description.

As can be seen from Fig. 6, the BoW of a froth image
is obatined as [0, 0, 3, 3, 3, 1, 6, 0]. Its high-level semantic
meaning could be derived from the BoW description. The
BoW description vector is a 1× 8 vector, which means there
are 8 froth status words in the froth status glossary. In the
BoW description vector, 6 means that the 7th froth status
word appeared 6 times, which indicates plenty of big froth in
the image. Elements with a value of 0 had no corresponding
froth status word in the image, which means that the image
did not contain blurry or smooth texture regions. This descrip-
tion is similar to human understanding, which from a certain
perspective fills the semantic gap.

B. FROTH IMAGE CLASSIFICATION BASED ON THE
BAYESIAN PROBABILISTIC MODEL
The Bayesian theorem derive the probability of an event
based on prior probability of conditions related to the event.
In sulfur flotation froth image classification, in order to make
full use of prior knowledge (prior probability) and sample
information, the following assumptions are made.
• One image solely belong to one category zk ∈

{z1, · · · , zNz}, e.g., excellent, good, general.
• Category variables zk (k = 1, 2, 3, · · · ,Nz) obey the
polynomial distribution on all froth image sample sets.

• Froth status words ωj(j = 1, 2, 3, · · · ,Nw) obey the
polynomial distribution on a certain category zk .

On the basis of the above three assumptions, define follow-
ing variables: p(d) represents the occurrence probability of a
BoW vector (abstracted from a froth image) in the sample set,
p(ωj | zk ) depicts the occurrence probability of froth status
word ωj when the corresponding category zk is set, p(zk , d)
stands for the probability distribution of all categories in one
image. Thus, the joint probability distribution of the froth
status word ωj and BoW vector d is,

p(di, ωj) = p(d)p(ωj | d) (8)

p(ωj | d) =
Nz∑
k=1

p(ωj | zk )p(zk | d) (9)
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Thus

p(d, ω) = p(d)
∑
z

p(z | d)p(ω | z) (10)

which can also be formulated as

p(d, ω) =
∑
z

p(d)p(d | z)p(ω | z) (11)

Therefore, for the whole BoW vector set and froth status
glossary, the model becomes

P(D,W ) =
D∏
d

Nw∏
w

p(d)
∑
z

p(z | d)p(ω | z) (12)

where di is the ith BoW vector in the sample set, Nw is
the number of froth status words, and D is the number of
BoW vectors in the sample set. The total number of model
parameters is D · Nz + Nz · Nw.
Hence, the maximum likelihood parameter optimization

problem of the classification model based on the Bayesian
probabilistic model can be formulated as

max logP(D,W )

st.
∑
z

p(z | d) = 1∑
z

p(ω | z) = 1∑
z

p(d) = 1 (13)

Since the model contains unobservable parameter z,
the Expectation-Maximization algorithm (EM) [27] is
applied in the identification. The steps are described below.
• Initializing the model parameters p(ω | z) and p(ω | d)
according to the experts’ experience and knowledge.

• Step ’E’: Calculate p(z | ω, d).

p(z | ω, d) =
p(ω | z, d)
p(ω, d)

=
p(ω | z)p(z | d)∑
z p(ω | z)p(z | d)

(14)

Here, p(z | ω, d) is the category distribution of froth
status words in a specific given froth image.

• Step ’M’: Calculate the derivations of the parameters,
the maximum likelihood condition is met when the
derivatives are equal to 0. Therefore,

p(d) =

∑
ω

∑
z n(d, ω)p(z | ω, d)∑

d
∑
ω

∑
z n(d, ω)p(z | ω, d)

=
n(d)∑
n n(d)
(15)

p(ω | z) =

∑
d n(d, ω)p(z | ω, d)∑

ω

∑
d n(d, ω)p(z | ω, d)

(16)

p(z | d) =

∑
ω n(d, ω)p(z | ω, d)∑

z
∑
ω n(d, ω)p(z | ω, d)

=

∑
ω n(d, ω)p(z | ω, d)

n(d)
(17)

where n(d, ω) indicates the times that froth status word ω
appears in froth image d . Step ’E’ and step ’M’ conduct
iteratively until convergence. The resulted model parameters

TABLE 2. Image classification result based on Bayesian probabilistic
model using local static features (Nz = 3, the size of froth status
glossary Nw = 20).

FIGURE 7. Influence of glossary size on classification accuracy.

p(ω | z) and p(z | d) can then be used to derive the category
of the froth image.

C. EXPERIMENTAL VERIFICATION AND ANALYSIS
In Section 3, by using the dynamic feature extraction based on
the SIFT featurematchingmethod described, abnormal work-
ing condition can be identified when the dynamic features
exceed a predefined threshold. This section deals with the
classification of flotation performance under normal working
conditions. The number of flotation performance categories
is set as Nz = 3. We collected 300 froth images cover
all the three categories (excellent, good, general) from a
plant, in which 150 images for model training and the rest
150 images for testing. Before conducting the experiment,
the images were labelled manually according to experts’
experience. The labelled result was then used as a reference
to evaluate the image classification result.

In the simulation, the size of froth status glossary is
assumed to be 20. The performance of the proposed image
classification approach is shown in Table 2. Fig. 7 and
Fig. 8 illustrate the impact of the size of froth status glossary
and the number of patches in an image on the classification
results.

The simulation result indicates a high classification accu-
racy. In addition, the size of froth status glossary and the
number of patches in an image have an impact on the clas-
sification result. Increase the size of glossary would improve
the classification accuracy. However, the flotation froth image
obtained has a low gray level and the contrast between images
in different categories are not obvious. And beyond certain
limits, increasing the size of the glossary can not result in a
higher classification accuracy. So a large froth status glossary
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FIGURE 8. Influence of number of patches on classification accuracy.

FIGURE 9. Feature distribution under normal and abnormal working
conditions.

TABLE 3. Classification Performance Using Velocity and Disorder Degree

is not advised. Similar phenomena was found in the relation
between classification accuracy and the number of patches in
an image.

V. RESULTS AND DISCUSSION
Fig. 9 shows the distribution of froth image samples, where
the axes are the parameters of two local dynamic features
(velocity and disorder degree). Statistical results of the nor-
mal and abnormal working conditions based on classification
of froth velocity and disorder degree are shown in Table 3.
The classification and recognition system showed high accu-
racy for normal working condition recognition, which is up
to 96.5%. The accuracy for abnormal working condition
detection is 86.7%.
Figs. 10 and 11 show the classification result with a combi-

nation of local physical and dynamic features. The static fea-
tures, such as texture and color features, are normalized and

FIGURE 10. Manual classification result.

FIGURE 11. Classification result using the proposed method.

TABLE 4. Statistical Results of the Proposed Classification System

converted into one parameter, which is denoted as mean abso-
lute of texture. Fig. 10 gives the distribution result of manual
classification of froth image samples, and Fig. 12 shows the
distribution result of the proposed classification system. Sta-
tistical result of the hierarchical classification system based
on dynamic and static characteristics are shown in Table 4,
where A, B, C, and D correspond to four categories of froth
performance (excellent, good, general, and abnormal, respec-
tively). The result indicated that the proposed hierarchical
classification based on local dynamic and static features
could accurately identify the performance category.

VI. CONCLUSIONS
A sulfur flotation performance recognition system based on
hierarchical classification was developed in this paper. Since
froth shows largely different dynamic characteristics under
normal and abnormal working conditions in sulfur flotation,
both local dynamic and static froth features were utilized to
reduce the limitations introduced by only using static froth
features in flotation performance recognition. The experi-
mental results indicate that the abnormal and normal work-
ing conditions can be effectively identified with high recog-
nition accuracy. Therefore, this system shows prospect for
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applications in sulfur flotation plants, and could be tailored
and applied in other flotation processes.

The effectiveness of this method could be explained from
the perspective of information. In the operation of indus-
trial processes, operators usually encounter the the ’infor-
mation asymmetry’ situation in which the control variables
are adjusted with limited information compared with the
complex system dynamics and it is thus hard to achieve
global optimal [28]. By utilize both local dynamic and static
froth features, the ’information asymmetry’ situation in sulfur
flotation process is lifted for certain extent. The result in this
paper encourage the development of more advanced flota-
tion performance recognition algorithms which could process
more froth features, especially in the context of fiercer global
competition and the upgrading of industrial automation sys-
tem from Industry 3.0 to Industry 4.0.
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