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ABSTRACT Preventing faults of sensors, wireless transmitters, and gateways are essential for water quality
management in intensive aquaculture. It remains a challenging task to achieve high fault diagnostic accuracy
of water quality monitoring and controlling devices. This paper proposes a hybrid water quality monitoring
device fault diagnosis model based on multiclass support vector machines (MSVM) in combination with
rule-based decision trees (RBDT). In the modeling process, an RBDT is used to diagnose the gateway fault
and wireless transmitter fault at the same time as a feature selection tool to reduce the number of features.
A multiclass support vector machine classifier is employed to diagnose the faults of water quality sensors due
to its robustness and generalization. We adopted an RBDT-MSVM algorithm to construct a fault diagnosis
model. The diagnostic results indicate that RBDT-MSVM model has great potential for fault diagnosis of
online water quality devices. RBDT-MSVM was tested and compared with other algorithms by applying it to
diagnose faults of water quality monitoring devices in river crab culture ponds. The diagnostic results indicate
that the model has great potential for fault diagnosis of online water quality devices. The experimental results
show that the proposed model RBDT-MSVM can achieve classification accuracy as high as 92.86%, which
is superior to the other three fault diagnosis methods. The results clearly confirm the superiority of the
developed model in terms of classification accuracy, and that it is a suitable and effective method for fault
diagnosis of water quality monitoring devices in intensive aquaculture.

INDEX TERMS Fault diagnosis, MSVM, rule-based decision tree, wireless sensor networks, aquaculture,
water quality.

I. INTRODUCTION

In China, more and more aquaculture industries are equipped
with water quality monitoring systems, such as dissolved
oxygen sensors, pH sensors and water temperature sensors
in river crab culture [1], [2]. The accuracy and reliability of
sensors is the key to realize the optimal rearing strategies
and to ensure the safety of river crabs. Although the water
quality monitoring devices are well constructed and robust,
the possibility of faults is inherent due to stresses involved
because online water quality sensors stay below the water,

and the solar-powered wireless transmitters are exposed in
the wild. Some devices will inevitably malfunction after a
relative long-term operation [3]. The faults of devices in the
system may not only cause the misinterpretation of opera-
tions, but also increase costs, decrease product quality and
affect the profit of farmers. Early detection of incipient faults
can minimize break down loss and reduces maintenance time.
Furthermore, the availability and reliability of devices will
also be increased. More and more water quality monitoring
systems in aquaculture are used in China. Early detection of
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device faults can not only ensure the safety of river crab,
but also save a lot of maintenance cost [4]. Consequently,
there has been an increasing demand for automated predictive
maintenance and fault diagnosis system.

The most common faults of water quality monitoring
devices are gateway faults, wireless transmitter faults, and
sensor faults [5], [6]. Different approaches for fault diag-
nosis of wireless sensor networks have been successfully
proposed. Most of these techniques involve comparisons
between neighboring nodes and using distributed algorithms.
Most of current fault detection and diagnosis systems are
based on the DFD (Distributed Fault Detection) algorithm,
which checks out the failed nodes by data exchanging and
mutual testing among intra—network neighbor nodes [7], [8].

The DFD algorithm has proved to be a reliable technique to
diagnose the condition of wireless sensor networks which has
the property of neighboring similarity. In this paper, because
different nodes are in different river crab culture ponds whose
water conditions vary a lot, the quantities of different dis-
solved oxygen nodes are different which doesn’t qualify the
requirement of DFD. However, different nodes share the same
change flow of the quantity of dissolved oxygen. Experts
systems have been developed for fault diagnosis, for example
Qian et al. [9] used an expert system for real-time fault diag-
nosis of complex chemical processes. However, if a system is
very complex, many fault diagnosis rules are generated and it
is difficult to manage them.

Intelligent methods, like artificial neural network and
SVM, have also been developed for fault diagno-
sis [5], [10]-[17]. Artificial neural networks have been widely
used, for example, Jahromi et al. [10] applied a sequential
fuzzy clustering based dynamic fuzzy neural network for fault
diagnosis and prognosis. Xiao et al. [11] proposed a fault
detection and diagnosis method of wastewater processes with
incomplete data by the auto-associative neural networks and
ARMA model.However, the neural network approach suffers
from a number of weaknesses, including the requirement
of a large number of controlling parameters, difficulty in
obtaining a stable solution, and the danger of over-fitting.
The support vector machines (SVM) technique can overcome
these weaknesses. For example, Yang et al. [5] proposed
a fault diagnosis method forwater quality monitoring and
control equipment in aquaculturebased on multiple SVM
combined with D-S evidence theory. Chang et al. [15] applied
afault diagnosis of a mine hoist based on PCA and support
vector machines. Gao and Hou [16] proposed an improved
support vector machines and GS-PCA for fault diagnosis
approach of Tennessee Eastman process. SVM was devel-
oped for recognizing patterns or discriminating between two
groups by Vapnik [18]. SVM represents some of the most
advanced pattern recognition platforms today. SVM achieves
an optimum network structure by striking a proper balance
between empirical error and the Vapnik-Chervonenkis (VC)
confidence interval [15]-[17]. In general, the performance of
SVM is better than ANN, and the solutions reached by SVM
areunique, optimum, and absent from local minima. In this
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study, SVM is used fordiagnosis of sensor fault to overcome
weaknesses of artificial neural network.

Online water quality sensors need wireless transmitters
and gateways to supply power or send out the data, so the
fault diagnosis of wireless transmitters and gateways are
fundamental to the fault diagnosis of sensors. Although the
quantities of different dissolved oxygen nodes are different,
different nodes shared the same kind of wireless transmitters
which provide sensor nodes with power supply and communi-
cation ability. In this study, rule-based decision trees (RBDT)
is used to detect gateway fault and wireless transmitter fault,
at the same time, RBDT is usedas a feature selection proce-
dure to remove irrelevant features for reducing the amount of
data needed to achieve good learning, classification accuracy,
and a reduction in computational time for diagnosis of sensor
faults [5].

The proposed approach consists of two stages. First, the
rule-based decision trees (RBDT) diagnose the gateway fault
and wireless transmitter fault in the meantime as a feature
selection tool for reducing the number of features. Secondly,
the MSVM classifier is used to diagnose the faults of water
quality sensors.

The structure of this paper is organized as follows.
Section 2 introduces decision tree, support vector machine,
and multiclass classification. Section 3 presents the back-
ground of fault diagnosis of water quality monitoring
devices. Section 4 presents the fault diagnosis model of
water quality monitoring devices based on RBDT-MSVM.
In section 5, details of the experimental environment,
data acquisition, feature extraction, and results are given.
Conclusions and proposals for future work are summarized
in section 6.

Il. RELATEDMETHODOLOGY

A. DECISION TREE

Decision tree, a popular tool in machine learning, is an
efficient tool for classificationproblems [19]. Unlike other
classification approaches that use a set of features (or bands)
jointly toperform classification in a single decision step,
the decisiontree is based on a multistage or hierarchical
decision schemeor a tree like structure. Thetrees consist of
internal nodes (with two children) and terminal nodes or
leaf nodes (withoutchildren). Each internal node is associated
with a decisionfunction to indicate which node to visit next,
while teach terminal node shows the output of a given input
vectorthat leads the visit to this node [20]. Each node of the
decision treestructure makes a binary decision that separates
either oneclass or some of the classes from the remaining
classes. Theprocessing is generally carried out by moving
down the treeuntil the leaf node is reached. This is known
as a top—down approach.

Traditionally, Decision trees consistof two phases, the first
phase is called tree building, and the other is tree pruning [21],
which is constructed from existing data to classify future data.

The construction of a decision tree is based on binary
recursive partitioning, which is an iterative process that splits
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the datainto partitions.Initially, all the training samples are
used todetermine the structure of the tree [20]. The algorithm
then breaks the data using every possible binary split and
selects the split that partitions the data into two parts such
that it minimizes the sum of the squared deviations from
the meanin the separate parts. The splitting process is then
applied to each of the new branches. The process continues
until each node reaches a user-specified minimum node size
(i.e., the number of training samples at the node) and becomes
aterminal node.

Since the tree is constructed from training samples, it may
suffer from over-fitting when the full structure isreached. This
may deteriorate the classification accuracy of the tree when
applied on unseen data and hence may lead to less gener-
alization ability. Therefore, a pruning process is generally
adopted using a validation data set and the user specified cost
complexity factor [22], [23].

In this paper, a set of expert rules were used in supporting
the tree building and substituting the tree pruning for detect-
ing and diagnosing faults. Those rules and thresholds are
from experienced maintenance technicians, and are utilized
to detect faulty gateways and faulty wireless transmitters.
A decision tree is also utilized as feature selection procedure
to remove irrelevant features for reducing the amount of data
needed to achieve good learning, classification accuracy, and
a reduction in computational time for diagnosis of sensor
fault. It will be described in details in the next section.
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FIGURE 1. Optimal separating hyper-plane with the largest margin.

B. SUPPORT VECTOR MACHINE

Support vector machine (SVM) was firstly proposed by Vap-
nik and Lerner at 1995 to solve non-linear model [18]. The
SVM algorithm is based on the statistical learning theory
and the Vapnik—Chervonenkis (VC) dimension [16], [17].
SVM analysis seeks to find an optimal separating hyper-
plane by maximizing the margin between the separating data,
as illustrated in Fig. 1. Let {x;, y;}’_; be the training sample
set, where X; € RP is the input vector, y; € {—1,1} is
the class labels. SVMs try to find an optimal hyper-plane
< w-x > +b = 0, where w is the normal to the optimal
hyper-plane, and b is a scalar threshold [24].
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The optimal hyper-plane can be found by solving the
following constrained optimization problem:

o] 2
Minimize > [lw]|

Subjecttoy;s <w-x+b>>1, i=1,2,....,n. (1)

SVM is trained as a quadratic optimization problem[18]:

n n
1
R= Zai —5 Z aiagyyj (xi - x;) 2
i=1 ij=1
n
Is maximized subject to > a;y; = 0 and C > q; > 0, where

C is the penalization p?ll?allmeter, which is used to control
trade-off between the training error and the margin.

When the above optimization problem is solved, the nor-
mal to the optimal hyper-plane, W, can be computed by

n
W= ayixi 3
i=1

Thus, by solving the dual optimization problem, the non-
linear decision function is gained as follows:

n
f@) = sign(Y " viai (x; - x) + b @
i=1

There exists a kernel function k(x;, x) which can make SVM
realize nonlinear classification. The value of k(x;, x) equals to
o(X;) - (X), where ¢(-) is the transformation function, which
makes the input data into higher-dimensional feature space.
Then the non-linear decision function of SVM is described as
below:

n
FG) = sign(Y_ yiaik(xi, x) + b ®)
i=1
In Eq. (5), k(x;, x) is the kernelfunction which satisfies
Mercer’s condition corresponding to a dot product in some
feature spaces. Four common Mercer kernel functions [25],
where d, y, and o are constants, are listed in Table 1.

TABLE 1. Common kernel functions.

Name Function Expression

K(x,,x)=x/x

Linear Kernel

Polynomial Kernel
RBF Kernel
Sigmoid Kernel

K(x,,x)= (xfx /o* + ;/)d
K(xk,x)=exp(‘|\xk-x||2/02 )
K(x,,x) = tanh(yx,x+ )

C. MULTICLASS CLASSIFICATION

SVM was originally designed for binary classification.
Nevertheless, fault diagnosis of water quality monitoring
devices usually falls into multiclass classification. Several
methods are proposed to effectively extend it for multi
classification such as ‘“‘one-against-all” and “‘one-against-
one” [26], [27], while more binary SVMs and training
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amount are required. Li et al. indicated that the one-against-
other (OAO) approach requires a shorter training time [26];
hence, in our study, OAO is used for fault diagnosis of water
quality sensor. For a data set with k different classes, the step
of method constructs k (k - 1)/2 binary SVMs as follows.
Step 1: For any new test data X, put it into each classifier
to obtain a result of classification. When a binary classifier
(Class i and class j) indicates the data set X should be class
i, the class i gets one vote. Step 2: Make a decision with the
classwhich has the greatest number of votes.Step 3: Repeat
these steps till last binary SVM classifier is constructed.
In this way, multiclass classification based on SVM may be
constructed for a case of k class classification problem.

llIl. PROBLEM STATEMENT AND DATA PREPARATION

In this study, we developed a fault diagnosis system and diag-
nosed newly appearing faults precisely and rapidly. A water
quality monitoring system is selected for study. The water
quality monitoring system proposed in this paper is used in
outdoor river crab aquaculture to ensure the safety of river
crabs by monitoring the quantity of dissolved oxygen (DO)
in the river crab pond and according to the quantity of DO
automatically controlling the aerator. If the water quality
monitoring system fails for a long time without any warning,
the river crab may be in danger, and one year’s effort of river
crab culture farmers may be in vain. The sensors, actuators,
wireless transmitters, gateways and remote servers compose
the water quality monitoring and controlling system. The
sensor is paired with a wireless transmitter which contains
two main blocks: (a) a power unit consisting of a solar power
panel and a rechargeable battery; it is for powering both the
sensor and the transmitter and (b) a wireless communication
module; it is for communicating with the gateway (see func-
tional diagram shown in Fig. 2, the system typology structure
diagram is shown in Fig.3).

Remote server

GPRS Gateway

GPRS Gateway

N\ HI5.4
S
\

Solar
“ power
Z panel

/

H15. 4

power
panel

___Wireless 485
Transmitter

——Wireless
! Transmitter

Actuator,

Crab pond| | Crab pond

FIGURE 2. Functional diagram of water quality monitoring system.

When the sensor wants to sense the water quality parame-
ters in the river crab pond, actions of the water quality mon-
itoring and controlling system proceed as follows: (a) power
supply unit of wireless transmitter supplies power for the
sensor; (b) sensor probe obtains power; (c) sensor probe
senses the water quality parameters; (d) wireless transmitter
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FIGURE 3. The topology structure diagram of the water quality
monitoring system.

TABLE 2. Data channels of water quality monitoring devices.

Channel Channel Name Acquisition Equipment
Number

1 City power supply Gateway

2 Current one Gateway

3 Current two Gateway

4 Switch signal Gateway

5 Analog signal one Gateway

6 Analog signal two Gateway

7 Device voltage Gateway

8 Device information ~ Wireless transmitter
9 Device voltage Wireless transmitter
10 Signal strength Wireless transmitter
11 Dissolved oxygen Water quality sensor
12 water temperature Water quality sensor
13 DO engineering  Water quality sensor

value

acquires those parameters through 485 serial communication;
(e) wireless communication module of wireless transmitter
sends those data to gateway via H15.4 wireless communica-
tion protocol; (f) gateway processes those data and control
the actuator if necessary; (g) gateway send those data and
control history to the remote server. To keep a suitable water
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FIGURE 4. Digital Wireless Monitoring and Controlling System of Aquaculture Water Quality: (a) the distribution map of Digital Wireless Monitoring
System of Aquaculture Water Quality, (b) aerial view of experiment base, (c) operation system interface, and (d) maintenance systems interface.

quality for the river crab in the pond, it’s important that each
operational step described above should proceed normally.
When a failure occurs, the value of the sensor couldbe out
of normal range or not acquired. Traditionally, the technician
uses an electronic meter and a portable computer to obtain
parameters of operational equipment, reads the maintenance
handbook, and then diagnoses reason(s) for the fault(s). This
process involves considerable time, and the maintenance effi-
ciency depends on the ability and experience of the techni-
cian. In order to preclude human error and take advantage
of expert domain knowledge in fault diagnosis, rule-based
decision tree and multiclass SVM are introduced as reliable
means for fault diagnosis in this paper.

Thirteen common faults are selected from the operational
processes described above, classified as three broad types,
including ““gateway fault”,*“wireless transmitter fault,” and
“sensor fault.

The data used in this study have been produced by the
water quality monitoring system. The system is installed
in 69 river crab culture ponds in County of Yixing, Jiangsu
Province, China. The software system is shownin Fig. 4.
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In this system, the water quality sensor has three channels,
including dissolved oxygen, water temperature, and dissolved
oxygen engineering value. The wireless transmitter has three
channels, include device information, device voltage, and
signal strength. The gateway has seven channels, including
city power supply, current one, current two, switch signal,
analog signal one, analog signal two, and device voltage.
That information is the source of the fault diagnosis sys-
tem (Table 2).

In this study, 4 towns and 69 river crab farms were mon-
itored. Each experiment pond was about 20,000 m?, and the
water level is1 to 2 m. The original data was collected to the
remote server every ten minutes. The actual picture of the
digital wireless monitoring system is shown in Fig.4.

IV. FAULT DIAGNOSIS OF WATER QUALITY
MONITORING DEVICES BASED ON MULTICLASS
SUPPORT VECTOR MACHINES AND RULE-BASED
DECISION TREE MODEL BUILDING

Rule-Based Decision Tree (RBDT) detects gateway faults
and wireless transmitter faults as a reduction in computational
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Gateway fault
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based on Rule-
Based Decision
Tree

Wireless
Transmitter fault

Diagnosing |
sensor based on E:#)
Multiclass—SVM \

= Sensor fault

‘Output diagnosis l‘esult‘

End

FIGURE 5. Flow chart of fault diagnosis system for water quality
monitoring devices.

time for diagnosis of sensor faults. If the diagnosis result of
RBDT is that both gateway and wireless transmitter are nor-
mal, Multiclass SVM will be utilized to diagnosethe sensors.
The flow chart is shownin Fig. 5.

A. FAULT DIAGNOSIS OF GATEWAY AND WIRELESS
TRANSMITTER BASED ON RULE-BASED

DECISION TREE

As shownin Fig. 2 and Fig. 3, the structure of the water
quality monitoring and controlling system is a tree, and the
data flow is pretty clear, an up-down approach, from sensor to
wireless transmitter to gateway. Decision Tree is used to diag-
nosethe gateway, if the gateway is normal, then diagnosethe
wireless transmitter, if the wireless transmitter is normal,
then diagnose the sensor using SVM. Domain knowledge of
experienced maintenance technicians has been used in every
binary split to build the decision tree (Fig. 6).

The gateway
is online

The

ansmitter changsd voltage vas high

Yes \ Yes \ o
/ 5 N
¥ I
Tata of the Voltage of the Signal strength of Fover supplicd by
sensor changed ransmitter is hig he gateway is strong comercial pover
Yes ‘
No Ye No Yes Yo Yes No
SO card run) [Fommnicatio
failure of
out of money
gateway
£ 5 i i 5

The rules generated from the decision tree in Fig. 6 are as
follows.

Rule 1: IF (Gateway status = Offline) AND (The latest
Gateway power status = high) AND (The latest Gateway
communication status = strong)

latest

Data of the

Sensor failure or’
communication failure
between sensor and
transmitter

Undecided,
waiting for
next step

FIGURE 6. Decision Tree.

VOLUME 6, 2018

THEN Fault type is f5, SIM card inside of gateway runs
out of money

Rule 2: IF (Gateway status = Offline) AND (The latest
Gateway power status = high) AND (The latest Gateway
communication status = weak)

THEN Fault type is f6, communication failure of gateway
communication module

Rule 3: IF (Gateway status = Offline) AND (The latest
Gateway power status = low) AND (The power supplier =
commercial power)

THEN Fault type is f7, commercial power of gateway is off

Rule 4: IF (Gateway status = Online) AND (The latest
Gateway power status = low) AND (The power supplier =
backup battery)

THEN Fault type is {8, backup battery runs out of power

Rule 5: IF (Gateway status = Online) AND (The wireless
transmitter power status = high) AND (The wireless trans-
mitter communication status = strong)

THEN Fault type is f1, Undecided, waiting for next step

Rule 6: IF (Gateway status = Online) AND (The wireless
transmitter power status = high) AND (The wireless trans-
mitter communication status = strong)

THEN Fault type is {2, sensor fault

Rule 7: IF (Gateway status = Online) AND (The wireless
transmitter power status = high) AND (The wireless trans-
mitter communication status = weak)

THEN Fault type is f3, communication failure of the wire-
less transmitter communication module

Rule 8: IF (Gateway status = Online) AND (The wireless
transmitter power status = low) AND (The wireless transmit-
ter communication status = strong)

THEN Fault type is f4, power failure of the wireless
transmitter.

B. FAULTDIAGNOSIS OF WATER QUALITY SENSOR
BASED ON MULTICLASS SVM
In this paper, the approach based on multi-SVM classifier
is proposed for fault diagnosis of water quality sensor.The
implementation process of fault diagnosis of water quality
sensor based on multiclass SVM is shown in Fig. 7. The fault
diagnosis system consists of data acquisition, pretreatment
data, feature extraction, fault diagnosis model, testing results,
and application.
The implementation process of fault diagnosis of water
quality senor based on MSVM can be described as follows:
Step 1: Data acquisition and normalization. Data acquired
from water quality monitoring system. The data are normal-
ized to improve the treatment effect according to the formula:

o= Xi — Xmin (6)
Xmax — Xmin
where xpmax 1s the maximum in the series data, xyin is the
minimum in the series data.

Step2: Feature Extraction. Statistical methods are
employed to data dimension reduction and extract feature of
the data. Redundantinformation in the original data space can
be excluded by statistical methods.
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FIGURE 7. Flow chart of fault diagnosis of senor based on MSVM.

Step 3: Construct training sample set and test sample set,
then form training patterns.

Step 4: Train MSVM on the training set, the parameter
for MSVM-based classifier is determined by adopting cross
validation method, and obtain the fault diagnosis model, and
test the performance of the fault diagnosis model with test
sample.

Step 5: For anew application of fault diagnosis task, extract
fault diagnosis index of water quality sensor and form a set
of input variables x. Then compute the estimation result ¥
using Eq. (5).

V. EXPERIMENTS

A. DATA ACQUISITION

In our experiments, the multi-parameter sensor fusion
which combines water temperature and dissolved oxygen is
employed as research object, and five fault types of the sensor
including (a) water temperature unchanged, (b) water temper-
ature abnormal change, (c) rapid water temperature variation,
(d) dissolved oxygen consistent high, (e) dissolved oxygen
abnormal change. The local weather station supplied the
weather parameterevery ten minutes, including air tempera-
ture and humidity, solar radiation, wind speed and direction,
atmosphere pressure, and rainfall (Fig.3). In this paper, solar
radiation was used to discrete the data flow collected by sen-
sors. The original data was collected by devices in Fig.2 and
Fig.3, every ten minutes from 69 river crab ponds, in County
of Yixing, Jiangsu Province, China, from June to November.
In this paper, we manually select faulty and normal data sets
from that six-month test period. The 22 normal data sets are
selected from monitoring points where the sensor, wireless
transmitter and gateway all work normally more than one
month. The 73 faulty data sets are collected from different
monitoring points where faults happen, and the duration for
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different fault types varies from two days to one month. The
measurement from the monitoring system updates every ten
minutes. For example, for one month or 30 days, we have
4320 measurements in the data set.

FIGURE 8. Values of the 9 measurements in the same time domain.

B. FEATURE EXTRACTION

The original data sets were recorded every ten minutes,
it looks like that they were continuous in time series. They
have to be cut into smaller meaningful data sets, so they can
be used to perform fault diagnosis by analyzing the feature of
different fault types. Fig. 8 shows a plot of the values of nine
variables over the time, while Table 3 shows the correlation
coefficient for each pair of variables. As showed in Table 3,
the solar radiation had the highest correlation of coefficients,
so the solar radiation was used to cut the origin data set to
discrete smaller data sets.

FIGURE 9. Time domain plots of DO, water temperature and solar
radiation values acquired by normal sensors.

As showed in Fig. 9, the original time series was cut
into smaller time series according to whether the value of
solar radiation is zero or not. Each cut section of time series
was used a minimal unit to extract feature. Fig. 10 shows
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TABLE 3. Correlation of coefficients between the 7 weather variables and 2 sensor variables.

Rainfall ~ Wind Speed Wind Direction Air Temperature Air Humanity Atmosphere pressure Solar Radiation
Water Temperature -0.0735 -0.2153 0.4203 0.8005 -0.7678 -0.3681 0.6075
Dissolved Oxygen -0.1318 -0.1712 0.2572 0.8957 -0.8557 0.0335 0.9162
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FIGURE 10. Time domain plots of water quality parameters combined with Solar Radiation Sequences.

the time domain sequences taken from water quality sen-
sors for different conditions. The time domain signal can
be used to perform fault diagnosis by analyzing sensor
signals obtained from the experiment. Statistical methods
used can provide the characteristics of time domain series.
Statistical analysis of time series yields different descrip-
tive statistical parameters. So we chose measures including
standard error, standard deviation, sample variance, kurto-
sis, skewness and derivativeas criteria for extracting features
from each cut section of time series. The definitions of the
performance metrics and their calculations are summarized
in Table 4.

The experimental input data is required to pre-treat to
make the entries suitable for the multiclass SVM models.
There are 10 necessary features selected to describe DO and
water temperature respectively, hence there are 20 parameters
selected in order to classify 5 kinds of sensor faults and one
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RERERERARC SAREEES IR
TABLE 4. Performance indice and their calculations.
Statistical methods | Calculation
Standard error 1 Sy [Z(x—;)(y—;)]z]
n-2 (x—x)?
Standard deviation S -Gl XD
n(n-1)
Sample variance S -G XD
n(n-1)
Kurtosis k) e oxmxg, 3=l
{(n-l) (n72)(n73)z( s }—(n72)(n73)
Skewness "X —})3
(n-1) s
Derivative dp(n) = p(n) — p(n—1)

kind of normal situation that correspond to each kind of fault
during training or testing. The pretreatment of input data is
shown in Table 5.
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TABLE 5. Pretreatment of input data for multiclass SVM.

X, X5 X3 Xy X5 X X7 X8 X9 Xao Fault type
31.232 0.0937 31.733 30.781 31.251 1.917 0.079 0.952 343.560  0.306 no fault
30.445 0.0269 30.720 30.235 30.425 1.828 0.321 0.485 304.452  0.186 no fault
23.991 0.0032  24.0766 24.093 23.985 1.850 -0.060  0.183 407.841 0.060 no fault
23.592 0.0021 23.689 23.894 23.603 2.501 -0.028  0.176 424.664  0.466 no fault
26.560 0 26.560 26.560 26.560 0 956.154 0 (a)Water temperature unchanged
26.560 0 26.560 26.560 26.560 0 929.594 0
26.559 0 26.559 26.559 26.559 0 1009.274 0
2499.39 0 2499.39  2499.39 2499.39 0 14996.34 0 (b)Water temperature unchanged
2499.39 0 2499.39  2499.39 2499.39 0 12496.95 0
2499.39 0 2499.39  2499.39 2499.39 0 12496.97 0
25.703 9.0129 31.586 21.011 25.065 2.713 0.517 10.572 282.736 3.002  (c)rapid water temperature variation
25.849 3.8196 30.480 23.486 25.549 3.892 1.117 6.994 284.341 1.954
21.835 7.7874 27.177 19.403 20.633 2.393 1.032 7.774 240.182 2791
19.908 8.6575 26.496 17.856 18.701 3.742 1.565 8.640 218.989  2.806
24.144 11.0147  28.628 20.130 23.089 1.778 0.231 8.498 120.718  3.416
29.422 0.0098 29.556 29.221 29.438 2.009 -0.384  0.335 853.247  0.099  (d) dissolved oxygen consistant high
28.864 0.03541  29.198 28.587 28.851 1.809 0.084 0.611 837.068  0.196
30.732 0.1066 31.299 30.189 30.731 1.792 -0.082 1.110 921.949  0.326
29.746 0.0586 30.136 29.351 29.746 1.709 0.067 0.784 862.642  0.251
24.880 0.2037 25.731 24.424 24.649 2.159 0.797 1.308 298.562  0.451
23.131 0.1686 23.705 22.565 23.154 1.504 -0.008 1.139 2717.574 0411 (e) change law of dissolved oxygen
abnormal
22.327 0.0092 22.514 22.203 22.309 2.264 0.525 0.311 267.929  0.113
31.343 0.0157 31.515 31.181 31.337 1.725 0.097 0.334 188.056  0.125
31.024 0.0050 31.115 30.938 31.023 1.656 0.064 0.177 155.121 0.090
31.925 0.0789 32.248 31.354 31.989 2.546 -0.717  0.893 351.185 0.281
30.329 0.3086 31.173 29.673 30.110 1.549 0.363 1.499 333.623 0.607

After collecting and arranging the maintenance data avail-
able in a six-month period, there are 95 available samples for
this study. We randomly assign these data sets to training and
testing groups.

C. RESULTS AND DISCUSSION

The proposed RBDT-MSVM algorithm was implemented
in the Matlab7.13.0564 programming language. The exper-
iments are made on a 2.50 GHz Core (TM) i5-3210M
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CPU personal computer (PC) with 4.0G of memory running
Microsoft Windows 7.

Classification is a two phase process: training and testing.
Training is the process of learning to label from the examples.
Training can be supervised mode or unsupervised mode.
Here, supervised mode is used for training. Testing is the pro-
cess of checking how well the classifier has learnt to label the
unseen examples. The four different kernel functions, such
as polynomial function, sigmoid functionand RBF of MSVM
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FIGURE 11. Test result of SVM with four different kernel functions. (a) polynomial. (b) RBF. (c) sigmoid. (d) linear.

TABLE 6. Diagnostic accuracy statistical analysis on three models.

No. Classifier Diagnostic accuracy
1 MSVM - sigmoid 88.0952
2 MSVM - polynomial 90.4762
3 MSVM - RBF 92.8571
4 MSVM -linear 86.9814

were used for classification. The parameters of MSVM [26]
were given as follows: penalty parameter ¢ = 10, kernel
parameter g = —1. The classification efficiency for the four
different functions of MSVM is given in Table 6.

From Table 6, the MSVM models of all the kernel function
tested yielded classification accuracy in excess of 86.9814%;
RBF kernel functions provided accuracy of 92.8571% in fault
classification. The testing results of the four MSVM classi-
fiers for sensor faults are presented in the form of confusion
matrix in Fig. 11.

The interpretation of the confusion matrix is as follows:
The diagonal elements in the confusion matrix show the
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number of correctly classified instances. Output results are
numbered directly from 1 to 6. For example, output “1”* indi-
cates the sensor is normal; output ““2, 3, 4, 5, 6”’respectively
indicates fault““a, b, c, d, e”. In Fig. 11, the RBF kernel func-
tion MSVM model classified can acquire good performance
of classification and requires a little operation. The other
three kernel function MSVM models classified the normal
situation and fault “‘a, band ¢ correctly, and misclassified
fault “dand e” as normal situation. Those MSVM models
find that it was difficult to discriminate between fault e and
normal situation.

To analyze and compare fault diagnosis performance,
a standard BPNN model andstandard least square support
vector regression (standard-LSSVR) were also tested to diag-
nosethe sample, and the results are shown in Table 7, which
are not so good. The reason is that the number of fault samples
is not large enough for the BPNN to be well trained to exploit
all of its potential.

This study presents a fault diagnosis of water quality
monitoring devices based on RBDT-MSVM. The results
of application in water quality monitoring devices fault
diagnosis demonstrate that the prediction method based on
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TABLE 7. Survey of classifier performances in respect of kernel functions.

Classifier Diagnostic accuracy (%)
MSVM - RBF 92.8571
BPNN 60.3468
standard-LSSVR 90.6237

RBDT-MSVM is both effective and feasible; this fault diag-
nosis is important for decision making regarding water qual-
ity management in river crab pondsso that the testing costs
and production schedule can be optimized.

VI. CONCLUSION AND FUTURE WORK

Fault diagnosis of wireless sensor networks is one of the
newest research areas in the field of water quality monitoring.
Many researchers reported the fault diagnosis of sensors, but
here sensors,wireless transmitters and gateways have been all
considered.

Implementation of some other measures may improve the
performance of RBDT-MSVM and accordingly the results of
fault detection. For instance, rule-based domain knowledge
has been employed to build the decision tree quickly and
effectively, and has helped remove the irrelevant data for the
diagnosis of sensor fault.

The six senor situations were classified using four dif-
ferent MSVM kernel functions of MSVM model in support
vector machine. The RBF kernel model gives the best clas-
sification efficiency for six sensorsituations. The classifica-
tion results and statistical measures were used for evaluating
the RBDT-MSVM model. The total classification accuracy
was 92.8571%. From the above result we can conclude that
MSVM classifier with RBF kernel function combined with
RBDT is a good candidate for fault diagnosis of water quality
monitoring devices.

In future work, we intend to integrate the fault diagno-
sis algorithms of water quality monitoring devices based
RBDT-MSVM within the intelligent water quality monitor-
ing and controlling software platform, so that the alerting
system will be able to issue early warnings based on the
diagnosis results.
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