
Received December 27, 2017, accepted February 3, 2018, date of publication February 9, 2018, date of current version March 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2804321

CodeTracker: A Lightweight Approach to
Track and Protect Authorization
Codes in SMS Messages
JINKU LI 1, YANGTIAN YE1, YAJIN ZHOU2,3, AND JIANFENG MA1
1School of Cyber Engineering, Xidian University, Xi’an 710071, China
2Cyber Security Research Institute, Zhejiang University, Hangzhou 310027, China
3College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

Corresponding author: Jinku Li (jkli@xidian.edu.cn)

This work was supported in part by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2015JM6351,
in part by the Key Program of the National Natural Science Foundation of China under Grant U1405255, and in part by the Shaanxi
Science and Technology Coordination and Innovation Project under Grant 2016TZC-G-6-3.

ABSTRACT Short message service (SMS) authorization codes play an important role in the application
ecosystem, as a number of transactions (e.g., personal identification and online banking) require users
to provide a code for authorization purposes. However, authorization codes in SMS messages can be
stolen and forwarded by attackers, which introduces serious security concerns. In this paper, we propose
CodeTracker, a lightweight approach to track and protect SMS authorization codes. Specifically, we leverage
the taint tracking technique to mark the authorization code with taint tags at the origin of the incoming
SMS messages (taint sources), and then, we propagate the tags in the system. To this end, we modify the
related array structure, array operations, string operations, inter-process communication mechanism, and file
operations for secondary storage of SMS authorization codes to ensure that the taint tags cannot be removed.
When the authorization code is sent out via either SMS messages or network connections (taint sinks),
we extract the taint tag of the data and enforce pre-defined security policies to prevent the code from being
leaked. We have developed a prototype of CodeTracker on Android’s ART virtual machine and used 1, 218
SMS-stealing Android malware samples to evaluate the system. The evaluation results show that
CodeTracker can effectively track and protect SMS authorization codes with a small performance overhead
(<2% on average).

INDEX TERMS Data privacy, tags, Android, short message service (SMS) authorization codes.

I. INTRODUCTION
Smartphones are widely used in our daily life. Increasingly
more users leverage smartphones for online transactions,
bank transfers and other operations. Simultaneously, increas-
inglymorewebsites and applications (apps for short) leverage
codes delivered via short message service (SMS) messages
to authorize users. We call this type of code an authoriza-
tion code in this paper. For instance, an SMS authorization
code can be required when users log into a banking appli-
cation or reset their passwords. Leveraging SMS codes for
authorization is convenient; however, it may present security
concerns. If the code is stolen by attackers, it can cause
financial losses to users.

On the other hand, SMS-stealing malware is emerg-
ing [1], [2]. A research report from the Qihoo 360 com-
pany [3] revealed that 6.1% of mobile malware is

stealing information. Among these information-stealing
malware samples, 67.4% of them are targeting SMS
messages. A research paper [4] noted that among the 49 mal-
ware families, 27 of them are harvesting user information,
including user accounts and short messages. To this end, there
is an urgent need to protect the SMS authorization codes in
smartphones.

Before Android version 4.4 (KitKat) [5], malicious apps
could intercept SMSmessages to retrieve authorization codes
and then block the SMS broadcasting stealthily without
informing users. However, starting with Android version 4.4,
the SMS mechanism has been changed. Malicious apps are
unable to block SMS broadcasting, and the system SMS
app will get the SMS messages. However, malicious apps
can still steal SMS messages by registering a broadcast
receiver that listens to certain system events or requesting

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

10107

https://orcid.org/0000-0003-0709-7434


J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

the READ_SMS permission to retrieve SMS messages from the
database.

We noted that a number of systems have been proposed
to protect SMS authorization codes. For instance, TISSA [6]
can provide null or bogus values instead of real data, which
avoids data leakage (including SMS authorization codes).
However, TISSA is currently implemented on legacy
Android’s Dalvik runtime and not the newly designed ART
runtime. SecureSMS [7] is another system used to protect
SMS messages by changing the Android framework. In par-
ticular, when an SMS message arrives, SecureSMS searches
the message text. If a pre-defined keyword is found in the
message, it adjusts the apps’ receiving sequence of text mes-
sages in the system so that the default SMS app can get the
text message first. Then, it stops the SMS broadcasting to
prevent malicious apps from getting themessage. This system
works but may cause compatibility issues in some benign
apps that rely on received text messages. In addition, starting
with Android version 4.4, the SMS broadcasting mechanism
has been changed, and the new unordered broadcasting can-
not be blocked.

From another perspective, because SMS authorization
codes are a type of sensitive data in smartphones, they can
be protected with the well-known taint tracking technique.
TaintDroid [8] is such a system for real-time privacy monitor-
ing that can be used to protect authorization codes. However,
TaintDroid is implemented on the Dalvik virtual machine
under Android version 4.4 and has not been applicable for
the newly introduced ART runtime since Android 4.4. Tain-
tART [9] implements a practical multi-level information-
flow tracking system on Android’s ART virtual machine and
can be used to track and protect private data. However, its
extensibility is an issue because the bit length of a register
(32 bits) for taint indication is limited. ARTist [10] is a
system in Android that tracks private data by instrumenting
apps using a customized dex2oat tool. ARTist is an excellent
system; however, it only works for intra-application tracking
and lacks the inter-application tracking that is necessary for
SMS authorization code protection.

In this paper, we propose CodeTracker, a lightweight
approach to track and protect SMS authorization codes in
Android SMSmessages. Specifically, CodeTracker adds taint
tags to mark the authorization code at the very beginning of
the incoming SMSmessages, and it modifies the related array
structure, array operations, string operations, IPC (Inter-
Process Communication) mechanism, and file operations for
the secondary storage of SMS authorization codes to ensure
that the tags cannot be removed. Finally, when the autho-
rization code is sent out (via either SMS or the network),
CodeTracker extracts the tag of the data and checks with pre-
defined security policies. By doing so, it prevents authoriza-
tion codes from being stolen by attackers.

We have developed a prototype of CodeTracker on an
Android system with the ART runtime, and we collected
1, 218 state-of-the-art SMS-stealing Android malware sam-
ples to evaluate the system. The evaluation results show that

CodeTracker can track and protect SMS authorization codes
from being stolen. We further analyzed the remote server
addresses where the stolen authorization codes are forwarded
to, and we found that 87.66% of them are located in China.1

This may be due to the popularity of third-party app stores in
China with less regulation. The evaluation of the performance
overhead shows that CodeTracker incurs a small overhead
(<2% on average).

In summary, this paper makes the following contributions:
• Wepropose a lightweight approachwith data-flow track-
ing to protect SMS authorization codes in Android
smartphones, called CodeTracker.

• We have implemented a prototype of CodeTracker in the
Android ART runtime. CodeTracker adds taint tags to
the SMS authorization code at the very beginning of the
incoming SMS messages and ensures that the tags can-
not be removed when propagating through the system.
When the authorization code is sent out, CodeTracker
protects the code by enforcing pre-defined security
policies.

• We have evaluated our system with a collection of
1, 218 malware samples. The evaluation results demon-
strate the effectiveness and low performance overhead
of our system.

The remainder of the paper is structured as follows.Wefirst
introduce the necessary background information in Section II.
We then present the motivation examples and provide a
case study of existing SMS-stealing malware samples in
Section III. We illustrate the design, implementation, and
evaluation of our system in Section IV, Section V, and
Section VI, respectively. We discuss the limitations and
potential improvements to our system in Section VII, and the
related work is presented in Section VIII. Finally, we con-
clude the paper in Section IX.

II. BACKGROUND
In this section, we will briefly introduce the key concepts of
the Android SMS system, as well as the Android runtime
environment, to provide necessary background information
for our proposed approach.

A. ANDROID SMS SYSTEM
In Android, when receiving a text message, the system sends
the message from the RIL (Radio Layer Interface) layer
to the framework layer. The framework layer then packs
the text message into an SMS PDU and sends a broad-
cast indicating the receiving of an SMS message. All apps
with the RECEIVE_SMS permission will receive the broadcast
along with the SMS message if they have registered the
SMS_RECEIVED_ACTION action.
Before Android version 4.4, SMS broadcasting was

ordered, and apps with higher priority (declared by apps in
the manifest file) could access SMS messages first and then

1To engage the community, we will release the destination addresses
where the samples are forwarding stolen SMS authorization codes to.

10108 VOLUME 6, 2018



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

discard the messages, which makes apps with low priority
unreachable to the SMS messages. This mechanism has been
abused by malware to intercept SMS messages [4]. In addi-
tion, if a malicious app has the permissions (READ_SMS or
WRITE_SMS) to directly operate on the SMS database, it could
monitor the database continuously. Once an SMS autho-
rization code is received, it could steal the code and then
delete it.

Starting with Android version 4.4, the SMS system has
been changed. When the system receives a text message,
the framework layer encapsulates the text message into an
SMS PDU and sends it with two types of broadcasting.
One type is ordered broadcasting, i.e., SMS_DELIVER_ACTION,
in which only the default SMS app can receive it. In other
words, only the default SMS app has the permission to delete
and insert the text messages to the SMS database. The other
type is unordered broadcasting, i.e., SMS_RECEIVED_ACTION,
in which the broadcasting cannot be interrupted, and all apps
can receive SMS messages by registering the broadcasting.
Due to this difference, malicious apps cannot intercept and
delete the received SMSmessages, but they still can steal and
forward the SMS messages to remote servers.

B. ANDROID RUNTIME ENVIRONMENT
On an Android system, each app is running inside a separated
runtime environment and has its own unique running environ-
ment. This runtime environment was called the Dalvik run-
time in old Android versions and is called the ART runtime
in Android versions 5.0 and above.

Dalvik is a register-based virtual machine that will trans-
late a dex file into an odex file with the dexopt command
and then execute it. To further improve the performance of
Android, Google introduced a new Android runtime, i.e.,
ART (Android Runtime) [11], which adopts the AOT (ahead
of time) mechanism.When an Android app is being installed,
the ART virtual machine leverages the dex2oat tool to trans-
form the app’s dex file into an oat file, which actually com-
piles the bytecode into native machine code. When the app is
running, the machine code will be directly executed, which
greatly improves the performance.

The transition from the the Dalvik to ART runtime leads to
several challenges to the taint tracking system. For instance,
TaintDroid [8] is implemented in Dalvik, which stores the
taint tags by applying extra space adjacent to the variables
in the stack of the Dalvik virtual machine. In the ART run-
time, some of the parameters are stored directly in registers.
To support taint tracking in the ART runtime, the method of
storing taint tags should be changed accordingly. This is only
one challenge, and we will illustrate how to implement taint
tracking on the ART runtime in Section V.

III. MOTIVATING EXAMPLES
In this section, we present the results of an initial study of
real SMS-stealing malware samples to better motivate our
work.

A. SMS-STEALING MALWARE SAMPLES
Most SMS-stealing malware induces users to install it with
phishing web links. Some malware masquerades as online
banking login interfaces to obtain a user’s account infor-
mation and password and then monitor SMS messages to
steal the SMS authorization code. In the following, we will
describe several well-knownmalware families that steal SMS
messages.

1) MazarBOT
MazarBot [12] requests a number of permissions, includ-
ing SEND_SMS, WRITE_SMS, INTERNET, RECEIVE_SMS, and
READ_SMS, which are relevant to the network and SMS. Then,
it is injected into the infected user’s browser application and
obtains the user’s bank account and password. MaZarBOT
also registers the SMS receiving broadcast receiver
(Android.provider.Telephony.SMS_RECEIVED). When rece-
iving an SMS message, MazarBOT first determines whether
the message is a special instruction. If not, it will put the
content of the message and the address in an Intent; then,
the Intent will be submitted to an IntentService. In the
IntentService, it packs the SMS message and SMS address
into a JSON object, and it sends the message content to a spe-
cial remote server, i.e., http://pc35hiptpcwqezgs.onion,
through an HTTP request. After obtaining the user’s bank
account and password and the SMS authorization code,
it can steal the assets in the user’s account, e.g., their
money.

2) ANDROID.BANKBOT
Android.BankBot [13] is a malicious app that is remotely
controlled with a C&C server. When a user opens his bank
application, Android.BankBot loads a disguised banking
page to cover up the original page. When the user logs
into their bank account, the attacker can intercept the user’s
bank account number, password, and SMS authorization
code to bypass the two-factor authentication. This malware
family can forge a variety of bank login interfaces and
constantly update these fake bank pages through a remote
server.

B. INITIAL STUDY OF THE SMS-STEALING
MALWARE SAMPLES
1) PERMISSION ANALYSIS
To systematically understand the malicious behaviors of
SMS-stealing malware, we have collected 1, 218 mali-
cious samples from three websites, i.e., VirusTotal [14],
VirusShare [15], and Contagio Mobile [16]. We found that
most samples request the permissions related to SMS and
the network. Among these 1, 218 collected malware sam-
ples, 1, 015 of them (83.33%) request RECEIVE_SMS permis-
sion, 799 (65.60%) of them request READ_SMS permission,
1, 020 samples (83.74%) request SEND_SMS permission, and
1, 005 samples (82.51%) request INTERNET permission.

VOLUME 6, 2018 10109



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

2) TWO METHODS TO OBTAIN SMS
AUTHORIZATION CODES
We then decompiled these samples to further understand the
methods used to steal the SMS authorization code. We found
that these samples usually leverage two different methods
to steal SMS messages. One is through the SMS broad-
cast receiver, and the other is through the SMS database
monitoring mechanism. Among the 1, 218 samples that we
collected, 429 of them steal messages through the SMS
broadcast receiver, 120 of them steal messages by monitoring
the SMS database, and 336 of them steal messages using both
mechanisms.

a: SMS BROADCAST RECEIVER
As mentioned in Section II-A, before Android version 4.4,

a malicious app could obtain text messages ahead of other
apps by setting its priority to a higher value and then it blocks
the SMS broadcast. This could prevent other apps (the system
SMS app for example) from receiving the SMS messages.
In Android versions 4.4 and above, a malicious app can still
receive text messages via registering a broadcast receiver, but
it cannot block the message broadcast.

b: MONITORING SMS DATABASE
Malicious apps with READ_SMS permission are able to monitor
the SMS database. When a new SMS message is received
and inserted into the SMS database, the monitor will be
informed.

3) TWO METHODS TO SEND OUT SMS
AUTHORIZATION CODES
We further installed the samples on an LG Nexus 5 phone
and captured the running log information. The results show
that there are two main methods that the samples use to send
out the stolen SMS messages: through SMS messages and
through the network interface.

a: SMS FORWARDING
If a malicious app has the SEND_SMS permission, it is easy
for the app to forward the stolen authorization code through
another SMS message by invoking the well-defined system
APIs, e.g., sendTextMessage().

b: NETWORK FORWARDING
If amalicious app has the INTERNET permission, it can forward
the authorization code through the network interface. The
possible channels include emails, HTTP requests, and direct
TCP/UDP sockets.

IV. SYSTEM DESIGN
A. THREAT MODEL
In this work, the SMS authorization code is the user’s private
data that need to be protected. Third-party apps installed
on the system are not trusted either because they are mali-
cious or vulnerable. These apps can steal SMS authorization
codes in smartphones and forward the codes to a remote
server. Similar to other works, we trust the underlying

Android framework and the operating system. While the
physical security of the devices (including the smartphones
and the SIM cards) is out of the scope of this work.

B. OVERALL DESIGN
The goal of our work is to track and protect authorization
codes in SMS messages. To achieve this, there are several
challenges that need to be addressed. First, we must deter-
mine whether a text message contains an authorization code
and then mark it with the taint tag. Second, the SMS autho-
rization code could be processed in many locations, e.g.,
it might be copied or passed to a new variable or be saved
to the SMS database. The taint tags need to be reversed and
propagated in these scenarios. Third, we need to determine
the correct place to enforce pre-defined security policies to
ensure that the SMS authorization code cannot be stolen.

To overcome these challenges, we propose a lightweight
approach to track and protect SMS authorization codes, called
CodeTracker. The overall design of CodeTracker is shown
in Figure 1.

As marked in digital numbers in Figure 1, there are 15 pos-
sible steps in the processing of SMS authorization codes.
These steps are described as follows: 1, Android receives
an SMS message; 2-3, according to the pre-defined rules,
the SMSmessage is marked as a potential SMS authorization
code by adding a t_p tag; 4, an SMS message with the t_p

tag is sent to the default system SMS app and the third-
party apps that register as an SMS broadcast receiver; 5,
the system SMS app inserts the SMS content into the SMS
database and adds the t_p tag as an extra extended attribute
to the SMS database file; 6, a third-party app fetches an
SMS message from the SMS database, and the content of the
message is marked with the t_p tag, which is obtained from
the extra extended attribute of the SMS database file; 7, a
database taint tag, i.e., t_d, which represents that the data are
read from the SMS database, is added to the SMS message;
8-9, it determines whether the message contains an autho-
rization code; if so, it adds a t_a tag to the SMS message;
10, a third-party app obtains the SMS authorization code
data from the SMS database, which contains three taint tags,
i.e., t_a, t_d, and t_p. These tags are denoted as t_a|d|p;
11-12, the SMS messages are sent through the SMS interface
or the network interface; 13-15, it extracts the tags of the data
to be sent out and then processes them according to the pre-
defined security policies.

C. IDENTIFY THE SMS AUTHORIZATION CODE
To identify an SMS authorization code and then apply the
taint tag, our system has to determine whether an SMS
message contains an authorization code. First, we need to
decide when to identify the authorization code. Note that the
Android SMS systemmainly obtains SMSmessages via SMS
broadcasting or by reading from the SMS database. There-
fore, we only need to determine whether an SMS message
contains an authorization code before the SMS broadcasting
and after the message is fetched from the SMS database.

10110 VOLUME 6, 2018



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

FIGURE 1. The overall design of CodeTracker (t_n represents no tag; t_p represents a potential tag; t_d|p
represents a database tag and a potential tag; t_a|d|p represents an authorization code tag, a database tag and a
potential tag).

However, because the framework layer of Android will not
have decoded the message content before the SMS broadcast-
ing, it is difficult for us to recognize the authorization code by
searching the content of the message. Therefore, we leverage
the sender address of the SMS message to determine whether
the message possibly contains an authorization code; if so,
we mark it as a potential SMS authorization code. We main-
tain a list of sender addresses of SMS authorization codes,
and we treat all the SMS messages that originate from these
addresses as messages potentially containing SMS authoriza-
tion codes. After the SMSmessage can be read from the SMS
database, we search the content of the message to obtain the
string pattern of the authorization code to determine whether
the message contains an authorization code.

After identifying an SMS message that contains an autho-
rization code (or potentially contains such a code), we mark
and track the message by adding a tag (or taint tag) to it (the
marked message is called a taint source). It is important to
note that if we add tags to all the variables in the system, it can
better track the data, but the memory overhead will become a
concern.We observe that an SMSmessage is generally stored
in a character or byte array; therefore, we only need to add
tags in character and byte arrays. In addition, we add one tag
for each array to reduce the memory overhead.

The taint tags are defined and applied in the Android
native layer; this is transparent to the application and Android
framework. We operate on the tags at the application and
frame layers only by calling the self-defined API methods in
the native layer through JNI. To prevent malicious apps from
modifying or deleting taint tags, we only define the methods
to add and get tags in the native layer. Moreover, to save
space and maintain compatibility, we mark the messages in
the SMS database with the same taint tag in the extra extended
attributes of the database file.

D. PROPAGATE TAINT TAGS
Ensuring that the taint tags cannot be removed during the
internal processing of the system is a challenge. Because the
SMS message is saved in an array that is created in the heap,
the taint tag will not be removed during general operations,
e.g., function calls. However, in the processing of multiple
cases, the Android system can lose a tag carried by an array.
These cases include (1) IPC, (2) string operations, (3) single
element processing in an array, and (4) the secondary storage
of the data.

For case (1), when the data are sent between processes,
the processing data will be packed into a Parcel object, which
might lead to the removal of the taint tag. This is indeed the

VOLUME 6, 2018 10111



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

case when an SMSmessage is sent from the framework to the
application layer via SMS broadcasting. Therefore, we need
tomodify the structure of the Parcel class. Specifically, when
the array data are packed into a Parcel object, we extract
the taint tag of the array and save it into the Parcel object.
Consequently, when the data are unpacked from the Parcel

object, we add the tag stored in the Parcel object to the
corresponding array object.

For case (2), because many string operations will create a
new array by invoking the methods in the native layer, corre-
sponding changes must be made. Specifically, we extract the
taint tag of the source array and then add it to the new target
array.

For case (3), to save memory, we add a taint tag for an array
but not for each element in the array. This could lead to a loss
of tags when the data elements in an array are traversed and
might be assigned to a new array. Some malicious apps often
encrypt and modify text messages byte by byte, resulting in
the loss of taint tags. Therefore, we need to instrument the
compiler for the ART runtime and the interpreter. In par-
ticular, when it executes the instruction of fetching array
elements, we save the tag of the array in the current thread
instance. Later, when it executes the instruction of storing
array elements, we get the tag from the current thread instance
and add it to the target array.

For case (4), when a user saves the tainted data into a file,
the taint tag in the data could be lost. To prevent this from
occurring, we save the taint tag in the file’s extra extended
attribute. When the data are read from the file, we restore the
tag back to the data.

E. ENFORCE SECURITY POLICIES
To prevent the SMS authorization code from being stolen,
we enforce the corresponding policies at the endpoints where
the code could be sent out (these endpoints are called taint
sinks). Our initial study of the malware samples shows that
a stolen authorization code can be sent out through SMS
messages or the network interface (Section III-B). For the
first case, we modify the SMS manager to detect whether
an authorization code is being sent out. Specifically, when
an app sends an SMS message, we extract the tag of the
data and enforce the security rules. For instance, we could
allow or prevent the sending, warn the user, record the target
address, etc. For the second case, there are different ways in
the Android application layer to send out the data through the
network interface. However, all of these ways will eventually
call the native layer method through Posix. Therefore, we can
extract the taint tag of the data and enforce similar security
policies at this endpoint.

V. IMPLEMENTATION
We have implemented a prototype of CodeTracker. Our
system consists of three components: authorization code
identification module, taint tag propagation module, and
security policy enforcementmodule. In this section, we will
illustrate the implementation details of each module.

A. AUTHORIZATION CODE IDENTIFICATION
In the following, wewill present how the taint tags are defined
and how the authorization code is identified. We also present
the way that we apply the taint tags to the authorization code.

FIGURE 2. The definition of a taint tag.

1) THE DEFINITION OF A TAINT TAG
In our system, each byte or character array contains a

taint tag, as defined in Figure 2. A taint tag is a 32-bit
integer data, and each bit has a specific meaning. We only
define the meaning of the lower three bits, and we leave
the remaining bits for future extension. If the data contain
a taint tag, the corresponding bit of the tag of the data will
be set to 1; otherwise, it will be set to 0. To apply taint tags
to the SMS authorization code, we define several different
tags. We define the t_n tag as 0x00000000, which represents
no tag, and data containing the t_n tag denotes that the data
contain no taint tags and thus are general data. We define the
t_p tag as 0x00000001, which represents the potential tag,
and data containing the t_p tag are data possibly containing
an authorization code. We define the t_d tag as 0x00000002,
which represents the database tag, and data containing the
t_d tag are data that are fetched from the SMS database.
We define the t_a tag as 0x00000004, which represents the
authorization code tag, and data containing the t_a tag are
data that contain an authorization code. Note that it is possible
for data to contain more than one tag. For instance, some data
might contain the t_d and t_a tags (t_a|d for short), which
denotes that the data are fetched from the SMS database and
contain an authorization code.

2) THE STORAGE OF THE TAINT TAG
The purpose of our system is to protect SMS authorization

codes. Notice that an SMS authorization code is stored in a
string or a character/byte array; therefore, we only need to
add a taint tag to the character and byte arrays (because a
string belongs to a special character array). To save memory,
there is no need to store tags for other types of data. To this
end, we modify the method of the Array class in Android.
Because the taint tag is 32-bit (i.e., 4 bytes) integer data, the
memory space occupied by an Array object will increase by
4 bytes. Thus, we modify the ComputeArraySize() method
of the Array class. Specifically, ComputeArraySize() obtains
the new result by increasing the original calculation result
by 4. Each character array or byte array will spend an extra
4 bytes to store its taint tags.

10112 VOLUME 6, 2018



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

We store the taint tag at the end of an array. Note that the
content of an Array object is stored in a variable array, called
elements_. To get the taint tag, the tag’s offset in the array
must be calculated. We define a static method to calculate the
actual memory address of the taint tag; this is easy to do with
the array’s starting address, the type of the array content and
the length of the array as parameters. We could not access
the taint tag using the array’s subscript, and the taint tag is
transparent to the app.

3) THE OPERATIONS OF THE TAINT TAG
In the native layer, we define operations to add or get

tags for different types of data objects. These types include
byte array, character array, and string. Then, we register
these methods as internal methods in the virtual machine.
We only define the operations to add or get the taint tags,
not operations to delete or update the tags. This is to prevent
the app from abusing these operations to remove the tag.
We have internal ways that cannot be observed by apps to
update or remove the tags.

4) IDENTIFYING AUTHORIZATION CODES
BEFORE SMS BROADCASTING

As mentioned in Section IV-C, because the framework
layer of Android does not decode the message content before
SMS broadcasting, it is difficult for us to determine whether
a message contains an authorization code by searching the
content of the message. We leverage the source address of
the SMSmessage to determine whether the message possibly
contains an authorization code. If it might, we mark the
message with a t_p tag, which represents a potential tag.
To this end, we need to collect the phone numbers that send
out SMS authorization codes. We observe that such phone
numbers are very different in different countries and regions.
For example, in China, the phone numbers that send SMS
authorization codes usually start with 95 or 106 or are special
numbers. Thus, wemaintain a list of source addresses of SMS
authorization codes, which currently includes, for example,
106∗, 95???, 12306, 10086, 10000, and 10010. Among the
list, ‘106∗’ stands for phone numbers starting with 106, and
the length of such numbers is not fixed but is no longer than
20 bits. Most corporations send SMS authorization codes to
their users with ‘106∗’. ‘95???’ stands for phones numbers
starting with 95 and have a length of five bits. In China,
almost all the banks utilize ‘95???’ phone numbers to send
SMS authorization codes. We think that SMS authorization
codes mainly come from the addresses in the maintained list,
and we can certainly extend this list later.

5) IDENTIFYING AUTHORIZATION CODES AFTER GETTING
FROM THE SMS DATABASE

When getting an SMS message from the SMS database,
Android will return a Cursor object using the query()

method, and then, it gets the message content with the
getString() method of the Cursor object. After getting the
message content, we will add a t_d tag (i.e., 0x00000002)

to the string of the message, which represents that the string
is fetched from the SMS database. Then, we determine
whether the string contains an authorization code by search-
ing the content. Specifically, we search for ‘‘authorization’’ or
‘‘password’’ key words. If either key word is found, we con-
duct a subsequent search; if the string contains four or more
digits or a sub-string of four or more digits or English char-
acters, then we think that the string contains an authorization
code and add a t_a tag (i.e., 0x00000004) to the message
data. As a result, when an SMS message is fetched from
the SMS database, the general message will carry a tag as
t_d or t_d|p. It is possible for a message from the SMS
database to contain a t_p tag; as for the SMS database, all the
records in the database share the same tag set that is stored in
the extra extended attribute of the database file. If the SMS
database contains one record with the potential tag, then all
the records fetched from the database will carry such a tag.
The goal of such a design is to reduce storage requirements
and ensure the compatibility of the database operations. Thus,
for the messages fetched from the SMS database, we need to
make a further determination. If such a message contains an
authorization code, then we mark it with a new tag, i.e., t_a.
Otherwise, if it is a general message, then we take no further
action for its tag.

B. TAINT TAG PROPAGATION
In the following, we will illustrate how the taint tags are
propagated in the system.

In Android, array objects are stored in the heap. In addition,
the taint tags of the array object might be lost when the object
is copied, moved or saved into a file. In our system, we
made changes to the string methods, compiler, Parcel class
for inter-process communication, and methods related to file
operations to propagate the taint tag.

1) MODIFICATION TO THE STRING METHODS
In Java, the String class contains a private array that

contains the actual data. Assigning elements from an
old array to a new target array is usually done by the
System_arraycopyTUnchecked() method in the native layer.
Specifically, the System_arraycopyTUnchecked() method
takes the source array and the target array as parameters.
To maintain the taint tag, when a String object is copied, we
first obtain the source array’s taint tag, and then, we add it to
the target array, as shown in Figure 3.

2) INSTRUMENTATION TO THE COMPILER
In Android, many apps encode the data in text messages

before they send it through the Internet, similar to the URL
coding process. The encoding operations might modify a
single array element of the source array and copy it to a
new array, which can lead to a loss of the taint tag. There-
fore, we need to instrument the compiler of the ART vir-
tual machine. In particular, we first append a new field
(i.e., tag_container) to the Thread class to store the taint
tag carried with the thread; then, we modify the process of

VOLUME 6, 2018 10113



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

FIGURE 3. Modification to the string methods (src represents the source
array, and dst represents the target array).

array assignment. When this process copies an element of
the source array to the target array, we extract the taint tag
from the source array and save it into the current thread’s
tag_container field. Later, we get the taint tag from the
tag_container field of the current thread and add it to the
target array.

Array access operations will be converted into AGET and
APUT operations in the dex bytecode and eventually trans-
lated into the corresponding machine code by the compiler.
To maintain the taint tag, we instrument the compiler for
byte- and character-related AGET and APUT operations.We take
the byte-related operations as an example to describe our
approach. Note that the corresponding operations for byte are
AGET-BYTE and APUT-BYTE.
When the system takes out an element from a byte array

with an AGET-BYTE operation, it gets the taint tag of the source
array and the taint tag from the tag_container field of the
current thread. Then, we get the result of the bitwise OR
computation for these two tags. Finally, we store the result
as a new tag to the tag_container field of the current thread.
On the other hand, when the system assigns an element to a
byte array with an APUT-BYTE operation, we first get the taint
tag from the tag_container field of the current thread and
the taint tag of the target array. Then, we get the result of the
bitwise OR computation of the two tags. Finally, we store the
result as a new tag in the target array. By doing so, we ensure
that the taint tag will not be lost when handling a single
element of the array.

To better understand the instrumentation to the compiler in
Android by our approach, we show the assembly code of the
new AGET-BYTE operation in Figure 4 and the assembly code
of the new APUT-BYTE operation in Figure 5.

As shown in Figure 4, the original compiler of the sys-
tem produces six lines of assembly code for AGET-BYTE, i.e.,
lines 01-03 and 12-14. First, it loads the array length to the
r3 register (line 01); then, it stores the array subscript into
memory (lines 02-03). Before loading the array element to the
r5 register (line 14), it judges if the array is out of boundary
(line 12); if so, it jumps to an exception handling (line 13).

FIGURE 4. The assembly code of the new AGET-BYTE operation.

FIGURE 5. The assembly code of the new APUT-BYTE operation.

To maintain the taint tag, we instrument the compiler to add
8 instructions (lines 04-11 marked by *). Specifically, it first
calculates the memory location of the taint tag of the array
(lines 04-07) and loads the tag to the r1 register (line 08);
then, it loads the taint tag saved in the current thread to the
r12 register (line 09) and calculates the new tag by a bitwise
OR operation for these two tags (line 10). Finally, it saves
the new tag to the current thread for later use in APUT-BYTE

(line 11).
As shown in Figure 5, the original compiler of the sys-

tem produces four lines of assembly code for APUT-BYTE,
i.e., lines 11-14. First, it loads the array length to the r2
register (line 11), and then, it judges if the array is out of
boundary (line 12). If so, it jumps to an exception handling
(line 13); otherwise, it stores the value in r5 into the target
array (line 14). To maintain the taint tag, we instrument the
compiler to add 10 instructions (lines 01-10 marked by *).
Specifically, it first loads the taint tag of the current thread
to the r2 register (line 01). Then, it calculates the memory
location of the taint tag of the array (lines 02-07) and loads
the tag to the r1 register (line 08). Finally, it calculates the new
tag with a bitwise OR operation for these two tags (line 09)
and saves the new tag to the target array (line 10).

10114 VOLUME 6, 2018



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

Parcel Class for IPC When a text message arrives,
Android encapsulates it as a PDU and then broadcasts it to all
apps that register as an SMSbroadcast receiver. The PDUdata
are transmitted to the apps via the IPC of Binder. The source
process com.Android.phone packs the data to be sent to other
processes into a Parcel object and broadcasts them, and the
target process unpacks the Parcel object after receiving the
data. In the original processing, if the source data contain a
taint tag, it will be lost when the data are packed. Therefore,
to maintain the tag, we append a taint tag field to the Parcel
class in the framework and native layers to store the taint tag
of the packed data contained in the Parcel objects. When the
array data are packed into a Parcel object, the taint tag of
the array is extracted and stored into the Parcel object; then,
it is updated to the corresponding Parcel object in the native
layer. When unpacking a Parcel object in another process to
obtain a character or byte array, we add the taint tag saved in
the Parcel object.

3) FILE OPERATIONS
When an SMS message is stored into the SMS database

file, the taint tag carried by the text message will be lost.
In Android, because the file operations are performed by
calling the native layer methods through the Posix class,
which is in the framework layer, we modify the operations
associated with the Posix class for this purpose. Specifically,
when a byte array is stored in a file, we first extract the taint
tag of the array, and then, we add it to the extra extended
attribute of the target file. Later, when we read the data from
a file, we first get the taint tag from the file’s extra extended
attribute and then add it to the corresponding byte array.

C. SECURITY POLICY ENFORCEMENT
The malicious apps could forward the stolen SMS autho-
rization code through SmsManager or network interface (taint
sinks). Therefore, to catch such behaviors, we need to modify
the corresponding interfaces in Android’s framework layer
and apply corresponding security policies. When it forwards
the message through the SmsManager, we extract the tag of
the data to be sent. When it forwards the data through the
network interface, it could be in several ways, e.g., by email,
with HTTP request, and with TCP/UDP sockets. However,
in any way, the network data will eventually be submitted
to the system call of the kernel, which is performed through
the Posix class. Therefore, we could detect and protect the
SMS authorization data by monitoring the network-related
operations in the Posix class.

1) SECURITY POLICIES
If we get a taint tag from a byte or character array, we may

possibly get several values. Among these values, 0x00000000
(i.e., t_n) represents that the data do not contain any taint
tags; 0x00000001 (i.e., t_p) represents that the data poten-
tially contain an authorization code and that the data are
directly obtained through SMS broadcasting; 0x00000002
(i.e., t_d) and 0x00000003 (i.e., t_d|p) represent that the

data are fetched from the SMS database; and 0x000000007
(i.e., t_a|d|p) represents that the data are fetched from the
SMS database and contain an authorization code. When the
value is 0x00000001 or 0x00000007, we manipulate the data
according to our pre-defined rules (e.g., prohibit sending,
warn the user, or send a bogus value). It is important to
note that if an app sends out data with a tag of 0x00000001
(i.e., t_p), we think that it is a dangerous operation. This is
because the data are directly obtained through SMS broad-
casting, and then, the app is attempting to send it out. This is
a malicious action, as a benign app always fetches an SMS
message from the SMS database and then sends it out.

VI. EVALUATION
In this section, we evaluate the effectiveness as well as the
performance overhead of our prototype system.

A. EFFECTIVENESS
As mentioned in Section III-A, we have collected 1, 218
SMS-stealing malware samples from three websites to eval-
uate our system. The submission times of these samples are
from October 2016 to July 2017.

After decompiling these samples, we found that many
samples present very similar behaviors. Most of the samples
use some confusing or misleading icons and names to fool
users, e.g., the bank’s name. There are also samples that entice
users to install them through the implantation of popular
games or pornographic content. Some of the samples are
bank-related samples, which may have serious consequences.
For instance, these samples are disguised as the user interface
of the original bank apps and steal the user’s bank account and
password as well as the user’s SMS authorization code.

We ran our prototype to track and protect the SMS autho-
rization code on an LG Nexus 5 smartphone. To evaluate
the effectiveness of our system, we ran each sample every
time and sent real authorization code messages through some
popular shopping and banking websites to the smartphone.
The prototype printed log information about the authoriza-
tion codes. With this log information, we then retrieved the
evaluation results.

The evaluation results show that among the 1, 218 mali-
cious samples, 885 of them obtained the messages, and the
remaining 333 samples failed to obtain them. Of the 885 sam-
ples that obtained messages, 429 of them obtained messages
through SMS broadcasting, 120 of them obtained messages
by reading the SMS database, and 336 of them obtained
messages both through the SMS broadcasting and by reading
the SMS database. Concerning subsequent actions, in the 885
samples that obtained messages, 312 of them did not forward
the messages, 152 of them forwarded the messages, although
we did not get any taint tags for the data, and 421 of them
forwarded the messages, but we did obtain the authorization
code tag. Among the 421 samples that forwarded messages
with taint tags, 212 of them transmitted the data through
SmsManager, 108 of them transmitted the data through the
network interface, and 101 of them transmitted the data

VOLUME 6, 2018 10115



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

through both the SmsManager and the network interface. The
distributionmap of the 1, 218 SMS-stealingmalware samples
is shown in Figure 6.

FIGURE 6. The distribution map of 1, 218 SMS-stealing malware samples.

Among the 333 samples that failed to retrieve SMS mes-
sages, we found that the main reason for their failure was the
expiration of their software license or software errors. For the
312 samples that did not forward the messages after obtaining
them, we found that the system did not print any log infor-
mation about SMS forwarding. We believe that this is rea-
sonable because these samples may need certain conditions
to be satisfied to trigger the behavior. How to automatically
trigger this malicious behavior remains an ongoing research
problem. Among the 152 samples that forwarded messages
but where we did not get any taint tags, we checked the log
information and found that these samples did not forward
the messages successfully. The main reasons for this are that
these samples failed to connect to a remote server before
sending the authorization code data, the mailbox’s password
had been changed when sending through email, or the license
expired.

In summary, our system effectively captured the taint tags
for the 421 samples that actually forwarded the SMS autho-
rization code and blocked such attempts.

In the log information produced by the 1, 218 samples,
we also collected 1, 311 target IP addresses and 294 target
phone numbers for the stolen authorization codes. We found
that the top three target addresses are located in mainland
China, USA, and Hong Kong, and 87.66% (1, 407/1, 605) of
the target addresses are located in mainland China. The dis-
tribution map of target addresses for SMS-stealing samples
is shown in Figure 7. We will release the addresses that we
collected to the community to improve the detection of such
malware.

B. PERFORMANCE OVERHEAD
To measure the performance overhead introduced by
CodeTracker, we have performed several microbenchmarks,
i.e., a compiler microbenchmark, a Java microbenchmark,
and an IPC microbenchmark. The evaluation is conducted on
an LG Nexus 5 phone with our system.

FIGURE 7. The distribution map of target addresses for SMS-stealing
samples.

1) COMPILER MICROBENCHMARK
Because CodeTracker instruments the ART compiler and

inserts the taint logic at compilation time, we measure the
size of the oat files and the total compilation time. For the
compiler microbenchmark, we select the ten most popular
apps in Google play as our evaluation datasets. The ten apps
are FreeVPN, GoogleTranslate, Youtube, Instagram, Lantern,
Taobao, Twitter, Alipay, GoogleGame, and Tumblr. We com-
pile each app every time with the original compiler and our
instrumented compiler and record the size of the produced oat
file and the time of compilation. We conduct the benchmarks
ten times for each app and calculate the average. Table 1
shows the evaluation results of the compiler microbench-
mark. On average, CodeTracker introduces an approximate
0.07% overhead with respect to the size of oat files and an
approximate 1.79% overhead with respect to the compilation
time. Compared to TaintART [9], CodeTracker has a better
performance as TaintART incurs about 19.9% overhead with
respect to the compilation time.

2) JAVA MICROBENCHMARK
Because the Java microbenchmark can accurately reflect

the runtime overhead introduced by CodeTracker, we choose
CaffeineMark 3.0 [17] to evaluate our system. Our evaluation
includes 6 items, i.e., Sieves core, Loop score, Logic score,
String score, Float score, and Method score. The results
are shown in Figure 8. Among the results, the maximum
overhead introduced by CodeTracker is 6.92% (String score),
and the minimum loss is 0.01% (Sieve score). The average
performance overhead incurred by CodeTracker with Caf-
feineMark is 1.33%, which is much better than TaintART [9]
that introduces about 14%. Our approach is thus a lightweight
solution.

3) IPC MICROBENCHMARK
To perform the evaluation of the IPC microbenchmark on

CodeTracker, we have developed a pair of client/server apps
that communicate through Binder in Android. Specifically,
the client records the time (t_0) before sending a message to
the server. The server will also send a message back to the

10116 VOLUME 6, 2018



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

TABLE 1. Performance overhead with the compiler microbenchmark introduced by CodeTracker.

FIGURE 8. Performance overhead with CaffeineMark introduced by
CodeTracker.

TABLE 2. Performance overhead with the IPC microbenchmark
introduced by CodeTracker.

client after receiving the client’s message. Then, the client
records the time (t_1) at which it receives a message from
the server. Therefore, `t1-t0' represents the elapsed time.
We repeat the test ten thousand times and record the execution
times. We also calculate the memory usage for the client and
server apps during their communication. Table 2 shows the
test results. The overhead of the IPC execution time is 0.90%,
and the memory usage overheads for the client and server
are 0.66% and 1.17%, respectively. In contrast, the overheads
introduced by TaintART [9] are about 4.35% for the IPC
execution time and 4% for the memory usage, which are both
higher than CodeTracker.

VII. DISCUSSION
In this section, we discuss some possible limitations of
CodeTracker and potential future work.

A. LIMITATIONS
Many privacy tracking systems [8]–[10] cannot trace

implicit data flows [18]; they can only track explicit
data flows. Some anti-TaintDroid techniques are men-
tioned in [19], such as removing taint tags through pixels,

the alphabet, etc. so that they can escape from the tracking of
TaintDroid [8].

FIGURE 9. A code snippet of anti-TaintDroid.

For example, Figure 9 shows a code snippet of anti-
TaintDroid [19]. Specifically, the countToXTrick() method
gets each character in the string variable in and assigns it to an
integer variable y (lines 4-7); then, it appends y as a character
to the string variable out (line 8), which is ultimately returned
by the method (line 10). In Figure 9, there is an implicit
data flow when it assigns each single element of the source
string variable in to the variable y and then appends y to
the destination string variable out, which overcomes the taint
tracking of TaintDroid, as the taint tag of inwill be lost in the
processing. CodeTracker can successfully trace such implicit
data flow in Figure 9 with our instrumented AGET and APUT

operations, as described in Section V-B. Thus, CodeTracker
can effectively handle certain cases of implicit flows. How-
ever, if a malicious app transmits one byte of data every time,
then our tracking will not be successful. Fortunately, in our
decompilation and testing of samples of malicious apps, no
such operations are found.

Additionally, some malicious apps could directly modify
the taint tag of the data by invoking the methods in its built-in
.so libraries in the native layer and then send out the data.
As a result, the malicious app will escape the tracking and
protection provided by CodeTracker. To address this prob-
lem, we propose a conservative approach. Specifically, when
an app gets the content of an authorization code message via
the SMS broadcasting or from the SMS database, we save the

VOLUME 6, 2018 10117



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

PID of the app to a specified local file. Later, before sending
the data through the network in the native layer, we determine
whether the sending app’s PID is in the list of the specified
local file; if so, we block the transmission. Although this may
cause false positives, it works in most cases. In addition, we
can leverage a white list of trusted apps to reduce the false
positive rate. Nevertheless, we leave this as one of our future
directions.

B. FUTURE WORK
First, CodeTracker is designed for the protection of SMS

authorization codes, not for the protection of general text
messages. However, in our decompilation process, we found
that many malware apps steal general messages. Therefore,
in the future, we can easily extend CodeTracker into a pro-
totype system to protect all text messages by applying the
taint tags to SMSmessages and changing the security policies
accordingly. Second, CodeTracker requires changes to the
underlying framework; it cannot be transparently supported
as a user-level solution. We may leverage a similar technique
to ARTist [10] to propose a pure user-level solution in the
future.

VIII. RELATED WORK
A. PROTECTION OF SMS MESSAGES
A variety of systems have been designed to prevent SMS

messages from being leaked in smartphones. For example,
SecureSMS [20] and other similar systems [21]–[23] leverage
cryptographic algorithms to encrypt the SMS messages for
confidentiality, integrity and authentication services, which
is a different goal compared to CodeTracker. SecureSMS [7]
attempts to protect SMS messages by adjusting the apps’
receiving sequence of text messages in the system so that the
default SMS app can get the text message first. Then, it blocks
the SMS broadcasting to prevent malicious apps from getting
the message. However, SecureSMS only works in Android
versions prior to 4.4. Other systems [24]–[27] have also been
proposed to prevent phishing messages. Specifically, these
systems search the content of SMS messages to find URLs
that might link to malicious apps for installation and then
block users’ dangerous operations. In contrast to these apps,
CodeTracker aims to provide protection for authorization
codes in SMS messages.

B. STATIC AND DYNAMIC ANALYSIS SYSTEMS

To understand the possibility of privacy leakages, a number
of information-flow analysis systems have been proposed by
researchers. These systems can be classified into two main
types. One type includes static analysis systems that per-
form analysis on the disassembled codes of apps, including
FlowDroid [28], ComDroid [29], AmanDroid [30], Droid-
Force [31], CHEX [32], etc. However, the limitation of static
analysis systems is that they cannot detect runtime informa-
tion disclosure. Therefore, dynamic analysis systems have

been proposed to track the information flows at runtime in
apps. For example, TaintDroid [8] and several extended sys-
tems (includingDataChest [33], NDroid [34], DroidBox [35],
etc.) can enforce taint tracking for real-time privacy monitor-
ing on legacy Dalvik (but not ART) runtime in Android. Tain-
tART [9] and ARTist [10] are two dynamic systems designed
for the newly introduced ART runtime in Android and can
be leveraged to track and protect sensitive data (including
authorization codes) in smartphones. However, as mentioned
in Section I, TaintART suffers from the issue of extensibility,
and ARTist does not perform well for inter-application track-
ing, which impede their use for tracking and protecting SMS
authorization codes.

Several other dynamic analysis systems targeting mal-
ware have also been proposed [36]–[38]. For example,
DroidRanger [37] includes a permission-based behavioral
footprinting scheme to detect new samples of known Android
malware families; it applies a heuristics-based filtering
scheme to identify certain inherent behaviors of unknown
malicious families. Malton [38] provides a comprehensive
view of malware behaviors by conducting multi-layer moni-
toring and information-flow tracking, as well as efficient path
exploration. In contrast, CodeTracker has a different goal of
providing tracking for and protection of authorization codes
in SMS messages.

C. CONFINEMENT OF SMARTPHONE APPS

A number of systems have been implemented to limit
apps’ access to sensitive data. For example, Kirin [39] con-
fines apps by preventing third-party apps from accessing
private data. FlaskDroid [40] achieves this goal by hook-
ing Android system services. AppCage [41] leverages two
complimentary user-level sandboxes to interpose and regu-
late an app’s access to sensitive APIs. To prevent potential
privacy leakage, Aurasium [42], AppGuard [43], TISSA [6],
and RetroSkeleton [44] have been proposed to enforce fine-
grained access control on sensitive data. All these systems
may be able to be leveraged to provide protection for sensitive
data (including SMS authorization codes) on legacy runtimes
(i.e., Dalvik) in Android, but not on the ART runtime. In con-
trast, CodeTrackerworks well onAndroid’s ART runtime and
can provide protection as well as tracking for authorization
codes in SMS messages.

IX. CONCLUSION
In this paper, we design a dynamic lightweight approach
for tracking and protecting authorization codes in Android,
called CodeTracker. Specifically, we leverage the taint track-
ing technique and mark authorization codes with taint tags
at the origin of the incoming SMS messages and propagate
the tags through the system. Then, we apply security poli-
cies at the endpoints where the tainted authorization code
is being sent out. The evaluation results on real malware
samples demonstrate the effectiveness of our system, and the
introduced performance overhead is low (< 2% on average).

10118 VOLUME 6, 2018



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

REFERENCES

[1] We Steal SMS: An Insight Into Android. KorBanker Operations.
Accessed: Dec. 26, 2017. [Online]. Available: https://www.fireeye.com/
blog/threat-research/2014/09/we-steal-sms-an-insight-into-android-
korbanker-operations.html

[2] SophosLabs Report Explores Mobile Security Threat Trends, Reveals
Explosive Growth in AndroidMalware. Accessed: Dec. 26, 2017. [Online].
Available: https://news.sophos.com/en-us/2014/02/24/sophoslabs-report-
explores-mobile-security-threat-trends-reveals-explosive-growth-in-
android-malware/

[3] Special Report on Android Malware in 2016. Accessed: Dec. 26, 2017.
[Online]. Available: http://zt.360.cn/1101061855.php?dtid=1101061451&
did=490301065

[4] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characterization and
evolution,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012, pp. 95–109.

[5] Android 4.4. Accessed: Dec. 26, 2017. [Online]. Available:
https://developer.android.google.cn/about/versions/kitkat.html

[6] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, ‘‘Taming information-
stealing smartphone applications (on Android),’’ in Proc. 4th Int. Conf.
Trust Trustworthy Comput., 2011, pp. 93–107.

[7] D. Kim and J. Ryou, ‘‘SecureSMS: prevention of SMS interception
on Android platform,’’ in Proc. 8th Int. Conf. Ubiquitous Inf. Manage.
Commun., 2014, p. 32.

[8] W. Enck et al., ‘‘TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,’’ ACM Trans. Comput. Syst.,
vol. 32, no. 2, p. 5, Jun. 2014.

[9] M. Sun, T. Wei, and J. C. S. Lui, ‘‘TaintART: A practical multi-level
information-flow tracking system for Android runtime,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 331–342.

[10] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S. Weisger-
ber, ‘‘ARTist: The Android runtime instrumentation and security toolkit,’’
in Proc. IEEE Eur. Symp. Secur. Privacy, Apr. 2017, pp. 481–495.

[11] GoogleIO 2014. Accessed: Dec. 26, 2017. [Online]. Available:
https://www.google.com/events/io/io14videos/b750c8da-aebe-e311-
b297-00155d5066d7

[12] MazarBOT. Accessed: Dec. 26, 2017. [Online]. Available:
https://www.tripwire.com/state-of-security/featured/mazarbot-android-
malware-distributed-via-sms-spoofing-campaign/

[13] bankbot. Accessed: Dec. 26, 2017. [Online]. Available: https://
github.com/bemre/bankbot-mazain

[14] VirusTotal. Accessed: Dec. 26, 2017. [Online]. Available: https://
www.virustotal.com/

[15] VirusShare. Accessed: Dec. 26, 2017. [Online]. Available: https://
virusshare.com/

[16] Contagio Mobile. Accessed: Dec. 26, 2017. [Online]. Available:
https://contagiominidump.blogspot.com/

[17] Pendragon Software Corporation. CaffeineMark 3.0. Accessed:
Dec. 26, 2017. [Online]. Available: http://www.benchmarkhq.ru/cm30/

[18] G. S. Babil, O. Mehani, R. Boreli, andM.-A. Kaafar, ‘‘On the effectiveness
of dynamic taint analysis for protecting against private information leaks
on Android-based devices,’’ in Proc. Int. Conf. Secur. Cryptogr.,
2015, pp. 1–8.

[19] gsbabil AntiTaintDroid. Accessed: Dec. 26, 2017. [Online]. Available:
https://github.com/gsbabil/AntiTaintDroid

[20] N. Saxena and N. S. Chaudhari, ‘‘SecureSMS: A secure SMS protocol for
vas and other applications,’’ J. Syst. Softw., vol. 90, pp. 138–150, Apr. 2014.

[21] A. De Santis, A. Castiglione, G. Cattaneo, M. Cembalo, F. Petagna, and
U. F. Petrillo, ‘‘An extensible framework for efficient secure SMS,’’ in
Proc. Int. Conf. Complex, Intell. Softw. Intensive Syst., 2010, pp. 843–850.

[22] H. Harb, H. Farahat, and M. Ezz, ‘‘SecureSMSPay: Secure SMS
mobile payment model,’’ in Proc. Int. Conf. Anti-Counterfeiting, Secur.
Identificat., 2008, pp. 11–17.

[23] G. C. C. F. Pereira et al., ‘‘SMScrypto: A lightweight cryptographic
framework for secure SMS transmission,’’ J. Syst. Softw., vol. 86, no. 3,
pp. 698–706, 2013.

[24] LinkScanning. Accessed: Dec. 26, 2017. [Online]. Available: https://play.
google.com/store/apps/details?id=com.directionsoft.linkscan&feature

[25] S-GUARD. Accessed: Dec. 26, 2017. [Online]. Available:
https://play.google.com/store/apps/details?id=kr.co.seworks.sguard

[26] AntiSmishing. Accessed: Dec. 26, 2017. [Online]. Available:
https://play.google.com/store/apps/details?id=com.nprotect.antismishing

[27] T-GUARD. Accessed: Dec. 26, 2017. [Online]. Available: http://
www.tstore.co.kr/userpoc/game/viewProduct.omp?t_top=DP000504&
dpCatNo=DP04003&insDpCatNo=DP04003&insProdId=0000329718&
prodGrdCd=PD004401&stPrePageNm=DP04003&stActionPositionNm=
06&stDisplayOrder=1

[28] S. Arzt et al., ‘‘Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps,’’ in Proc. 35th ACM
SIGPLAN Conf. Program. Lang. Design Implement., 2014, pp. 259–269.

[29] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, ‘‘Analyzing inter-
application communication in Android,’’ in Proc. Int. Conf. Mobile Syst.,
Appl., Services, 2011, pp. 239–252.

[30] F. Wei, S. Roy, X. Ou, and Robby, ‘‘Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
Android apps,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2014, pp. 1329–1341.

[31] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, ‘‘DroidForce: Enforcing
complex, data-centric, system-wide policies in Android,’’ in Proc. 9th Int.
Conf. Availability, Rel. Secur., 2014, pp. 40–49.

[32] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, ‘‘Chex: Statically vetting
Android apps for component hijacking vulnerabilities,’’ in Proc. ACM
Conf. Comput. Commun. Secur., 2012, pp. 229–240.

[33] Y. Zhou, K. Singh, andX. Jiang, ‘‘Owner-centric protection of unstructured
data on smartphones,’’ in Proc. 7th Int. Conf. Trust Trustworthy Comput.,
2014, pp. 55–73.

[34] C. Qian, X. Luo, Y. Shao, and A. T. Chan, ‘‘On tracking information flows
through JNI in Android applications,’’ in Proc. 44th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Jun. 2014, pp. 180–191.

[35] DroidBox. Accessed: Dec. 26, 2017. [Online]. Available:
https://github.com/pjlantz/droidbox

[36] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, ‘‘Riskranker: Scalable
and accurate zero-day Android malware detection,’’ in Proc. Int. Conf.
Mobile Syst., Appl., Services, 2012, pp. 281–294.

[37] Y. Zhou, Z.Wang,W. Zhou, and X. Jiang, ‘‘Hey, you, get off of mymarket:
Detecting malicious apps in official and alternative Android markets,’’ in
Proc. Annu. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 50–52.

[38] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, ‘‘Malton: Towards on-device
non-invasive mobile malware analysis for art,’’ in Proc. USENIX Secur.
Symp., 2017, pp. 1–19.

[39] W. Enck, M. Ongtang, and P. McDaniel, ‘‘On lightweight mobile phone
application certification,’’ in Proc. 16th ACM Conf. Comput. Commun.
Secur., 2009, pp. 235–245.

[40] S. Bugiel, S. Heuser, and A. R. Sadeghi, ‘‘Flexible and fine-grained
mandatory access control on Android for diverse security and privacy
policies,’’ in Proc. USENIX Secur. Symp., 2013, pp. 131–146.

[41] Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang, ‘‘Hybrid user-level
sandboxing of third-party Android apps,’’ in Proc. ACM Symp. Inf.,
Comput. Commun. Secur., 2015, pp. 19–30.

[42] R. Xu, H. Saïdi, and R. Anderson, ‘‘Aurasium: Practical policy
enforcement for Android applications,’’ in Proc. USENIX Secur. Symp.,
2012, pp. 1–14.

[43] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. Styp-Rekowsky,
‘‘Appguard–enforcing user requirements on Android apps,’’ in Proc. Int.
Conf. Tools Algorithms Construction Anal. Syst., 2013, pp. 543–548.

[44] B. Davis and H. Chen, ‘‘Retroskeleton: Retrofitting Android apps,’’ in
Proc. Int. Conf. Mobile Syst., Appl., Services, 2013, pp. 181–192.

JINKU LI received the B.S., M.S., and Ph.D.
degrees in computer science from Xi’an Jiaotong
University, Xi’an, China, in 1998, 2001, and 2005,
respectively. From 2009 to 2011, he was a Post-
Doctoral Fellow with the Department of Computer
Science, North Carolina State University, Raleigh,
NC, USA. He is currently an Associate Professor
with the School of Cyber Engineering, XidianUni-
versity, Xi’an. His research focuses on system and
mobile security.

YANGTIAN YE received the B.S. degree in com-
puter science from Hangzhou Dianzi University,
Hangzhou, China, in 2015. He is currently pur-
suing the M.S. degree with the School of Cyber
Engineering, Xidian University, Xi’an, China. His
research focuses on mobile security.

VOLUME 6, 2018 10119



J. Li et al.: CodeTracker: A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages

YAJIN ZHOU received the Ph.D. degree in com-
puter science from North Carolina State Uni-
versity, Raleigh, NC, USA. He is currently
a ZJU 100 Young Professor with the Cyber
Security Research Institute and the College of
Computer Science and Technology, Zhejiang Uni-
versity, China. His research mainly focuses on
smartphone and system security, i.e., identifying
real-world threats and building practical solutions.

JIANFENG MA received the Ph.D. degree in
computer software and communications engi-
neering from Xidian University, Xi’an, China,
in 1995. From 1999 to 2001, he was with the
Nanyang Technological University of Singapore,
as a Research Fellow. He is currently a Profes-
sor with the School of Cyber Engineering, Xidian
University. His current research interests focus on
information and network security.

10120 VOLUME 6, 2018


	INTRODUCTION
	BACKGROUND
	ANDROID SMS SYSTEM
	ANDROID RUNTIME ENVIRONMENT

	MOTIVATING EXAMPLES
	SMS-STEALING MALWARE SAMPLES
	MazarBOT
	ANDROID.BANKBOT

	INITIAL STUDY OF THE SMS-STEALING MALWARE SAMPLES
	PERMISSION ANALYSIS
	TWO METHODS TO OBTAIN SMS AUTHORIZATION CODES
	TWO METHODS TO SEND OUT SMS AUTHORIZATION CODES


	SYSTEM DESIGN
	THREAT MODEL
	OVERALL DESIGN
	IDENTIFY THE SMS AUTHORIZATION CODE
	PROPAGATE TAINT TAGS
	ENFORCE SECURITY POLICIES

	IMPLEMENTATION
	AUTHORIZATION CODE IDENTIFICATION
	THE DEFINITION OF A TAINT TAG
	THE STORAGE OF THE TAINT TAG
	THE OPERATIONS OF THE TAINT TAG
	IDENTIFYING AUTHORIZATION CODES BEFORE SMS BROADCASTING
	IDENTIFYING AUTHORIZATION CODES AFTER GETTING FROM THE SMS DATABASE

	TAINT TAG PROPAGATION
	MODIFICATION TO THE STRING METHODS
	INSTRUMENTATION TO THE COMPILER
	FILE OPERATIONS

	SECURITY POLICY ENFORCEMENT
	SECURITY POLICIES


	EVALUATION
	EFFECTIVENESS
	PERFORMANCE OVERHEAD
	COMPILER MICROBENCHMARK
	JAVA MICROBENCHMARK
	IPC MICROBENCHMARK


	DISCUSSION
	LIMITATIONS
	FUTURE WORK

	RELATED WORK
	PROTECTION OF SMS MESSAGES
	STATIC AND DYNAMIC ANALYSIS SYSTEMS
	CONFINEMENT OF SMARTPHONE APPS

	CONCLUSION
	REFERENCES
	Biographies
	JINKU LI
	YANGTIAN YE
	YAJIN ZHOU
	JIANFENG MA


