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ABSTRACT Boundary equilibrium generative adversarial networks (BEGANs) can generate impressively
realistic face images, but there is a trade-off between the quality and the diversity of generated images.
Based on BEGANs, we propose an effective approach to generate images with higher quality and better
diversity. By adding a second loss function (a denoising loss) to the discriminator, the discriminator can
learn more useful information about the distribution of real images. Naturally, the ability of discriminator in
distinguishing between real and generated images is improved, which further guides the generator to produce
more realistic images to confuse the discriminator. We also find that using technique of batch normalization
in BEGANs architecture can improve the diversity of generated images. By using batch normalization and
adding a denoising loss to the objective of discriminator, we achieve comparative generations on CIFAR-10
and CelebA data sets. In addition, we evaluate the effect of several techniques on BEGANs framework
through "Inception-Score", a measure which has been found to correlate well with human assessment of
generated samples.

INDEX TERMS Generative adversarial networks (GANs), boundary equilibrium generative adversarial
networks (BEGANs), deep generative model, image generation.

I. INTRODUCTION
Generating realistic-looking images has been a longstanding
goal in machine learning. Deep models were found to be
effective for this goal. In recent years, Variational Auto-
encoders (VAEs) [1], [2] and Generative Adversarial Net-
works (GANs) [3] are the two most prominent ones and
have shown their effectiveness. In this paper, we focus on
GAN-based approaches.

A typical GANusually simultaneously trains twomodels: a
generative model G(z) to synthesize samples given some ran-
dom source z, and a discriminativemodelD(x) to differentiate
between real and synthesized samples. GANs can produce
visually appealing images, usually regarded as the best but
so far no good way to quantify this [3]. Goodfellow et al. [4]
first proposedGenerative Adversarial Networks, analyzed the
theory of GANs and explained the learning process based
on a game theoretic scenario in 2014. And then GANs have
achieved impressive results in many specific tasks, such as
image generation [5], [6], image super-resolution [7], image

to image translation [8], [9], video prediction [10], text gen-
eration [11] and text to image synthesis [12].

In practice, GANs also have been known to be unsta-
ble in the training stage and easily suffer from modal
collapse, in which just one image is learned [13]. Many
recent works focus on stabilizing the training process via
analyzing the objective functions of GANs. McGANs [14]
used mean and covariance feature matching as objective
function. Loss-Sensitive GANs [15] learned a loss func-
tion which can quantify the quality of generated samples
and used this loss function to generate high-quality images.
Energy Based GANs [16] (EBGANs) were proposed as a
class of GANs that aimed to model the discriminator as
an energy function. Auto-encoder was used as the discrim-
inator for the first time in [16]. Least Squares GANs [17]
adopt the least square loss function for the discriminator.
More recently, Wasserstein GANs (WGANs) [18] used Earth
Mover Distance as an objective for training GANs, and
Ishaan Gulrajani et al. [11] found that applying Earth Mover
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Distance with gradient penalty as loss function can make
Wasserstein GANs [18] converge faster and generate images
with higher-quality. Boundary equilibrium generative adver-
sarial networks (BEGANs) [19], a simple and robust architec-
ture, optimized the lower bound of the Wasserstein distance
between auto-encoder loss distributions of real and synthe-
sized samples.

In this paper, we address the problem of training stability
and quality of generated images. We propose to augment
the objective of auto-encoder (discriminator) with an addi-
tional loss function, so that the auto-encoder can learn more
about real-data distribution and the ability of auto-encoder in
distinguishing between real-data and generated-data is more
powerful, which implicitly guides the generator to produce
more realistic data.

In summary, our contributions are as follows:

• We propose BEGANs with denoising loss, a simple,
easy to implement but effective method to improve
the quality of generated images. With experiments on
CelebA dataset, we show the effectiveness of denoising
loss on reducing the noise-like regions and improving
the quality of generated face images.

• We demonstrate that adding denoising loss to the dis-
criminator can improve the training and converging sta-
bility, theoretically, this method can be applied in any
model, which employs auto-encoder as discriminator in
GANs.

• We empirically show the effectiveness of batch normal-
ization on improving the diversity of generated images.
By adding denoising loss and batch normalization,
we generate higher quality and diversity face images
over BEGANs.

• We evaluate the effectiveness of several techniques on
BEGANs framework through ‘‘Inception-score’’, amea-
sure which has been found to correlate well with human
assessment of generated samples.

II. BACKGROUND
As our methods based on BEGANs [19], in this section,
we first introduce the objective functions of BEGANs, then
according to the experimental results, we illustrate the short-
age of BEGANs. Next, we briefly review two techniques
related to our method, i.e., adding denoising loss to discrim-
inator and batch normalization.

A. BOUNDARY EQUILIBRIUM GENERATIVE
ADVERSARIAL NETWORKS
Denote the discriminator by D and the generator by G.
BEGANs [19] used auto-encoder as the discriminator,
as in [16]. BEGANs are simple and robust architectures with
an easy way to control the balance between the discriminator
and the generator [19]. BEGANs matched the auto-encoder
loss distributions of real and generated data by optimizing
the Wasserstein distance. In the following, we first introduce
the lower bound ofWasserstein distance of auto-encoders and

the objective of BEGANs, and then analyze the limitations of
BEGANs.

Let L(v) = ‖D(v) − v‖1 be the L1 loss of auto-
encoder, let µ1 and µ2 be, respectively, the distributions
of real-data and generated-data auto-encoder losses. Let
γ ∈ 0(µ1, µ2) be the set all of couplings of µ1 and
µ2. And let m1 ∈ R and m2 ∈ R be their mean respectively.
The definition of Wasserstein distance is:

W1(µ1, µ2) = inf
γ∈0(µ1,µ2)

E(x1,x2)∼γ [‖x1 − x2‖1] (1)

By applying Jensen’s inequality to Eq.(1), the lower bound of
W1(µ1, µ2) is:

infE[‖x1 − x2‖]1 ≥ inf ‖E[x1 − x2]‖1 = ‖m1 − m2‖1 (2)

Where inf denotes the infimum. Eq.(2) implies that the lower
bound of W1(µ1, µ1) is ‖m1 − m2‖1. To maximize the dis-
tance between real and generated data, the only two solutions
of ‖m1 − m2‖1 is to have m1 → 0,m2 → ∞ or m1 →

∞,m2 → 0. BEGANs [19] chose m1 → 0,m2 → ∞,
as minimizing m1 is equivalent to reconstructing real data.
The whole objective function of BEGANs [19] was defined
as follow:

LD(x, z) = L(x)− kt ∗ L(G(z))
LG(z) = L(G(z))
kt+1 = kt + λk (γ · L(x)− L(G(z)))

(3)

where L(x) = ‖D(x) − x‖1 is the auto-encoder L1 loss of
real data, and L(G(z)) = ‖D(G(z)) − G(z)‖1 is the auto-
encoder L1 loss of generated data. The variable kt ∈ [0, 1]
controls the emphasis of generator losses when training the
discriminator and k0 = 0. γ = L(G(z))/L(x) maintains
the balance between the auto-encoder loss of real-data and
generated-data. γ is also an indicator of diversity with small
values meaning less diversity. λk is the learning late of k ,
which is 0.001 in experiments. The auto-encoder in BEGANs
reconstructs images and discriminates real images from gen-
erated images simultaneously. BEGANs [19] also proposed
an approximate measure of convergence: Mglobal = L(x) +
|γ · L(x) − L(G(z))|, where |γ · L(x) − L(G(z))| is the
absolute value of γ · L(x)− L(G(z)). We adopt this measure
in experiments.

B. THE SHORTAGE OF BEGANs
Despite BEGANs made some progress on image quality
and measuring convergence, there are still many problems
that need to be improved. As show in Fig.1 [19], at low
values of γ = 0.3, the generated images looks uniform with
many noise-like regions, while at high values (γ = 0.7),
the diversity of the generated images increases but the quality
declines. Another shortage of BEGANs is that the genera-
tor cannot learn the low-probability features. For example,
BEGANs almost cannot generate older people faces, and
cannot generate glasses even with highest diversity value
γ = 1(We performed the program with γ = 1 and produced
12800 images with the trained model. In the 12800 generated

VOLUME 6, 2018 11343



Y. Li et al.: Improved BEGANs

FIGURE 1. Images generated by BEGANs γ ∈ {0.3,0.5,0.7}. Note: some
noise-like regions are marked with red circles at γ = 0.3.

images, we observed no glasses and hardly old faces). This
point was also supported by Berthelot et al, as they stated
‘‘However we did not see glasses, we see few older peo-
ple’’ [19]. To reduce the noise-like regions in the generated
images, we add a denoising loss to the discriminator and
to improve the diversity we introduce batch normalization.
In the following, we briefly review these two methods. Note
that some noise-like regions on Fig.1 are marked with red
circles for highlight.

C. DENOISING AUTO-ENCODER
The denoising auto-encoder [20], is trained to minimize the
following denoising criterion:

LDAE = E[L(x, r(N (x)))] (4)

WhereN (x) is a stochastic corruption of x and the expectation
in the right of Eq.(4) is over the training distribution and the
corruption noise source. For easy mathematical calculation,
usually apply squared loss and Gaussian noise corruption,
which means LDAE = ‖r(N (x))− x‖22.

According to Alain and Bengio [21], a suitably trained1

denoising auto-encoder can estimate some local character-
istics of the data density, such as the first derivative (score)
and second derivative of the log-density and the local mean.
They further showed that when the denoising auto-encoder
has been suitably trained, the quantity LDAE denoising recon-
struction loss ‖r(N (x)) − x‖22 assessed the score of the data
density, up to a multiplicative constant, which is illustrated
by the following Eq.(5):

‖r(N (x))− x‖22 ∝
∂ log p(x)
∂x

(5)

D. BATCH NORMALIZATION
First introduced by Ioffe and Sergey [22], Batch normaliza-
tion was proposed to alleviate the internal covariate shift by
incorporating a normalization step and a scale and shift step
before the nonlinearity in each layer. For batch normalization,
only two parameters per activation are added, and they can be
updated with back-propagation. Batch normalization enjoys
several merits, such as fast training, better performance, and
low sensitivity to initialization. For further details on batch
normalization, please refer to [22]. In this paper, we confirm

1With infinite training data, perfect minimization and isotropic Gaussian
noise of some standard deviation σ

the state that batch normalization can improve the perfor-
mance of BEGANs [19], especially in improving the diversity
of generated images, which will be demonstrated in experi-
ment section.

III. METHOD AND ARCHITECTURES
As BEGANs devise auto-encoder as discriminator, a natural
idea is to add denoising loss to the discriminator, so that the
discriminator can learn much useful information about real-
data distribution. The generator of our models is trained as
BEGANs, while the discriminator of our models is trained
using the following loss function:

LD(x, z) = L(x)− kt ∗ L(G(z))+ λnoise · LDAE (6)

where LDAE = ‖D(x + noise) − x‖22 is the denoising
loss of discriminator. λnoise is the weighting coefficient of
denoising loss, which controls the proportion of denoising
loss during training the discriminator. All experiments in this
paper use λnoise = 2, which we found to work well on
CIFAR-10 dataset and CelebA dataset. According to Eq.(6),
the objective loss function of discriminator includes opti-
mizing the lower bound of the Wasserstein distance between
real-data and fake-data auto-encoder loss, and optimizing the
denoising loss between real-data and the corruption noise
source. Other symbols have the same meaning as that in
Eq.(3). The dataflow of our models is illustrated in Fig.2(b).
Compared with BEGANs (Fig.2(a)), our model adds cor-
rupted real images as extra inputs and an denoising loss to
the discriminator loss function (Fig.2(b)). Therefore, the dis-
criminator encodes all images (including real images, noisy
real images, and generated images), distinguishes real images
from generated images, as well as denoises the corrupted real
images.

Adding denoising signal to generative adversarial networks
was inspired by denoising feature matching (DFM) intro-
duced by Wardefarley et al [23], which adding denoising
feature loss to the generator, while the denoising feature
was trained on real data by an independent fully connected
denoising auto-encoder neural networks. DFM [23] showed
the effectiveness of denoising signal but it was time consum-
ing because it needed to train three networks simultaneously
and one of which was a deep fully connected network. For
BEGANs architecture, adding denoising signal is easy and
only need to add corrupted real data as extra inputs to the dis-
criminator (Fig.2(b)). For the denoising reconstruction error
LDAE estimates the log-density gradient of real data distribu-
tion, it can improve the discriminator ability to distinguish
real images and generated images and then implicitly guide
the generator produce higher quality images. In addition,
adding denoising loss to the discriminator can improve the
stability of training and convergence.

The models’ architectures are shown in Fig.3. As the
principal purpose of this paper is to improve the perfor-
mance of BEGANs, we follow the BEGANs architectures
and only add batch normalization [22] to the second con-
volution layer of each block in some experiments. Both the
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FIGURE 2. Dataflow chart of two models. Compared with BEGANs (a),
ours model (b) adds corrupted real image as input and an auto-encoder
denoising loss to the discriminator loss function.

FIGURE 3. Network structures of the generator and discriminator. ‘‘Conv
w = (k,k),d = (m1,m2), s = S’’ denotes a convolutional layer with k × k
kernel, m1 input filters, m2 output filters and stride = S. ‘‘*Batch
Normalization’’ means that the layer is followed by a batch normalization
layer,‘‘*’’ show the difference from BEGANs. ‘‘FC(N1,N2)’’ denotes a
fully-connected layer with N1 input nodes and N2 output nodes. ‘‘SC’’
denotes skip connection, which means concatenating the first decoder
tensor H0 and the output of up-sampling. The activation layers are
omitted. (a) Encoder. (d) Decoder/Generator.

discriminator and generator are deep convolutional neural
networks, using 3 × 3 convolutions with exponential linear
units [24] (ELUs) applied at their outputs. Down-sampling is
implemented as sub-sampling with stride 2 and up-sampling
is done by nearest neighbor as in [19]. We observe no
improvement for replacing up-sampling with transpose con-
volution, which was usually used in typical GANs. All
networks were trained with the Adam [25] optimizer with
β1 = 0.5 and an initial learning rate of 0.0001, decayed
by a factor of 2 when the measure of convergence stalls.

In all experiments, we employed isotropic Gaussian corrup-
tion noise with σ = 1. We also conducted experiments with
annealing σ towards 0 (as also performed in [26]), however
an annealing strategy did not perform better than fixed level
noise.

IV. EXPERIMENTS
In this section, we demonstrated that our method can pro-
duce high quality images with stable training process and
convergence on diversity datasets. We first verified the effec-
tiveness of denoising loss on reduce noise-like regions and
batch normalization on improving the diversity of generated
images on CelebA dataset [27]. By adding these two meth-
ods to BEGANs, we produced high quality and diversity
face images. Then by a series of ablation experiments on
CIFAR-10 dataset [28], we presented the effects of several
techniques trough ‘‘Inception score’’ [29], which was often
used to measure quality and diversity of generated images.
OnCIFAR-10 dataset, we also demonstrated the effectiveness
of denoising loss on improving the training and convergence
stability.

A. CelebA
We trained our models on the large-scale face dataset CelebA
under alignment [27] to demonstrate the effectiveness of our
method. We first used opencv2 to detect the face in the image
and then resize to 64 × 64 and 128 × 128, so the image
was more concentrated on the face and the effectiveness was
more obvious. After preprocessed, there were about 150k
celebrity images remained, with high degree of variability in
view point, skin color, face pose, hair color, hair style, age,
gender and so on.

To fairly evaluate the performance of denoising loss,
we performed two group comparison testes with various γ on
the same model [19](original BEGANs’ model) and imple-
mentation details. The difference of each group was whether
the objective function of the discriminator had denoising loss.
The experimental results are shown in Fig.4. We observe that
the generated images of BEGANs with denoising loss have
far fewer noise-like regions than that of BEGANs, and at
γ = 0.3 (Fig.4(b)) the generated images of BEGANs with
denoising loss are smoothness and almost noiseless, while
there are some noise-like regions on face images of BEGANs
(Fig.4(d)).

Another advantage of adding denoising loss is the model
can converge to a more stable and lower value. In Fig.5,
we compare the convergence of the two models, which shows
that adding denoising loss to the BEGANs can improve the
convergence stability.

We performed experiments on BEGANs with γ = 1 (The
highest diversity according to [19]), in which we did not see
glasses and only saw few older people as in [19]. To improve
the diversity of generated images, we applied batch normal-
ization to the second convolution of each block of BEGANs,
and the architecture is illustrated in Fig.3. The results
are shown in Fig.6(b). The generated face samples have
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FIGURE 4. Random samples of BEGANs with or without denoising loss on
CelebA dataset γ ∈ {0.3,0.5}. Note: the noise-like regions are marked
with red circles for highlight in Fig(d). (a) BEGANs with denoising loss on
CelebA γ = 0.5 (64× 64). (b) BEGANs with denoising loss on CelebA
γ = 0.3 (64× 64). (c) BEGANs on CelebA γ = 0.5 (64× 64). (d) BEGANs on
CelebA γ = 0.3 (64× 64).

FIGURE 5. CelebA convergence of BEGANs with or without denoising
loss.

various viewpoint, outlook, expressions, genders, skin colors,
hairstyle, age and glasses. On the fourth row of Fig.6(b),
we highlight some samples with attributes failed or rarely
generated in BEGANs, which are glasses, the older, beards
and bangs from left to right. For comparison, we also dis-
played some results without batch normalization in Fig.6(a).
Please note that in these two experiments, we also added
denoising loss to the loss function of discriminator.

To further demonstrate the robustness of our method,
we trained our model with γ = 1 at resolution 128× 128.
Some representative generated samples are presented in
Fig.7(b). Higher resolution images still maintain coherency
and diversity. The generated face images (Fig.7(b)) of our

FIGURE 6. Random 64× 64 samples comparison. In the fourth row of (b),
we highlight glasses, the older, beards and bangs from left to right.

FIGURE 7. Representative 128× 128 samples comparison. In figure (b),
we highlight old face, glasses and visor-like with red box, yellow box and
blue box respectively.

method are various on face shape, age, decorations (glasses),
which indicates the effectiveness of our method in high-
resolution image generation. We marked old face with red
box, glasses with yellow box and visor-like with blue box for
highlight. For comparison, we also displayed BEGANs [19]
results in Fig.7(a). Note that these were trained on different
datasets so direct comparison was difficult.

B. CIFAR-10
CIFAR-10 [28] is a small, well studied dataset containing
60,000 color images with resolution 32 × 32. We used this
dataset to study the effectiveness of several techniques and to
show the effectiveness of denoising loss in stable training and
stable convergence, as well as to examine the visual quality
of samples that can be achieved.
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TABLE 1. Table of inception scores for samples generated by various
models.

TABLE 2. Continued table 1.

A series of ablation experiments were performed and all the
results are presented in Table 1, which listed the ‘‘Inception
score’’ [29] and the generated samples of different models on
BEGANs [19] framework. The results in Table 1 indicate that
all the techniques have effects, with themost significant effect
of ‘BN’ (‘BN’ is the abbreviation of batch normalization),
from 5.62 to 6.25. Adding denoising loss to discriminator
also has effect on improving the ‘‘Inception score’’, from
6.25 to 6.53. Using all the techniques, we achieve Inception
score of 7.05, a little higher than Salimans et al. [29] using
unsupervised network (6.86). Training model with γ = 0.7
leads to a decline in performance, from 6.53 to 5.51. Note that
in Table 1, ‘‘Baseline’’ used BEGANs [19] model with tech-
nique of skip connections (‘‘SC’’ for abbreviation), ‘‘+BN’’
used our model illustrated in Fig.3 and did not add denoising
loss (‘‘DE’’ for abbreviation) to discriminator, ‘‘-SC+DE’’
emloyed our model and added ‘‘DE’’ but removed skip con-
nections, ‘‘Ours’’ used all the above mentioned techniques,
‘‘+HA’’ added historical averaging to ‘‘Our method’’, All the
above models trained with γ = 1, ‘‘γ = 0.7’’ meant using
‘‘Our method’’ but trained models with γ = 0.7.
Another advantage of argument denoising loss to the objec-

tive of discriminator is that it can improve training and
convergence stability. To demonstrate this, we performed
two expreiments on BEGANs architecture with or without
denoising and plotted the measure of convergence [19] and
‘‘Inception scores’’ [29] over the course of training iterations
(see Fig.8). As can be seen from Fig.8, adding denoising
loss can make the BEGANs converge to a more stable state
(Fig.8(a)) and a better final score (Fig.8(b)).

We also compared our model with the recently proposed
method WGAN with weight clipping [18], WGAN with
gradient penalty [11], BEGANs [19], and plotted Inception
scores over the course of training (see Fig.9). Our models
significantly outperformed BEGANs on stability and image
quality, achieves slightly higher ‘‘Inception scores’’ than
WGAN with gradient penalty. We also plotted the Inception

FIGURE 8. CIFAR-10 convergence or ‘‘Inception score’’ over generator
iterations for two models. (a) CIFAR-10 convergence. (b) ‘‘Inception score’’
over generator iterations.

FIGURE 9. CIFAR-10 ‘‘Inception score’’ over generator iterations and
wall-clock time for four models: WGANs with weight clipping, WGAN with
gradient penalty, BEGANs and BEGANs with denoising loss. (a) CIFAR-10
‘‘Inception score’’. (b) Wall-clock time.

TABLE 3. Inception scores of different models.

scores over time (in terms of wall-clock time) and observed
that our method had almost the same convergence rate as
WGAN with gradient penalty. Note: the results of WGAN
and WGAN-GP were performed the programs provided by
Ishaan Gulrajani et al.,2 and all the programs in this sub-
section were performed on a single Nvidia GeForce GTX
1070 GPU.

Table 3 shows the Inception scores of some lately similar
works on models trained entirely unsupervised. Our score is
higher than other GANs techniques exception of Denoising
Feature Matching [23] (DFM) and WGANs with gradient
penalty [11]. It is necessary to note that Denoising Feature
Matching [23] used an additional network to train the denois-
ing feature andWGANs with gradient penalty [11] used deep
residual networks to improve their performance. Employing
deep residual networks in our framework is a possible avenue
for future work.

2https://github.com/igul222/improved_wgan_training
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V. CONCLUSION
We have proposed a useful method to improve the perfor-
mance of BEGANs, but a better theoretical grounding regard-
ing the auto-encoder combined with the equilibrium concept
is a necessary direction for future work, including choosing
other varieties of auto-encoders such as Variational Auto-
Encoders [1] (VAEs), more grounded criteria for assessing
mode coverage and mass misassignment.

We introduced a simple and effective way to improve the
performance of BEGANs. We have shown that adding a
denoisng loss to the discriminator and applied batch normal-
ization can significantly improve the quality and diversity
of generated images. On CIFAR-10, we also compared our
method with recent works and demonstrated that the stability
of our method can comparative with WGANs with gradi-
ent penalty. Although we only performed our method on
BEGANs framework, our method can be generalized to any
GANs of employing auto-encoder as discriminator.
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