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ABSTRACT Internet of Things (IoT) data analytics is underpinning numerous applications, however,
the task is still challenging predominantly due to heterogeneous IoT data streams, unreliable networks, and
ever increasing size of the data. In this context, we propose a two-layer architecture for analyzing IoT data.
The first layer provides a generic interface using a service oriented gateway to ingest data from multiple
interfaces and IoT systems, store it in a scalable manner and analyze it in real-time to extract high-level
events; whereas second layer is responsible for probabilistic fusion of these high-level events. In the second
layer, we extend state-of-the-art event processing using Bayesian networks in order to take uncertainty into
account while detecting complex events.We implement our proposed solution using open source components
optimized for large-scale applications. We demonstrate our solution on real-world use-case in the domain
of intelligent transportation system where we analyzed traffic, weather, and social media data streams from
Madrid city in order to predict probability of congestion in real-time. The performance of the system is
evaluated qualitatively using a web-interface where traffic administrators can provide the feedback about
the quality of predictions and quantitatively using F-measure with an accuracy of over 80%.

INDEX TERMS Complex event processing, data analysis, internet of things, real-time systems, intelligent
transportation systems.

I. INTRODUCTION
Many Internet of Things (IoT) applications enable smart
city initiatives all over the world by leveraging ubiquitous
connectivity, big data and analytics [1]. The capabilities intro-
duced by these new applications are tremendous such as
the ability to remotely monitor, manage and control devices
without human intervention, create new insights and action-
able information from massive streams of data, which in
return is improving standard of human living to a great
extent. IoT offerings are transforming cities by improving
public health management, enhancing public transportation
and creating more efficient and cost effective municipal
services [2].

Forward-thinking cities and smart city solution providers
recognize that the full potential of IoT cannot be reached by
providing disparate smart city point solutions but rather the
focus should be an efficient and scalable IoT infrastructure
that integrates multiple systems or data streams. Currently,
most of the IoT data is under-used by limiting it for specific

applications. For example, weather data sensors have been
deployed for years but are seldom used for other applications.
In the new world of connectivity, weather data has huge
potential for a range of applications. It can be correlated with
shopping centers sales to determine the effect of weather on
shopping patterns or can be combined with traffic conditions
to understand how weather can effect traffic. According to
McKinsey, 40 percent of the total value that IoT can provide
requires different IoT systems to work together [3].

There are many research challenges in this regard from
data ingestion and storage at one end to scalable and effi-
cient data analytics at the other end. Different IoT systems
were built on different protocols and building a single and
global ecosystem for IoT that can work together is certainly
a challenging and non-trivial task. In this context, any pro-
posed IoT data analytics solution should fulfil the following
requirements;

1) A proposed solution should be generic enough to
ingest data coming from different IoT systems in
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FIGURE 1. Proposed approach for hierarchical processing of data
streams.

all types of format. It should have the capability
to handle heterogeneous data streams with minimal
modification of existing components.

2) An efficient and scalable solution is provided for
storing, managing and performing complex analyt-
ics on this ever increasing data.

3) It should have the capability to perform real-time
analytics for time sensitive applications.

4) Finally, it should be able to take inherent uncer-
tainty of real-world events into account while infus-
ing data from heterogeneous sources and able to
make decisions with missing or uncertain data as
well.

In this regard, we propose a two layer analytics solution as
shown in Figure 1. The first layer of analytics is responsible
for ingesting and analysing individual IoT data streams gen-
erated by different IoT systems in order to extract high-level
knowledge which we called derived events in our system.
Whereas the second layer of analytics provides the frame-
work for probabilistic fusion of derived events by extending
complex event processing (CEP) with Bayesian networks
(BNs) for large-scale IoT applications. The hybrid framework
based on CEP and BNs enables to combine derived events
probabilistically and extract high-level knowledge in the form
of probabilistic complex event.

There are several terms used in this paper which have
different meanings in different contexts. In order to have a
common understanding, these terms are defined here in the
context it has been used in this paper.

Derived Event: Derived events can be defined as high-
level events which are extracted from raw data streams; for
example a hot weather derived from temperature data or bad
traffic derived from traffic data are the examples of derived
events.

Probabilistic Complex Events: Probabilistic complex
event in our system is referred as the final output which is
extracted from the combination of different derived events
using Bayesian networks and CEP.

Heterogeneous data: Heterogeneous data is defined as
the combination of data produced by different type of sen-
sors or devices. A dataset consisting of traffic, weather and
social media data is an example of heterogeneous data.

Large-scale: Large-scale data or Big data is referred
in this paper as the data sets which are voluminous and

complex enough that it cannot be analysed using conventional
methods.

The key contributions of this paper are summarized below:
• A generic architecture is proposed to ingest data

from heterogeneous IoT data streams,1 store it effi-
ciently and provide scalable methods to extract
high-level events in near real-time.

• We propose a novel method for fusion of high-level
events in real-time. Our proposed method extends
the current CEP technology with BNs using a scal-
able approach based on open-source tools.

• The proposed solution is demonstrated using a real-
world use-case of intelligent transportation system
(ITS) where heterogeneous data streams including
traffic, weather and social media data were col-
lected. We developed a complete end-to-end solu-
tion for managing traffic efficiently in real-time and
evaluated it qualitatively using web-interface and
quantitatively using F-measure with an accuracy of
over 80%.

The remainder of the paper is organized as follows.
Section II highlights the leading research work in the domain
of big data analytics and event processing. Section III
describes the use-case of ITS which we used to demon-
strate the application of our proposed solution. Section IV
explains the first layer of analytics of our proposed architec-
ture followed by the description of second layer analytics in
Section V. Section VI demonstrates the implementation of
our proposed solution for ITS use case alongside its evalu-
ation. Finally we draw conclusion and highlight our future
work in Section VII.

II. RELATED WORK
IoT data analytcis has long been divided into two categories
of Batch and Event processing [4]. Batch processing is an
efficient way of processing high volumes of data where data
is collected over a period of time; whereas, event processing
involves analyzing data on the fly without storing it and mak-
ing decisions on per single entry of system.MapReduce [5] is
perhaps one of themost renowned batch processing technique
which provides the basis of other open source solutions such
as Hadoop [6]. MapReduce is a programming model for car-
rying computations on large amounts of data in a distributed
manner. It was originally developed by Google as a generic
but proprietary framework for carrying analytics on Google’s
own big data. Although MapReduce provides a generic and
scalable solution for big data but it is not designed for running
iterative machine learning algorithms. A new mapper and
reducer is initialized for everyMapReduce iteration.Mappers
read the same data from the disk again and again; and after
processing, the results are stored in the disk in order to carry
the next iteration. In such scenarios, disk access is a major

1In this work, the term ‘‘heterogeneous IoT data streams’’ is used to refer
the data streams coming from multiple and diverse sources such as traffic
sensors data fromMadrid city council, social media data in the form of twitter
and weather data.

10016 VOLUME 6, 2018



A. Akbar et al.: Real-Time Probabilistic Data Fusion for Large-Scale IoT Applications

bottleneck for iterative algorithms and hence degrading the
overall performance [7].

A new cluster computing framework called Spark [8] was
developed to overcome the limitations of MapReduce. Spark
provides the ability to run computations in the memory which
enables it to provide much faster computation times for
complex and iterative applications as compared to systems
based on traditional MapReduce. Spark is designed to be
fast and general purpose for different data analysis applica-
tions including iterative algorithms such as machine learning.
Recently, a lot of research effort has been put into spark
streaming for real-time applications but it is still in its early
stages with drawbacks such as the inability to process real-
time data on per event basis [9].

In order to address the requirements of real-time data
processing for IoT, solutions based on the concept of event
driven architecture (EDA) [10] were proposed in recent times
which has led to the development of new research area called
complex event processing (CEP). CEP includes processing,
analyzing and correlating event streams from different data
sources using distributed message-based systems to extract
high-level or actionable knowledge in near real-time [10].
The research on CEP has been multi-disciplinary including
active databases [11], business process management [12] and
service-based systems [13]. Common goal for all these multi-
disciplinary research was to provide low delay processing
of incoming primitive events in order to analyze streaming
data on the run. It has often lead to the design of simplified
solutions with no inherent support for handling uncertainty as
shown by Cugola and Margara [14].

The dichotomy of batch processing and event processing
has resulted into multiple systems analyzing the same data
for various applications. In order to address this issue, Nathan
Marz proposed the Lambda architecture [15] which pro-
vides a scalable and fault tolerant architecture for processing
both real-time and historical data in an integrated fashion.
In Lambda architecture, the output of batch and speed layer
are calculated separately and then the results are served
through service layer. Batch layer provides more in-depth
analysis but with time delay whereas speed layer provides
quick results by using only recent data and compromising
on the level of analysis. Both layers work independently of
each other. In contrast to it, the Hut architecture was proposed
in [16] for IoT data analytics based on the combination of
batch processing and event processing where both layers
work together to provide the best of both worlds. In addition,
the modular approach of their architecture enables both batch
processing and event processing to work independently as
well.

In addition to providing scalable solution for managing
and analyzing real-time IoT data streams, handling inherent
uncertainty in real-world IoT data streams represents another
challenge. The scope of the IoT is global where the aim is
to combine data generated by different devices in order to
extract higher-level events. In this regard, it is important to
provide solutions which can incorporate the uncertainty when

fusing events frommultiple sources. One of the early work for
introducing uncertainty in probabilistic processing of differ-
ent events was presented in [17] where Khoussainova et al.
build their system probabilistic event extractor (PEEX) on
the top of traditional relational dataBase management system
(RDBMS) in order to detect probabilistic events from RFID
data. They validated the system on a real-world deployment
of radio-frequency identification (RFID) tags for recogniz-
ing activities. From an implementation point of view, Peex
uses a RDBMS for storing all information received from
data sources and confidence score about them. Rules are
then translated into SQL queries before running periodically.
It introduces a small delay between the real occurrence time
of events and the detection time of events. Another initial
approach for handling uncertainty in events processing was
proposed by Wasserkrug et al. [18], where authors discussed
two types of inherent uncertainty in CEP systems; uncertainty
in data and uncertainty in relation between events. They
presented theoretical framework for embedding uncertainty
in events and later same authors extended their work in [19]
where they proposed a mechanism for constructing probabil-
ity space that captures the semantics of defined rules and used
an abstraction based on Bayesian networks (BNs) to define
the probabilities of possible combinations. Bayesian model
was automatically created based on defined rules and explicit
events. Experiments were performed on simulated data with
the assumption of conditional probabilities given for BN.
The authors highlighted the difficulties in obtaining condi-
tional probabilities for real-world scenarios which limits the
practical implementation of their work. Existing literature on
using Bayesian network with CEP assumed that conditional
probabilities are given which are vital for constructing BN.
According to the best of our knowledge, there is no work
in the literature focusing on the computation of conditional
probabilities for real-world problems in order to construct BN
with CEP. As the complexity of Bayesian inference process
increases with an increase in the data size and number of data
sources [20], it is essential to propose a scalable and efficient
solution.

III. ILLUSTRATIVE SCENARIO
This work demonstrates the functionalities of proposed
framework with the help of Intelligent transportation system
(ITS) use-case. The use-case of ITS is chosen for several
reasons. First, it represents a truly big data problem where
different sensors at city-scale are generating large amounts
of data. Second, it requires analysing this large data in real-
time so that traffic administrators can manage traffic pro-
actively. Third, ITS has an immense impact on the social and
economical development of smart cities.

The advent of IoT has made many data sources available
but currently, most of them are deployed as a stand-alone sys-
tems. Such individual systems are limiting the true potential
of IoT. If we take the example of ITS, the use of traffic sensors
is the most conventional method for traffic administrators
to observe and manage traffic. Although, many modern day
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TABLE 1. Input data streams and derived events.

cities have weather sensors installed and different research
efforts as mentioned in [21] and [22] highlights the correla-
tion of weather on the traffic patterns but it is not being yet
exploited at city-level applications. Similarly, in the current
era of digital technology social media is one of the quick-
est way to detect city events effecting traffic patterns. For
example, a musical concert or a football match happening in
nearby region can lead to unexpected increase in traffic and
data analytics carried out on social media data streams can
help us to detect it in a timely manner. Although different
research efforts demonstrate the potential of using social
media data such as twitter to detect city events in real-time
as outlined in [23], they are seldomly preferred against the
more conventional sensor based methods. In our proposed
approach, we emphasis that the social media data and weather
data can be exploited in order to predict traffic patterns more
accurately and take pro-activemeasures.We propose to ingest
and analyze different data streams in real-time and proposed a
probabilistic event processing system for combining multiple
high-level events extracted from these data streams.

For ITS use case, we ingest traffic data captured by various
traffic sensors deployed byMadrid city council,2 social media
data in the form of twitter3 and weather data4 to derive high-
level events as summarized in Table 1. In order to get fair
analysis of results, three different locations were selected
from city of Madrid as shown in the Figure 2. More details
about the methodology and individual data streams can be
found in next section.

IV. DATA COLLECTION AND ANALYTICS
The diverse requirements of IoT data processing need event
processing (for real-time data) and batch processing (for
historical data) to work in parallel. The combination of two
technologies poses many challenges. In our earlier work [24],
we highlight these challenges and presented an approach to
address these challenges. In this paper, we improve our initial
approach to make it generic for heterogeneous data streams,
extend our experimental evaluation and implement it using
open source components which are optimized for large-scale
IoT data streams

Our proposed solution for data collection and analytics is
shown in Figure 3. Node-RED [25] serves as the front end of
our solution which is an open source visual tool for wiring
IoT events coming from heterogeneous data sources. It pro-
vides a service oriented gateway which enables to ingest data

2http://informo.munimadrid.es/informo/tmadrid/pm.xml
3https://developer.twitter.com/
4http://api.wunderground.com/

FIGURE 2. Monitoring locations for analytics with bounding boxes in
madrid city.

FIGURE 3. Level 1: Data collection and analytics.

coming from different data sources, performs pre-processing
and push the data on a Kafka [26] topic in a defined format
and schema. It acts as a generic interface for ingesting data
from different IoT systems. In our system, we have used
Apache Kafka as the message broker for real-time generated
events because of its high throughput messaging capability
and durability. One of the unique feature of Kafka which
makes provides it an edge on other message brokers is its
persistent nature to hold the messages for a given amount of
time in the form of a log (ordered set of messages).

All the data is stored in the form of objects in Open-
Stack Swift cloud storage [27]. The OpenStack Object Store
project, known as Swift, offers cloud storage software so that
data can be stored and retrieved efficiently with a simple API.
It is a scalable storage which provides durability, concurrency
and availability through the entire data set. It enables to CRe-
ate, Update and Delete (CRUD) objects using a simple REST
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API, and supports scalable and low-cost deployment using
clusters of commodity machines. The open-source status of
OpenStack was another important factor for choosing it as
object storage framework.

We configured Spark SQL to retrieve data efficiently from
OpenStack swift and analyze using Spark MLlib to extract
insight from it. Spark MLlib is a machine learning library
for Apache Spark. Apache Spark is a general purpose ana-
lytics engine that can process large amounts of data from
various data sources. It performs especially well for multi-
pass applications which include manymachine learning algo-
rithms. Spark SQL is Apache Spark’s module for working
with structured data. Real-time analytics are carried out using
CEP in our architecture. CEP systems require rules based on
different threshold values which have to be set by domain
experts. In our proposed solution, historical data analysis
using Apache Spark calculates these value automatically and
keep updating it according to current context. More details
about it can be found in [24]. Now we briefly describe differ-
ent data streams which we ingested and analyzed using our
architecture.

A. TRAFFIC DATA
We briefly describe about using our architecture for ingesting
Madrid traffic data in this section. City of Madrid Council
have deployed over 3000 traffic sensors in fixed locations
in the city monitoring various traffic parameters including
average traffic speed, density and occupancy. Traffic admin-
istrators utilize the data from these sensors to understand
the traffic conditions and take reactive measures in order to
ensure smooth traffic flow. Aggregated data is published as an
IoT service using a RESTful API5 and data is updated every
5 minutes. We ingest this data in our system using Node-
Red flows, add meta data such as time and location, push
data to kafka and store in the form of objects in openstack
swift cloud storage. The published data on kafka has the
following schema, where intensidad denotes traffic intensity,
velocidad denotes traffic speed, ts denotes the timestamp in
epoch format and tf denotes the time of day.

{"namespace": "traffic_data",
"type": "record",
"name": "MadridTrafficFlow",
"fields": [
{"name": "codigo", "type": "string"},
{"name": "ocupacion", "type": "int"},
{"name": "carga", "type": "int"},
{"name": "nivelServicio", "type": "int"},
{"name": "velocidad", "type": ["null","int"]},
{"name": "intensidad", "type": ["null","int"]},
{"name": "error", "type": "string"},
{"name": "subarea", "type": ["null","int"]},
{"name": "ts", "type": "long"},
{"name": "tf", "type": "string"}

]
}

In order to detect complex events using CEP, we require
threshold values for different traffic features. These thresh-

5http://informo.munimadrid.es/informo/tmadrid/pm.xml

FIGURE 4. Traffic events table layout in cloud storage.

old values are calculated automatically by carrying analytics
on historical data. The data is collected for more than two
months and is analyzed using Spark SQL and Spark MLlib to
learn traffic patterns and model the expected traffic behavior
for different contexts such as morning, evening, weekdays
and weekends. Then this information is used to automati-
cally generate threshold values for CEP rules. As the traffic
becomes bad or approaches to congestion, CEP generates
complex event with a warning message. An example rule for
CEP is shown below where threshold values are generated
automatically by exploiting pattern learning algorithms [24]
using SparkMLlib. Complex events detected are stored in the
cloud storage with current intensity and velocity readings as
shown in the Figure 4 where ‘1’ indicates a congestion event.

B. TWITTER DATA
Social networks have been identified as a rich source of
information due to their extended uptake, through which
significant inferencemay be achievedwith relation to circum-
stances affecting the societal status. In this context, we have
used Twitter data as another source of information that can
aid in the prediction of congestion. Exploring social media
analytics is beyond the scope of current work, which is pri-
marily the construction of an integrated system with hetero-
geneous data streams and probabilistic inference framework.
In contrast to existing sophisticated methods for analyzing
social media data, we have followed a rather simple yet
effective approach. The intuition behind our approach is that
the number of tweets coming from a specific region is the
indicative of number of people gathered in a region. For
example, if we are extracting tweets from a region including
a football stadium, the number of tweets will be far higher
on a match day as compared to other days indicating a large
crowd concentration. Similarly, there will be more tweets
coming from a region including city center or shopping malls
during Christmas holidays as compared to a normal weekday
indicating a crowd concentration.
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One reason for selecting twitter data is its easily avail-
able open API [28] through which it can be ingested into
our system and dynamically alert about surges in population
concentration in a given area, when compared to the normal
tweeting activity of the past. Increased Twitter activity in an
area can be considered as an indirect indication about abnor-
mal activity, especially when this relates to highways and
not residential areas that could include an increased number
of false positives (e.g. due to popular Twitter trends in the
specific timeslot).

In order to focus on a specific area (a bounding box around
the location), filtering of the acquired messages from Twit-
ter needs to be performed. This is done upon registration,
in which we define the geographical bounding box from
where we need the relevant tweets to be forwarded. This
is taken under consideration by the respective Twitter API
and only the tweets that have enabled geolocation and fall
within this box are forwarded (in our case the bounding
boxes for every location is highlighted in Figure 2). It is
necessary to stress that not all of the tweets are forwarded,
but only a percentage of them, according to the Twitter API
documentation [28]. Following tweets acquisition, ingestion
takes place as follows:

1) Initial filtering is performed in order to reduce each
tweet size, by discarding fields of no interest and
thus reducing needed storage space

2) Enrichment with sentiment analysis information
based on the tweet content is performed. This infor-
mation is not currently used but it was considered a
promising feature for future work.

3) Definition of an Apache AVRO [29] schema neces-
sary for describing how the data fields information
will be stored in the Cloud storage and which fields
will be maintained, which also affects the Node-
RED manipulation

4) Adaptation of the incoming tweets to the Avro for-
mat and JSON structure of the output to the Mes-
sage Bus (ApacheKafka), fromwhich it is collected
by Openstack Swift

The published data on Kafka has the following schema;

{"namespace": "cosmos",
"type": "record",
"name": "TwitterData",
"fields": [
{"name": "ts", "type": "long"},
{"name": "text", "type": "string"},
{"name": "lon", "type": "double"},
{"name": "lat", "type": "double"},
{"name": "twitter_id", "type": "string"},
{"name": "sentiment", "type": "double"},

]
}

Once the ingestion flow has been established and sufficient
data have been collected, they can be included in the run-time
operation of the LCC event identification. Historical data is
analyzed using Spark SQL and Spark MLlib to learn about
expected number of tweets for given location and time and

FIGURE 5. LCC events table layout in object storage.

CEP is used to calculate the running sum of number of tweets.
Depending on the number of tweets, it generates different
levels of Large Crowd Concentration (LCC) event. After
detecting LCC event, it is stored in the cloud storage along
with twitter counts and time stamp. We have used three levels
of LCC where ’0’ indicates no LCC or normal conditions, ’1’
indicates first level of LCC and ’2’ indicates second level of
LCC event indicating a Large crowd in the region as shown
in Figure 5. We validated our approach by performing several
experiments around Santiago Bernabeu stadium in Madrid in
order to detect the LCC for football matches and validate our
proposed solution. Further details about the validation can be
found in [30].

C. WEATHER DATA
There are number of open source weather services available
for retrieving real-time weather data. For our work, we used
open API provided by Weather Underground6 to access data
from the nearest weather station to our selected locations.
Combined with a Node-RED flow, we parsed the received
data in a JSON file and filter out the needed parameters
according to our defined schema. We assigned weather data
three different levels (0,1, 2) depending on the conditions
where ‘0’ indicates a clear,sunny or cloudy weather, ‘1’
indicates light rain or light shower and ‘2’ represents heavy
rain or stormy weather. An instance of weather table stored in
cloud storage after processing raw data is shown in Figure 6.

All the Node-RED flows used in this work are made avail-
able at [31].

V. LEVEL 2: PROBABILISTIC EVENT PROCESSING
After extracting derived events from individual data streams,
they are combine to extract high-level knowledge using sec-
ond layer of analytics. In state-of-the-art CEP systems, events
are correlated using absolute rules where complex event
detected is either true or false. Even if a single condi-
tion or rule is violated, complex event will not be generated.
It is a major drawback given the random and probabilistic
nature of real-world events. In contrast to conventional CEP
systems, we propose a probabilistic CEP approach using BNs

6http://api.wunderground.com/
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FIGURE 6. Weather events table layout in object storage.

where complex events are detected in terms of probabilities.
And even if any condition is not fulfilled, it will generate the
complex event with reduced probability. In our system, BNs
were trained using large historical data and integrated with
CEP rules.

A. FUNDAMENTALS OF BAYESIAN NETWORK
ABayesian Network (BN) is a graphical structure that allows
to represent and reason the inherent uncertainty in real world
problems. The nodes in a BN represent a set of random
variables, X = X1, ..Xi, . . .Xn, from a specific domain. A set
of directed arcs connect pairs of nodes,Xi→ Xj, representing
the direct dependencies between variables. The strength of
the relationship between different random variables is quan-
tified by conditional probability distributions associated with
each node. The only constraint on the arcs allowed in a
BN is that there must not be any directed cycles i.e. you
cannot return to a node simply by following directed arcs.
Such networks are called directed acyclic graphs (DAGS).
The relationship between different nodes is specified using
a conditional probability distribution for every node. In case
of discrete variables, it takes the form of a conditional prob-
ability table (CPT). BNs model the quantitative strength of
the connections between variables which allows it to update
probabilistic beliefs about them automatically as new data
arrive.

Markovian assumption is an important property when
modeling with Bayesian networks. In order to understand
Markovian assumption, consider the following notation;
• Parents(X ) are the parents of X in DAG G, that is,

the set of variables Y with an edge from Y to X.
• Descendants(X ) are the descendants of X in DAG

G, that is, the set of variables Y with a directed path
from X to Y.

• Non − Descendants(X ) are all variables in DAG G
other than X, Parents (X), and Descendants (X).

For the given notation,Markov property can be represented
as:

I (X ,Parents(X ), non− descendants(X )) (1)

for all variables X in DAG G. That is, every variable is
conditionally independent of its non-descendants given its
parents.

The probabilistic semantics of BNs can be interpreted
using joint probability distribution. For a BN containing the
n nodes, X1 → Xn, taken in that order, a particular value in
the joint distribution is represented by P(X1 = x1,X2 =
x2, . . . ,Xn = xn), or more compactly, P(x1, x2, . . . , xn).
The chain rule of probability theory allows us to factorize
joint probabilities so:

P(x1, x2, . . . , xn)

= P(x1)× P(x2|x1) . . . ,×P(xn|x1, . . . , xn−1)

=

∏
i

P(xi|x1, . . . , xi−1) (2)

Applying Markovian assumption on BN structure implies
that the value of a particular node is conditional only on the
values of its parent nodes, this reduces to;

P(x1, x2, . . . , xn) =
∏
i

P(xi|Parents(Xi)) (3)

IMPORTANCE OF BAYESIAN NETWORK
Graphical models like BNs have several advantages when
they are used in conjunction with statistical methods for data
analysis which are summarized below;

• Bayesian model encodes dependencies among all
variables which enables it to handle situations
where some data entries are missing. The depen-
dencies between variables can be exploited to infer
missing information.

• The model has both a causal and probabilistic
semantics which makes it as an ideal representa-
tion for combining prior knowledge (which often
comes in causal form) and data. Anyone having per-
formed a real-world analysis knows the importance
of prior or domain knowledge, especially when data
is scarce or expensive.

• A BN can be used to learn causal relationships, and
hence can be used to gain understanding about a
problem domain and to predict the consequences of
different combination of events.

• Finally, statistical methods in conjunction with BNs
provides a rather generic and efficient solution
avoiding the over-fitting of data. For BNs, there is
no need to hold some data for testing, instead all
available data can be used for training.

B. BAYESIAN NETWORKS FOR INTELLIGENT
TRANSPORTATION SYSTEM
In particular, to construct a Bayesian network for a given
set of variables, we first identify cause and effect variables
and then imply arcs from cause variables to their immediate
effects. Traffic Congestion (C), Weather (W), Large Crowd
Concentration Event (E), Time (T) and Day (D) are the set
of variables in our system and we are interested to find the
causal effect of these variables on a traffic Congestion (C).
Assuming conditional independence between weather, LCC,

VOLUME 6, 2018 10021



A. Akbar et al.: Real-Time Probabilistic Data Fusion for Large-Scale IoT Applications

FIGURE 7. Proposed bayesian network.

time and and day, we come up with a simplified Bayesian
structure as shown in the Figure 7.

1) PROBABILISTIC INFERENCE
Once a Bayesian network is constructed, we need to
estimate prior and conditional probabilities from the his-
torical data. Our final goal is to get the probability of
congestion given observations of the other variables. It is
not stored in the model and needs to be estimated at
run-time. The procedure of estimating the probability of
interest for given model is known as probabilistic infer-
ence. As BN for X variables determines a joint probabil-
ity distribution for all X variables, we can in principle use
this model to calculate any probability of interest using
Bayes’ theorem.

2) DATA FUSION AND ANALYTICS
Different data sources have different sampling time and every
data reading has a different time stamp. Traffic data is updated
every 5 minutes, weather data is refreshed every 30 min-
utes and twitter data generates several tweets every minute.
In order to combine all data sources, we need to bring all
data on a common time scale. We performed interpolation
to fill missing values and aggregated available data for every
30 minutes and combine data from tables shown in Figure 4,
5 and 6. The instance of resulting table with all data is shown
in the Figure 9. Once, all the data with individual derived
events are combined in a single table, the calculation of con-
ditional probabilities is a simple task using Spark SQL. As an
example, probability of congestion when weather is good
(represented by 0 in data), and no LCC event (represented by

TABLE 2. Conditional probability table for location 1 for morning time.

0 in data) and afternoon time on a weekday can be calculated
as below;

where total_table is the combined table of all data (an
instance is shown in Figure 9)

Spark and Spark SQL provides an efficient and scalable
approach for calculating conditional probabilities from this
large amount of data from multiple tables in a timely manner.
The overall data flow is shown in Fig. 8. The number of
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FIGURE 8. Calculation of conditional probabilities.

FIGURE 9. An instant of all data combined in the form of table with unified time stamps.

possible combinations for conditional probability depends on
the number of variables and their possible output states in
the system. For our scenario, it equates to 4 x 3 x 3 x 2 x
2 = 144 possible combinations. An instance of conditional
probability table for location 1 for morning time is shown in
the Table 2.

VI. RESULTS AND EVALUATION
Figure 10 shows the Bayesian network simulation for
different combinations of input events at location 1.

The simulations were done using SamIam (Sensitivity Analy-
sisModeling Inference AndMore), which is a comprehensive
tool for modeling and reasoning with BNs developed at the
University of California [32]. Conditional probabilities cal-
culated in section V were used as an input to BN. Different
BNs were created for every location. Figure 10(a) shows the
probability of congestion when no prior information about
any event is given. As soon as the current day and time events
are given, probability of congestion is updated using prob-
abilistic inference. Congestion probability increases from
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FIGURE 10. Different scenarios for location 1 simulated for bayesian network. (a) Scenario 1: when no event is given. (b) Scenario 2: with current time
and day given. (c) Scenario 3: light rain event detected from weather data stream. (d) Scenario 4: no LCC detected from twitter data stream.

11.64% to 24.60% as it is morning time on a weekday. Proba-
bility of congestion further increases when LightRain event is
detected from weather data stream as shown in Figure 10(c).
Finally, as the system detects the final input event LCC from
twitter data, it updates the probability of congestion for the
given context. Bayesian network implementation enables the
CEP to take decisions and predict the output with incomplete
data as evident from the different scenarios demonstrated in
Figure 10. After simulating different scenarios, we embed the
Bayesian probabilities in CEP rules and deployed it for our
scenario. As the Bayesian implementation is done outside the
CEP, our proposed solution is independent of the choice of
particular CEP.

The proposed solution is evaluated qualitatively with the
help of Madrid city council team responsible for managing

traffic. We developed a web-interface using the worldmap
node of Node-RED, in order to display different events
and provide a visual output of our system as shown in the
Figure 11. City of Madrid have cameras installed at selective
locations for monitoring traffic and we have chosen the same
locations in order to verify the prediction results. The output
panel in Figure 11 shows the current state of traffic, LCC
event and weather and the probability of congestion for one
of the selected location. Traffic administrators can use these
predictions and manage the traffic in pro-active manner. As it
can be seen from the figure, that it displays the current traffic
state alongside with the probability of congestion for given
context. The images from the camera helped traffic admin-
istrators to provide feedback about the quality of predictions
using our rating system as shown in the figure.
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FIGURE 11. Web-interface showing the output of the system.

The output of the system is the probability of congestion
at any time with respect to current context (location, time,
day, weather and LCC events). In order to further evaluate our
system, we set different threshold values on the probability of
congestion and match if it correctly predicts the congestion in
near future.

The performance of the system is evaluated using
F-measure. F-measure represents an accurate andwidely used
metric for comparing the performance of classifiers and is
defined as;

F − measure =
2P.R

P+R
(4)

where P represents Precision and R represents Recall [33].
Precision of the algorithm is the ratio of the number of correct
events to the total number of events detected; whereas recall
is the number of events detected by the algorithm to the total
number of events that should have been detected ideally. They
can be calculated as follows,

Precision =
TP

TP+FP
, Recall =

TP

TP+FN
(5)

where TP is true positive, FP is false positive and FN is false
negative.

Results are shown below in Table 3. It can be seen that
setting lower threshold values results in better performance.
As the threshold value is increased, the performance deterio-
rates due to low values of recall. The reason for low values of
recall is that with high threshold, it will not predict conges-
tion until the probability reaches the minimum threshold and
result into missing actual congestion events.

In general, setting low threshold values on probabilities to
generate congestion events results in low precision whereas
high threshold values results in low recall. Finding right
balance between precision and recall is important, otherwise

TABLE 3. Evaluation for congestion prediction at location 1.

either it will generate many false alarms or will miss actual
congestion events.

DISCUSSION
The proposed architecture provides a generic solution for
different IoT applications. Different components involved
can easily be configured according to the requirements of a
specific application. For example, the proposed solution can
contribute towards the efficient management of supply chain
for large retail stores. There are many factors which effect
the sales of their products including weather (hot weather
increases sales of certain products like cold beverages), time
of the year (holiday and festive period tend to have higher
sales) or an event happening in the region such as musical
festival or concert. By combining all of the available data
using our proposed solution, store managers can predict the
demand for their product in real-time with respect to current
circumstances.

In our research, all the locations are chosen from Madrid
ring road (M30) as Madrid city council have installed sensors
on selective locations. Data is collected for over two months
(approximately over 1 million data points) and congestion
instants were limited during this time period onM30. It intro-
duces some bias as the effect of twitter events and weather
data might be more prominent inside city and busy locations
such as around city center or main bus stations which we
intend to explore in our future work.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed and implemented a solution
for ingesting, analyzing and correlating heterogeneous data
streams in order to provide an efficient, scalable and reliable
solution for IoT applications. We have proposed a two layer
architecture for analyzing IoT data. The first layer provides a
generic interface for ingesting and analyzing data from differ-
ent IoT systems in a scalable manner. It provides an architec-
ture based on the combination of batch and event processing
methods for extracting high-level events from individual IoT
data streams. Whereas the second layer extends state-of-the-
art event processing mechanisms to take inherent uncertainty
of events into account and provide a probabilistic solution for
correlating high-level events based on bayesian network and
CEP.

The feasibility of the proposed architecture was demon-
strated with the help of a real-world use case from ITS where
external data feeds of social media andweather were explored
along with conventional traffic sensors in order to improve
existing systems and generate early warnings of traffic con-
gestion enabling system administrators to manage traffic in
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a pro-active manner. All the implementation was done using
open source components which are optimized for large-scale
applications. In future, we aim to evaluate our architecture
for other IoT applications where external data sources can be
explored to find a meaningful correlation with existing data
sources.
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