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ABSTRACT Sparse arrays have potential advantages over their regularly spaced counterparts, but they
will generate undesired grating lobes. This paper investigates a sparse linear phased-array for grating lobe
suppression and arbitrary transmit–receive beampattern synthesis. To achieve these aims, a modified two-
level nested-array is developed, which provides increased degrees-of-freedom than a standard uniform
linear array with the same number of elements via the difference co-array processing algorithm in the
receiver. A least squares and iterative algorithm is also devised for linear array arbitrary transmit–receive
beampattern design with minimum number of antenna elements. Moreover, the nested-array design is
exploited for minimum variance distortionless response adaptive beamforming and direction finding. The
effectiveness of the proposed approach is verified through extensive numerical results.

INDEX TERMS Sparse array, grating lobe, linear array, difference co-array, polynomial factorization, least
squares, array synthesis.

I. INTRODUCTION
Phased arrays have been successfully applied in commu-
nication, radar and navigation systems [1]. Conventional
uniform phased-arrays are expensive and heavy to yield wide
aperture because a large number of radiating elements with
interspacing of λ/2, where λ is the wavelength, are required
to avoid grating lobes. On the other hand, nonuniform and/or
sparse array deployments are also widely employed [2]–[8],
because they have potential advantages over the standard
regularly-spaced setting. In the literature, there are two main
objectives of sparse array design, namely, array resolution
enhancement which is often achieved throughminimizing the
peak sidelobe level and mainlobe width, and elimination of
interferences via beamforming. Solutions based on genetic
algorithm [9]–[11], random spacing [12], analytical
sequences [13], [14], linear programming [15], and hybrid
approach [16] have been proposed for phased-array thinning.
In particular, multiple algorithmic strategies are developed
in [17] for sparse periodic array design by combining trans-
mit and receive aperture functions. However, only radiation
patterns corresponding to unity-coefficient polynomials can
be handled and extension to arbitrary arrays is not addressed.
Additionally, compressive sensing-based array design is an
advanced solution [18], but it is difficult for a large scale

arbitrary beampattern synthesis and grating lobe suppression
is often not considered.

More importantly, sparsening array elements have the
potential drawbacks of generating grating lobes and reduc-
ing the control of the beam shape [19], but few tech-
niques have been suggested so far for optimal deployment of
sparse array elements and suppression of undesired grating
lobes [20]–[23]. Placing array elements at periodic inter-
vals exceeding λ/2 will create grating lobes and limit the
usefulness of the array. It is because the quantized nature
of the phase along the inputs of each element will degrade
the array gain and pattern. Aperiodic placement can remove
grating lobes and minimize sidelobe level. Although the rela-
tionship between the unit circle representation and antenna
positions for aperiodic arrays has been derived in [24], array
design remains a difficulty. Consequently, iterative search
algorithms are often used to determine the required aperiodic
antenna positions.

In this paper, the optimal sparse antenna array arrangement
for grating lobe suppression with less elements is addressed.
Given a fixed number of elements, the minimum redundancy
array [25] is theoretically the optimum linear geometry which
provides the maximum possible number of virtual elements.
However, there is no closed-form expression for the structure
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of this array and hence the array geometry is not analytically
tractable. Moreover, optimum design of a desired transmit-
receive array beampattern is not easy, and in most cases, espe-
cially for a large array, we have to resort to complex computer
simulations for the element placement [26]. Although array
beampattern synthesis has received much attention, joint
transmit-receive array beampattern synthesis has received
relative little recognition. A polynomial factorization-based
design of sparse periodic linear arrays has been proposed
in [27], where the transmit and receive aperture polynomials
are determined such that their product results in a poly-
nomial representing the desired transmit-receive effective
aperture function. Nevertheless, multiple possible combina-
tions of transmit and receive arrays generally exist, while
the optimum decomposition particularly for a large-scale
array or high-order polynomial and grating lobe suppression
are not investigated. Moreover, as in [17] and [27] focuses
on the unity-coefficient polynomials. Recently, an interest-
ing linear nested-array based on the concept of difference
co-array [28] has been designed in [29]–[31] and extended
to planar nested-array [32] and nested-array receiver with
time-delayers for joint target range and angle estimation [33],
which uses frequency diverse array (FDA), instead of phased-
array. However, no study on grating lobe suppression and
arbitrary array beampattern synthesis are discussed in the
literature.

Inspired by the nested-arrays, the locations and weights of
the elements for an arbitrary transmit-receive effective aper-
ture function can be determined, such that aminimumnumber
of antennas are involved and grating lobes are suppressed.
It is also shown that the proposed method attains the total
degrees-of-freedom (DOFs) of N 2/2 + 1 or (N 2

− 1)/2 + 1
where N denotes the number of available physical elements.
Note that it is a phased-array, not multiple-input multiple-
output (MIMO) radar. In the latter, the virtual array is equiv-
alent to the Kronecker product of the transmit and receive
array manifolds [34]. However, in the modified nested-array,
the virtual array is formed through the difference co-array
processing algorithm [28], [29]. Although active transmit
beampattern is involved in the transmit-receive beampattern
synthesis, the active transmit array is not employed in the
difference co-array processing scheme.

In this paper, we have two objectives: (1) design arbitrary
transmit-receive beampattern for a large-scale array, and (2)
reduce the required number of array elements but without
grating lobes. We proposed a modified two-level nested-
array and choose the first-level as the transmitter such that
the nulls of the transmit beampattern will coincide with the
peaks of the receive beampattern to keep larger DOFs and
utilize peak/null cancellation simultaneously so that the grat-
ing lobes can be suppressed. Although the idea of jointly
designing two sparse vectors has been exploited in several
papers [35]–[38], the motivation and solving method of this
paper are thus different from the literature. The contribu-
tions of this work are summarized as follows: (i) The loca-
tions and weights of the transmit and receive elements are

optimally computed, so that grating lobes are suppressed
in the receiver; (ii) A modified nested-array is proposed,
which provides more DOFs for a given number of physical
elementsN and without grating lobes; (iii) An arbitrary linear
array transmit-receive beampattern of a large-scale array can
be synthesized with the use of least squares (LS) and iterative
algorithm, which excels the conventional polynomial factor-
ization method, especially in designing a large-scale array
with hundreds or even thousands of elements.

The remaining sections are organized as follows. Section II
presents the arrangement of transmit and receive elements,
which allows for suppressing the grating lobes. Section III
is dedicated to the modified two-level nested-array design
for more DOFs and suppressing grating lobes. Further-
more, an LS algorithm is proposed for arbitrary linear array
beampattern synthesis. Receiver beamforming and direction
finding based on the difference co-array are addressed in
Section IV. Extensive simulations are included in SectionV to
verify the performance of the proposals. Finally, conclusions
are drawn in Section VI.

II. ARRAY ARRANGEMENT WITH GRATING
LOBE SUPPRESSION
It is well known that the array beampattern of an M -element
uniform linear array (ULA) at the steering direction θ can be
expressed as [27]

pv(θ ) =
M−1∑
m=0

cv[m]ej(2π(sin(θ )/λ)d)m = pv(x) = pt (x) · pr (x)

(1)

where cv[m] is the element weighting function for the
mth element, and d is the inter-element spacing. Let x =
ej2π(sin(θ )/λ)d , the decomposition factors pt (x) and pr (x) are
expressed, respectively, as

pt (x) =
Te−1∑
i=0

ct [i]x i (2a)

pr (x) =
Re−1∑
j=0

cr [j]x j (2b)

where Te and Re are the numbers of elements including the
missing elements in the transmit and receive arrays, and
ct [i] and cr [j] denote respectively the element weights in
the transmit and receive arrays. In [39], it is demonstrated
that the combination of an Nt -element excluding the missing
elements ULA spaced by Nrλ/2 in transmit array and an
Nr -element (excluding the missing elements) ULA spaced by
λ/2 in the receive array is equivalent to a ULA consisting of
NtNr elements spaced by λ/2, where one antenna transmits
a waveform and NtNr antennas receive the returns. This
observation is further extended to the following corollary:
Corollary: The grating lobes can be suppressed when the

Nt elements are spaced by dt = Nrdr in the transmit (receive)
array and Nr elements are spaced by dr = λ/2 in the receive
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FIGURE 1. Illustration of transmit and receive array arrangement and
their equivalent virtual elements.

(transmit) array. An illustration for Nt = Nr = 3 is provided
in Fig. 1.

Proof: The array factors of the Nt -element ULA spaced
by Nrdr and Nr -element ULA spaced by dr = λ/2, denoted
by Ft (θ ) and Fr (θ ), respectively, are given by

Ft (θ ) =

∣∣∣∣∣∣ 1Nt
sin
(
Ntπ
λ
Nrdr sin θ

)
sin
(
π
λ
Nrdr sin θ

)
∣∣∣∣∣∣ (3)

Fr (θ ) =

∣∣∣∣∣∣ 1Nr
sin
(
Nrπ
λ
dr sin θ

)
sin
(
π
λ
dr sin θ

)
∣∣∣∣∣∣. (4)

The peaks of Ft (θ ) will appear at [40]

sin(θ ) =
kλ
Nrdr

, k = ±0,±1, . . . (5)

Substituting (5) into (4) yields

Fr (θ ) =

∣∣∣∣∣∣ 1Nr sin (kπ)

sin
(
kπ
Nr

)
∣∣∣∣∣∣ = 0, k = ±1,±2, . . . (6)

At the angles specified by (5), we obtain

Ft (θ )Fr (θ ) = 0, k = ±1,±2, . . . (7)

Therefore, the grating lobes are suppressed in this case.

FIGURE 2. Comparative transmit, receive and equivalent array patterns.

As an example, Fig. 2 shows the comparative transmit,
receive and effective transmit-receive patterns with Nt = 12,

Nr = 5, dr = λ/2, θ = 0◦ and dt = 5 dr . It is apparent
that the transmit (receive) grating lobes are suppressed by the
nulls generated by the receive (transmit) array. This grating
suppression characteristic is referred to as null-grating-lobe
suppression [39].

Mathematically, the problem of the sparse array design
with minimum number of elements and grating lobe suppres-
sion can then be formulated as

min {Nt + Nr }

s.t. pt (x) · pr (x) = pv(x)

dt = Nrdr or dr = Ntdt . (8)

Unless stated otherwise, the transmit and receive arrays
can be swapped in the following discussion. It is required to
use the minimum number of elements to achieve the desired
effective transmit-receive pattern.

The problem of (8) can also be interpreted as decompos-
ing pv(x) into pt (x) and pr (x) in an optimal sense. Once
the optimum decomposition is determined, it is possible to
transform the polynomials back to the arrays to obtain the
desired structures. Recently, extension of the decomposition
for a general integerM has been studied in [27]. Nevertheless,
this decomposition approach can only be applied when pv(x)
is a unity-coefficient polynomial.

Moreover, if a large array design is needed which corre-
sponds to a high-order polynomial, it is difficult to find the
suitable pt (x) and pr (x) because there are numerous combi-
nations that can produce the same pv(x). To overcome these
disadvantages, the novel idea is to consider the decomposition
of pv(x) as a general deconvolution problem, which can be
solved by the LS algorithm.

According to (1), the coefficients of pv(x), pt (x) and pr (x)
have the following convolution relation

cv = ct ~ cr (9)

with

cv =
[
cv[0] cv[1] . . . cv[M − 1]

]T (10a)

ct =
[
ct [0] ct [1] . . . ct [Te − 1]

]T (10b)

cr =
[
cr [0] cr [1] . . . cr [Re − 1]

]T (10c)

where ~ and T denote the convolution and transpose opera-
tors, respectively.

Define At ∈ C(Re+Te−1)×Te and Ar ∈ C(Te+Re−1)×Re :

At =


cr

cr
. . .

cr

 (11a)

Ar =


ct

ct
. . .

ct

 (11b)
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Equation (9) can then be written as

cv = Atct = Arcr . (12)

Since cv is a known vector, once Nt and Nr are determined, ct
and cr can be obtained by LS. In this case, the optimization
problem of (8) is reformulated as

min {Nt + Nr }

s.t. cv = Atct = Arcr
dt = Nrdr or dr = Ntdr . (13)

Prior to providing the solver for (13), this paper proposes a
modified two-level nested-array in the next section, which
can provide more DOFs to resolve sources.

III. MODIFIED TWO-LEVEL NESTED-ARRAY WITH
INCREASED DOFS
It is well known that the number of sources that can
be resolved with an N -element ULA using conventional
subspace-based methods is N − 1. To achieve higher DOFs,
a receiver processing algorithm based on the concepts of
difference co-array [28] and nested-array [29] is devised.
To facilitate the development, the difference co-array and
traditional two-level nested-array are first briefly reviewed as
follows.
Definition 1 (Difference Co-Array): Consider an array

with N elements and define the set

D =
{
xi − xj

}
, ∀i, j = 1, 2, . . . ,N (14)

where xi is the position vector of the i-th element. The
difference co-array is defined as the array whose elements
are located at positions corresponding to the set De which
consists of all the distinct elements in D.

The cardinality of De gives the DOFs that can be obtained
from the difference co-array. Then the maximum attainable
number of DOFs from a difference co-array with N elements,
denoted by DOFmax, is:

DOFmax = N (N − 1)+ 1. (15)

However, if a difference occurs more than once, it implies a
decrease in the overall cardinality of De. Consider a linear
array with d as the minimum spacing of the underlying grid
and define the function c[m] which takes a value 1 if there
is an element located at md and 0 otherwise. The number of
same occurrences in each position, denoted by γ , is expressed
as

γ = c[m]~ c[−m]. (16)

That is to say, the difference co-array of an N -element ULA
is another ULA with (2N − 1) elements. It just indicates the
fact that the maximum number of DOFs is always strictly less
than N (N −1)+1. The attainable DOFs can be computed by
the two-level nested-array method [29].
Definition 2 (Two-Level Nested-Array): It is basically a

concatenation of two ULAs, namely, inner and outer ULAs

where they consist of Nt and Nr elements with spacings dt
and dr = (Nt + 1)dt , respectively.
It is easily understood that the difference co-array of the

two-level nested-array is a full ULA with 2Nr (Nt + 1) − 1
elements whose positions are

{mdt ,m = −M ,−M + 1, . . . ,M ,M = Nr (Nt + 1)− 1}.

(17)

This is a systematic way to increase the DOFs and the details
can be found in [29].

Now, we are going to solve (13) by deploying the elements
in the two levels such that the element number is minimized
and the grating lobes are suppressed. Different from the con-
ventional two-level nested-array [29] where all elements are
acted as receiver only, the proposal uses the first-level array as
both transmitter and receiver while keeping the second-level
array as receiver only. For this setup, there will be grating
lobes in the second-level array if the elements are deployed
as in [29].With the use of Corollary 1, the followingmodified
two-level nested-array can then be designed for grating lobe
suppression.
Definition 3 (Modified Two-Level Nested-Array): The

proposed two-level nested-array is also a concatenation of
two ULAs, namely, inner and outer arrays where the former
has Nt elements with spacing dt and the latter has Nr ele-
ments with spacing dr such that dr = Ntdt . In doing so, the
null-grating-lobe suppression scheme of Corollary 1 can be
applied.

Similar to the basic nested-array, the virtual array is formed
only by the passive receive phased-array through the differ-
ence co-array processing algorithm, which forms a virtual
linear array with the element spacing of λ/2. In doing so,
the grating lobes will be suppressed. Therefore, the difference
co-array of the modified two-level nested-array is a full ULA
with 2NtNr + 1 elements whose positions are

{mdt ,m = −M ,−M + 1, . . . ,M ,M = NtNr }. (18)

An illustration for comparing the conventional and proposed
two-level nested-arrays at Nt = Nr = 3 is shown in Fig. 3.
While the optimal choices of Nt and Nr and the DOFs of
the conventional and proposed two-level nested-arrays in the
general case are depicted in Table 1. According to Table 1,
in order to maximize the DOFs in the modified two-level
nested-array, we should choose

Nt = Nr , N is even (19a)

Nt = Nr ± 1, N is odd. (19b)

The first-level is used for both transmission and reception,
while the second-level is used only for reception. In this
case, the transmit-receive array can be further divided into
two parts: One is the first-level (transmit) to the first-level
(receive), which is just a traditional ULA without grating
lobes in the transmit-receive beampattern. The second part is
the first-level (transmit) to the second-level (receive), which
is just the array configuration discussed in (3)-(8). In this
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TABLE 1. Comparison between conventional and proposed two-level nested-arrays for a given element number N .

FIGURE 3. Comparison between conventional and proposed two-level
nested-arrays. In the former, both arrays are receivers while in the latter,
the first level corresponds to both transmitter and receiver while
the second level acts as receiver. (a) Conventional two-level nested-array.
(b) Proposed two-level nested-array.

paper, we consider mainly the second part. In order to sup-
press the grating lobes, according to (9) the modified two-
level nested-array elements should be deployed as

dr = Ntdt . (20)

Correspondingly, the optimization problem of (13) is now:

min {Nt + Nr }

s.t. cv = Atct = Arcr
dr = Ntdt
Nt = Nr or Nt = Nr ± 1. (21)

The last issue we need to address is the fulfillment of
the transmit-receive pattern requirement of pv(x). For the

special case when pv(x) can be expressed as a unity-
coefficient polynomial, the polynomial factorizationmethod [27]
can be applied. Take pv(x) =

∑11
i=0 x

i as an example. The
11+ 1 = 12 can be decomposed into three prime integers 3,
2 and 2, i.e., 12 = 3× 2× 2. Then pv(x) can be factorized as

pv(x) =
(
1+ x + x2

) (
1+ x3

) (
1+ x6

)
. (22)

An optimal combination that satisfies (22) is

pt (x) = 1+ x + x2 (23a)

pr (x) = 1+ x3 + x6 + x9. (23b)

This requires 7 elements, namely, 3 and 4 antennas in the first-
and second-level arrays, respectively. However, this method
can be used only for the pv(x) which is a unity-coefficient
polynomial. Moreover, for a large-scale array with thousands
of elements, it is difficult to get the optimum decomposition
for the high-order polynomial because there is no closed-form
expression for the structure.

For an arbitrary pv(x) and a given number of available
physical elements, this paper uses the LS method which is
presented as follows. Suppose there are a total of N available
physical elements and the desired effective element position
vector cnewv is known. Note that, to avoid confusing with the
variables defined in Section II, a superscript ‘‘new’’ is added
in this section.Without loss of generality, we assume thatN is
an even integer. In this case, we first design the second-level
array with Nr = N/2 elements where Nt · λ2 =

N
2 ·

λ
2 . The

receive vector cnewr ∈ C[(Nt−1)Nr+1]×1 can then bemodeled as

cnewr =

[
cr [0]

Nt−1︷ ︸︸ ︷
0 . . . 0 cr [Nt ] . . .

Nt−1︷ ︸︸ ︷
0 . . . 0 cr [(Nt − 1)Nr ]

]T
(24)

where cr [·] are constants which are not necessarily one and
can even be complex-valued. The NtNr × Nr matrix At
defined in (11a) can be expressed as (25).

At =


cnewr

cnewr
. . .

cnewr

 (25)

Since hematrixAt is a full-rankmatrix. TheNr×1 transmit
vector cnewt =

[
ct [0] ct [1] . . . ct [Nt − 1]

]T can then be
determined by LS:

min ‖ cnewv − Atcnewt ‖
2, min ‖ cnewV − Arcnewr ‖

2

s.t. ct [i] 6= 0, i = 0, 1, . . . ,Nt − 1

cr [i · Nr ] 6= 0, i = 0, 1, . . . ,Nt − 1 (26)
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where the cost functions ct [i] 6= 0, i = 0, 1, . . . ,Nt − 1
and cr [i · Nr ] 6= 0, i = 0, 1, . . . ,Nt − 1 are imposed to
achieve the relation (21), namely, dr = Ntdt , to formulate the
modified nested-array.

By solving (26), all the array parameters will be deter-
mined such that the requirements of suppressing grating
lobes and maximizing DOFs are met simultaneously. The
proofs of the solution uniqueness and convergence are pro-
vided in the Appendix. The complexity order of (26) is
O
(
Nt (Re + Te − 1)Te + NtT 2

e
)
.

To summarize, the design steps are:
(i) Based on the design specifications such as main-

lobe width and sidelobe levels, determine the effective
transmit-receive aperture function pv(x), and its order
is denoted as M .

(ii) Determine the required transmit and receive element
numbers Nt and Nr such that NtNr ≥ M and Nt =
Nr or Nt = Nr ± 1.

(iii) The pt (x) and pr (x) are obtained by solving (26). Check
the transmit and receive element positions to make sure
that dr = Ntdt .

(iv) Check the grating lobes and compute the DOFs. If the
design specifications are not met, go back to Step (iii)
to recalculate pt (x) and pr (x) by tuning the vector cnewr ,
namely, Anew

t .

IV. MODIFIED NESTED-ARRAY FOR BEAMFORMING
AND DIRECTION FINDING
The performance of the modified nested-array in adaptive
beamforming and direction finding can be similarly analyzed
as [29]. Let a(θ ) be the N × 1 receive steering vector corre-
sponding to the direction θ whose i-th element is ej(2π/λ)di sin θ

with di denoting the position of the i-element. Here, the first
element is taken as the reference. Suppose D narrowband
sources impinge on this array from distinct directions θi (i =
1, 2, . . . ,D) with powers σ 2

i (i = 1, 2, . . . ,D), respectively.
The received signal is expressed as

x(t) = As(t)+ n(t) (27)

where A =
[
a(θ1) a(θ2) . . . a(θD)

]
is the array manifold

matrix, s =
[
s1(t) s2(t) . . . sD(t)

]T is the source signal
vector, and n(t) is the noise vector which is assumed to
be temporally and spatially white and uncorrelated with the
sources.

The covariance matrix is

Rxx = E
{
x(t)xH (t)

}
= ARssAH

+ σ 2
n IN (28)

where E represents the expectation operator, H is the con-
jugate transpose, Rss = E

{
s(t)sH (t)

}
is the source auto-

correlation matrix, σ 2
n is the noise variance and IN is the

N × N identity matrix. When the sources are temporally
uncorrelated, Rxx can be vectorized as [41]

z = vec (Rxx) =

D∑
i=1

[
a∗(θi)⊗ a(θi)

]
σ 2
i + σ

2
n vec(IN ) (29)

where vec(·) is the vectorization operator, ∗ is the conju-
gate operator and ⊗ is the Kronecker product. It is noticed
from (29) that the grating lobes are suppressed due to the fact
that the difference co-array processing scheme will produce
a non-sparse uniform linear array.
Next, analogous to [29], forward-backward spatial

smoothing and multiple signal classification (MUSIC) tech-
niques can then be adopted to estimate the direction-of-
arrival (DOA) of targets by exploiting he N 2

× 1 vector z.

V. SIMULATION RESULTS
In the following simulations, we assume that the array oper-
ates at a carrier frequency 10 GHz. The additive noise is
modeled as a complex Gaussian zero-mean spatially and
temporally white random sequence that has identical variance
in the array.
Example 1:Unity-Coefficient Polynomial Array Beampat-

tern Design
In the first example, a sparse array is designed, where

the corresponding transmit-receive aperture function can
be expressed as a unity-coefficient polynomial, pv(x) =∑24

i=0 x
i. According to the design steps presented in

Section III, to implement the polynomial order M = 24,
the number of transmit and receive elements should be cho-
sen as Nt = 5 and Nr = 5, respectively. The receive
array elements are arranged as (24) and construct the full-
rank matrix Ar of (25). The ct [i] and cr [iNr ] with i =
0, 1, . . . ,N1 − 1, can then be obtained through (26).
This special unity-coefficient array beampattern can

also be designed with the polynomial factorization
method [17], [27]. In this case, the 24 + 1 = 25 is
factorized into two prime integers 5 and 5, that is, 25 =
5 × 5. Then, pv(x) can then be factorized as pv(x) =(
1+ x + x2 + x3 + x4

) (
1+ x5 + x10 + x15 + x20

)
.

According to (21), the transmit and receive elements can be
arranged as pt (x) =

(
1+ x + x2 + x3 + x4

)
and pr (x) =(

1+ x5 + x10 + x15 + x20
)
. That is to say, it requires

5 transmit elements and 5 receive elements. They are placed at
the positions {0, d, 2 d, 3 d, 4 d} and {0, 4d, 9 d, 14 d, 19 d}
with d = λ/2, respectively. Fig. 4 compares the LS solution
with the polynomial factorization method in designing the
array. We cannot see the difference between the two results
shown in Fig. 4(b)-(c) and (d)-(e). Therefore, we can con-
clude that for unity-coefficient array beampattern, similar
results can be obtained for the LS and polynomial factoriza-
tion methods, but the former is advantageous in designing
large-scale arrays.

Suppose the array direction angle is θ = 0◦.
Fig. 5(a)-(c) show the comparative transmit, receive and
effective transmit-receive array patterns, respectively. It is
noticed that the transmit array nulls and receive array grating
peaks have the same positions. The receive array grating lobes
are effectively suppressed due to the null-grating-lobe com-
pensation scheme and thus the final transmit-receive array
pattern has no grating lobes.
Example 2: Arbitrary Array Beampattern Design
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FIGURE 4. Illustration of transmit and receive array arrangement:
(a) virtual transmit-receive aperture function, (b)-(c) and (d)-(e) are
designed with the LS method and conventional polynomial factorization
method, respectively.

FIGURE 5. Comparative transmit, receive and effective array patterns:
(a) transmit array pattern, (b) receive array pattern, and (c) effective
transmit-receive array pattern.

In the second example, we consider a more general array
design using the LS method. Suppose the desired effective
transmit-receive array pattern is pv(x) =

∑1935
i=0 cv[i]x i, where

cv[i] are real or complex coefficients. For such a high-order
polynomial, it is difficult to find the suitable pt (x) and pr (x)
with the polynomial factorization method [17], [27], because
there will be many different decomposition combinations.
Without loss of generality, we assign cv[i] = 1+2j+0.25 n[i],
where n[i] is a uniformly distributed random variable and the
j-related term denotes the complex component. According to
the LS method, both the transmit and receive arrays use 44
elements, i.e, Nt = Nr = 44. First, we arrange the receive
elements as (24) and construct the full-rank matrix Anew

t
of (25). Next, the ct [i] and cr [iNr ] with i = 0, 1, . . . ,N1− 1,
can then be obtained through (26). Fig. 6 shows the com-
parative transmit and receive array patterns. The transmit
array nulls and receive array grating peaks have the same
positions and thus the grating lobes are suppressed in the
receiver. Fig. 7 compares the designed and desired effective

FIGURE 6. Comparative transmit and receive array patterns.

FIGURE 7. Desired and designed transmit-receive array patterns.
(a) Mainlobe view. (b) Overall view.

transmit-receive array patterns. It is seen that they are per-
fectly matched in the array mainlobe (see Fig. 7(a)). More-
over, the designed array pattern has lower sidelobes (see
Fig. 7(b)). This is of great importance in detecting small
targets in phased-array radar applications.
Example 3: Rectangular Beampattern Synthesis
In this example, an arbitrary rectangular beampattern is

designed. Without loss of generality, suppose the rectangular
beampattern can be expressed as a gate function: pv(θ ) =
1000 when |θ | ≤ π/18; otherwise, pv(θ ) = 1. This beam-
pattern cannot be synthesized with the polynomial factor-
ization method [17], [27], but it can be easily implemented
with the LS method. First, we approximate the expected
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FIGURE 8. Rectangular beampattern synthesis comparisons.

beampattern function as Fourier series, namely pv(θ ) =
a0
2 +

∑M−1
m=1 am cos(nθ ), where am, m = 0, 1, . . . ,M − 1,

are the Fourier series coefficients. The approximation errors
can be reduced by choosing a sufficiently large value of M
which will increase the required number of array elements to
synthesize the beampattern. As a compromise, M = 100 is
chosen in the simulation example. According to the presented
design steps, the numbers of transmit and receive elements are
determined as Nt = Nr = 10. Then, the transmit and receive
array parameters are obtained using (26). Figure 8 compares
the beampattern synthesis with conventional Fourier series
and compressive sensing methods. It is observed that satis-
factory beampattern synthesis performance has been obtained
by the LS method. Certainly the beampattern flatness in the
mainlobe can be further improved by choosing a largeM , but
it means that more array elements are required.
Example 4:Difference Co-Array Processing-Based Beam-

forming and DOA Estimation
Finally, the difference co-array processing-based beam-

forming and DOA estimation performance are analyzed. Sup-
pose there are 6 physical elements, which are arranged as
the modified two-level nested-array and the array direction
angle is 10◦. As all the elements receive the signals, when the
difference co-array processing algorithm is employed, we can
calculate the difference co-array beampattern. When the
non-adaptive beamformer is used, the corresponding differ-
ence co-array beampattern is Bpower(θ ) = ‖a∗(θ )⊗ a(θ )‖2,
as shown in Fig. 9. Obviously, it has 18 nulls and thus gives
19 DOFs. This validates from Table 1 that for N elements,
we can obtain N 2

2 + 1 = 19 DOFs.
Further suppose there are 11 interferences at direc-

tions {−50◦,−40◦,−30◦,−25◦,−10◦,−5◦, 20◦, 30◦, 40◦,
50◦, 60◦}. The spatially smoothed covariance matrix Rzz
is computed with 500 snapshots. Suppose both the signal-
to-noise ratio and interference-to-noise ratio (SNR) are
10 dB, Fig. 10 compares the minimum variance distortionless
response (MVDR)-like beamforming results of our method
with [29]. Although the proposed method suppresses grat-
ing lobes at a cost of less DOFs than [29] (see Table 1),

FIGURE 9. Difference co-array beampattern.

FIGURE 10. Comparative MVDR-like beamforming results.

it achieves more DOFs by employing the forward-backward
spatial smoothing method. For instance, the interferences at
{−30◦, 50◦} are not effectively nulled in [29]. In contrast,
in the proposed method all the interferences are automati-
cally nulled in their directions even without explicitly know-
ing the interference DOAs. Suppose we want to estimate
the DOAs of the 11 interference sources, namely, at direc-
tions {−50◦,−40◦,−30◦,−25◦,−10◦,−5◦, 20◦, 30◦, 40◦,
50◦, 60◦}. Fig. 11 shows one realization of the DOA spec-
trum of the MUSIC estimator with forward-backward spatial
smoothing for the 11 interference sources. It is seen that,
the peaks of the spectrum are in good agreement with their
true DOAs.

Using the same simulation settings, a Monte Carlo simu-
lation is carried out to evaluate the root mean square error
(RMSE) performance. The number of Monte Carlo trials is
500. Fig. 12 compares the RMSE performance of angle esti-
mation for four sources located at {−40◦,−10◦, 20◦, 30◦}.

Here, the RMSE is defined as

√[∑4
i=1(θi − θ̂i)2

]
/4, where

θi and θ̂i denote the true and estimated angles, respectively.
It is seen that the proposed method gives a little bit bet-
ter RMSE performance due to the forward-backward spatial
smoothing.
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FIGURE 11. DOA spectrum of the MUSIC estimator with
forward-backward spatial smoothing for the 11 interference sources.

FIGURE 12. Comparative RMSE performance of angle estimation versus
SNR.

VI. CONCLUSION
This paper proposed an LS algorithm to design an arbi-
trary array beampattern synthesis and a modified two-level
nested-array which suppresses grating lobes and simulta-
neously provides increased DOFs. When compared to the
basic nested-array, the modified nested-array suppresses the
grating lobes at a cost of less DOFs. Note that, since the
grating lobes suppression scheme is independent on the actual
steering direction, the grating lobes can be suppressed when it
steers away from broadside. Moreover, a forward-backward
spatial smoothing algorithm is used to develop the MVDR
beamformer and MUSIC estimator. The proposed method
allows the design of desired transmit-receive beampattern
with a reduced number of non-uniformly spaced active ele-
ments and without grating lobes. It excels the conventional
polynomial factorization method in designing a large and/or
arbitrary array. The proposed nested-array is motivated by
two facts, namely, grating lobes can be suppressed by opti-
mum arrangement of array elements, and more DOFs can
be obtained than a standard ULA with the same number of
elements by the difference co-array processing algorithm.
In the proposed design, the real antenna array spacing is

integer multiple of half of the wavelength. These spacings
are implementable in practical array systems. Note that the
proposed method is able to provide closed-form expressions
for the sensor locations and the exact DOFs as a function of
the total number of sensors, which may be a difficulty for
conventional methods. This paper only considers linear one-
dimensional arrays, two-dimensional arrays will be further
investigated in future work. Jointly utilizing phased-MIMO
and FDA is also an interesting future work. Another future
work is to analyze the coupling effects on the array perfor-
mance.

APPENDIX
DISCUSSIONS OF SOLUTION UNIQUENESS AND
CONVERGENCE OF (26)
The (26) is a polynomial blind decomposition problem that
can be handled by the LS and iterative algorithm [42]. For
notation simplicity, the superscript ‘‘New’’ is ignored in this
appendix. The LS algorithm can be implemented as follows:
(1) According to the desired transmit-receive array beam-

pattern, determine first the values of Nt and Nr .
(2) According (24) and (25), determine the structures of cr ,

At and ct .
(3) Using the initially guessed c(k)r to formulate A(k)

t :

A(k)
t =


c(k)r

c(k)r
. . .

c(k)r

. (30)

(4) We then have

min
∥∥∥cv − A(k)

t c(k)t
∥∥∥2 , k = 0, 1, . . . (31)

Consider againAt expressed in (25). Since cr [0] 6= 0 is
assumed, it is easily proved that the A(k)

t is a full-rank
matrix. Using the well-known LS algorithm, the above
(31) has the unique solution:

c(k)t =
[(

A(k)
t

)T
A(k)
t

]−1 (
A(k)
t

)T
cv. (32)

(5) Using c(k)t to construct A(k)
r similar to (25) and (11b) as

follows

A(k)
r =


c(k)t

c(k)t
. . .

c(k)t

. (33)

(6) Formulate the following problem

min
∥∥∥cv − A(k)

r c(k+1)r

∥∥∥2 , k = 0, 1, . . . (34)

Similarly, since A(k)
r is a full-rank matrix, we can get a

unique solution:

c(k+1)r =

[(
A(k)
r

)T
A(k)
r

]−1 (
A(k)
r

)T
cv. (35)
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(7) Let k = k + 1, rerun from Step (3) again to make the
algorithm converge to a given threshold. At each step,
the LS algorithm produces a unique solution. That is,
we have the estimation sequences:

c(0)t , c(1)t , c
(2)
t , . . . (36a)

c(0)r , c
(1)
r , c

(2)
r , . . . . (36b)

(8) Considering also (12) and that all A(k)
t and A(k)

r are full
matrices, we then have∥∥∥cv − A(0)

t c(0)t
∥∥∥2 = ∥∥∥cv − A(0)

r c(0)r
∥∥∥2

≥

∥∥∥cv−A(1)
r c(1)r

∥∥∥2≥ . . .≥0. (37)

In doing so, the transmit and receive array weighting
coefficients can be designed with the solutions when
k →∞.
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