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ABSTRACT In this paper, we propose a drone assisted radio access networks architecture in which
drone-cells are leveraged to relay data between base stations and users. Based on the state-of-the-art
drone-to-user and drone-to-base station (D2B) channel models, we first analyze the user coverage and
the D2B backhaul connection features of drone-cells. We then formulate the 3-D drone-cell deployment
problem with the objective of maximizing the user coverage while maintaining D2B link qualities, for a
given number of drone cells being deployed. To solve the problem, the particle swarm optimization (PSO)
algorithm is leveraged for its low computational cost and unique features suiting the spatial deployment of
drone-cells. We propose a per-drone iterated PSO (DI-PSO) algorithm that optimizes drone-cell deployments
for different drone-cell numbers, and prevents the drawbacks of the pure PSO-based algorithm derived from
related works. Simulations show that the DI-PSO algorithm can achieve higher coverage ratio with less
complexity comparing to the pure PSO-based algorithm.

INDEX TERMS Drone, drone communication, radio access networks, particle swarm optimization,

D2U, D2B.

I. INTRODUCTION

Providing ubiquitous connectivity for users and devices with
diversified service requirements is regarded as one of the
key challenges in 5G networks [1]. To support the reliable
and low-latency access of massive mobile users, consid-
erable level of flexible deployment is required for future
Radio Access Networks (RAN). However, current Base Sta-
tions (BSs) and Remote Radio Heads (RRHs) are deployed
in certain geographical locations according to long-term traf-
fic behaviors with little flexibility to be re-deployed. Such
rigid RANs are reluctant to maintain ubiquitous connectivity
for most 5G scenarios where dynamic data traffic occurs
in both spatial and temporal domains [2]. Though densely
deploying BSs or RRHs is one intuitive way to improve
the RAN coverage, the high expenditure and low efficiency
brought by this method are unacceptable for RAN opera-
tors [1]. To enhance RAN’s flexibility for supporting massive

dynamic connections, the emerging drone-cell communica-
tion technology is a promising solution.

Promoted by the well-developed flying control technolo-
gies and various commercial drone products, both academia
and industry are devoting increasing number of efforts on the
drone communication research [3]. Equipped with specific
wireless modules and controlled by corresponding controllers
(e.g. edge servers on BSs), flying drones can perform as
drone-cells to provide temporal and on-demand communica-
tion services for areas of interests [4]. Comparing with legacy
BSs, there are two advantages using drone-cells:

1) Line-of-Sight (LoS) Connection: Compared with ground
BSs, drone-cells flying in the air have higher probability
to connect ground users via LoS links, which facilitates
highly reliable communications [5]. This advantage is fur-
ther enhanced by drone-cell’s mobility feature that allows
3D adjustments of the drone-cell position to avoid obstacles
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between Drone-to-User (D2U) links [6]. For the Drone-to-
BS (D2B) links, since the flying height of drone-cells can
be close to the height of BS antennas, the D2B connections
are naturally LoS with little probability to be blocked by tall
buildings [7].

2) Dynamical Deployment: Different from traditional BSs
which are statically fixed on dedicated locations, drones
can be dynamically deployed according to real-time require-
ments, and allocated to different users or controllers on
demands. Two types of control methods are considered in
drone-cell deployments: 1) All drone-cells connect with cor-
responding central BSs taking charge of deployment control,
which is similar to the Cloud-RAN (C-RAN) architecture
while the RRHs functions are performed by flying drone-
cells [8]; and 2) A swarm of drone-cells form a Flying Ad
Hoc Network (FANET) and negotiate with each other to
determine the deployment results. This method is mainly used
in scenarios lacking of infrastructures, such as post-disaster
communication recovery [9].

Recently there is significant effort to investigate drone-
cell’s potential to improve the performance of RAN. Through
field experiments, Dhekne er al. demonstrate drone-cell’s
capability of improving the signal strength in coverage holes
when they perform as the aerial extensions of BSs [10].
In [11], Zhang and Zhang study the spectrum sharing of
Drone-Small-Cells (DSCs) network modeled by the 3D Pois-
son point process, and find the optimal density of DSCs
to maximize the network throughput while satisfying the
cellular network efficiency constraint. To maximize the min-
imum downlink throughput over ground users, Wu et al.
formulate a mixed integer non-convex optimization prob-
lem in which the multi-user communication scheduling
and association are jointly optimized with drone-cells tra-
jectory and power control [3]. Block coordinate descent
and successive convex optimization techniques are used for
solving the problem. In [12], Al-Hourani ef al. build an
Air-to-Ground (A2G) pathloss model for low altitude plat-
forms including drone-cells. A close-form expression of
A2G pathloss model is proposed in which the probabilities
of both LoS and Non-Line-of-Sight (NLoS) A2G links in
different scenarios are considered. In its extension work,
a D2B pathloss model for suburban scenario is formulated by
Al-Hourani and Gomez [7] based on massive field experi-
ments data. The model indicates a trade-off in the channel
performance as the vertical angle between the drone-cell and
the BS increases. Leveraging the pathloss model in [12],
some researchers focus on exploring the optimal drone-cell
deployment that maximizes specific performance metrics.
In [13], Mozaffari et al. design a clustering approach to
find the optimal trajectories and locations of drone-cells
that maximize the information collection gain from ground
Internet of Things (IoT) devices. Yang et al. propose a
holistic framework using drone-cells to assist 5SG networks
in flash crowd traffic scenarios, and design a “first-selfish
and second-share”” method for drone-cell deployments [14].
Bor-Yaliniz et al. [15] formulate the 3D placement problem
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for single drone-cell as a Mixed-Integer Nonlinear Program-
ming (MINLP) problem, and solve it through bisection search
algorithm. Kalantari et al. [16] further explore the deploy-
ment of multiple drone-cells, and find the minimum number
of drone-cells for dedicated coverage constraint by using
Particle Swarm Optimization (PSO) algorithm. An opti-
mal drone-cell placement algorithm maximizing the number
of covered users with minimum power consumptions was
designed by Alzenad et al., in which the drone-cell deploy-
ment problem is decoupled in the vertical and horizontal
dimensions and solved respectively.

Although various approaches are proposed to optimize
the deployment of drone-cells, the D2B communication is
ignored or idealized in many works. Since the ultimate pur-
pose of introducing drone-cells into RAN is enhancing users’
accessibility to network services, it is inevitable to consider
D2B communications and ensure their reliability in drone-
cell deployments. Therefore, the 3D drone-cell deployment
problem is not only affected by user distributions, but also
constrained by the qualities of D2B links. In this paper,
we investigate the spatial deployment problem for multiple
drone-cells, considering the D2B link constraint. Based on
the A2G pathloss model in [12] and the D2B pathloss model
in [7], a framework of Drone Assisted Radio Access Net-
works (DA-RAN) is proposed. The user coverage and D2B
backhual features of drone-cells are analyzed via stochastic
method. The drone-cell deployment problem in DA-RAN
is formulated to maximize the user coverage ratio when a
dedicated number of drone-cells is given. Three constraints
are the quality of D2B links, the maximal user number sup-
ported per drone-cell, and the multi-drone-cell interference to
users. This optimization is NP-hard which can be solved by
heuristic approaches. By customizing heuristic algorithms in
related works into the DA-RAN scenario, a pure PSO based
algorithm is proposed. To further improve the heuristic’s
performance, a per-Drone Iterated PSO (DI-PSO) algorithm
is designed to find optimized deployments corresponding to
different numbers of drone-cell respectively. Compared with
the pure PSO based algorithm, the DI-PSO algorithm can
achieve higher coverage ratios with less iteration times.

The remainder of this paper is organized as follows.
In Section II the DA-RAN framework and the system
model are presented, followed by the stochastic analyses in
Section III. The drone-cell deployment problem is formulated
in Section IV, with both pure PSO and DI-PSO algorithms
being proposed in Section V. Numerical results are presented
in Section VI. The conclusion is given in Section VIIL.

Il. PRELIMINARIES AND SYSTEM MODEL

A. DRONE ASSISTED RADIO ACCESS NETWORKS

The framework of DA-RAN is shown in Fig. 1. Similar to
the Cloud-RAN (C-RAN) architecture, drone-cells perform
as aerial RRHs that connect with their corresponding BSs. For
each BS in DA-RAN, a swarm of drone-cells are deployed by
it over the demanding areas (DAs) where users cannot have
effective connections with the BS. Two typical types of DA
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FIGURE 1. Drone assisted radio access networks.

are Traffic Burst Spots (TBSs) and Coverage Holes (CHs).
In TBSs, massive data traffic between users and the BS is
generated at same time, which cannot be supported by the
inadequate Resource Blocks (RBs) simultaneously. In CHs,
effective user-to-BS links are blocked by obstacles, such as
high buildings. Since appropriately deployed drone-cells can
maintain reliable LoS U2D and D2B links, the unserved users
in DAs can communicate with the BS through accessing
drone-cells which act as relays. According to the spatial and
temporal variations of DAs, the deployments of drone-cells
can be adjusted by the BS in a flexible way, which enhances
RAN’s capability to cope with dynamic traffic.

The DA-RAN involves three types of links:
User-to-BS (U2B) links, Drone-to-User (D2U) links and
Drone-to-BS (D2B) links.

U2B links: U2B links are classic Up/Down links between
users and BSs without drone-cell’s involvement. In DA-RAN,
U2B links co-exist with D2U and D2B links in DAs without
being interfered by them. There is no effective U2B link for
users in CHs, while parts of users in TBSs can access BSs via
U2B links.

D2U links: D2U links connect drone-cells and users in
DAs. To alleviate interference and bring additional resources
for users in TBSs, the D2U links are expected to operate in
different spectrum from the licensed U2B bands. Currently,
the TV White Space [17], cognitive radio [18], and the WiFi
bands used by commercialized drone products [19] are can-
didates for conducting D2U communications.

D2B links: Drone-cells communicate with corresponding
BSs through D2B links. Though the LoS feature of D2B
links, due to the same level of drone-cell flying heights and
BS antenna heights, guarantees the reliability, the capacity of
D2B links remains challenging since each D2B link has to
relay all the data between the BS and users covered by the
drone-cell. One promising solution for the capacity issue is
the millimeter wave (mmWave) technology that can provide
up to 20Gbps data-rate transmission [20]. It is appealing and
feasible to employ mmWave into D2B communications due
to the following reasons. First, drone-cells are expected to
hover on fixed position, and maintain the quasi-static status
to corresponding BSs during the interval between adjacent
re-deployments. The frequent re-directing of beams can be
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FIGURE 2. D2U pathloss model.

avoided, which results in more time for effective mmWave
data transmissions [21]. Second, the ideal transmission envi-
ronment of mmWave technology is the LoS links, which are
naturally supported by D2B communications [22]. Mean-
while, the MAC protocol of D2B links can be customized to
promote performance [23]. For instance, the authentication
process can be simplified to reduce latency [24].

B. DRONE-CELL LINK PATHLOSS MODELS
Impacted by the flying height and mobility of drone-cells,
both D2U and D2B links in DA-RAN have the unique chan-
nel features, which cannot be appropriately modeled by the
common U2B pathloss model. In this paper, state-of-the-art
drone-cell link pathloss models are leveraged to analyze D2U
and D2B links respectively.

The A2G pathloss model proposed in [12] is used to ana-
lyze D2U links. Based on the A2G pathloss model, the LoS
probability of D2U link is [12]:

1
1+4+a exp(—b(arctan(é) — a))’

Pros(r, h) = (D
where h is the drone-cell flying altitude, r is the horizontal
distance between the drone-cell and the user. ¢ and b are
constant values determined by environment, such as urban,
suburban, rural, etc. Neglecting the antenna heights of users

and drone-cells, the average D2U pathloss can be calculated
as follows [12]:

PL(r,h) = 201log )
+ Pros(r, WnLos + (1 — PLos(7, B))nNLos, (2)

(47rfcx/h2 +r2
¢

where f. (in Hz) is the carrier frequency, ¢ (in m/s) is
the speed of light. n1os and nyz,s are average additional
losses for LoS and NLoS links which are environment-
dependent. For instance, in urban environment the parameter
list (a, b, nLoS, MNLos) 18 (9.61, 0.16, 1, 20).

Fig. 2 shows the average D2U pathloss versus drone-
cell altitude for different » and f,. From Fig. 2, all pathloss
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curves decrease first then increase slowly with the increas-
ing of altitude. This is because in low altitude space, D2U
pathloss is mainly determined by the LoS probability, rais-
ing altitude leads to sharp increasing of Ppos(r, /) and
decreases the pathloss level; while in high altitude space,
P1os(7, h) remains nearly constant for all altitude values, and
the pathloss curves are dominated by free space attenuation
instead of Pros(r, h). Apart from the altitude, horizontal
distance r and carrier frequency f,. also influence the D2U
pathloss. Increasing r can raise all pathloss values on a curve
and change the curve’s shape. Increasing f. impacts the first
term in Eq. (2), and shifts the whole curve up by a constant
value.

Dominated by LoS links, there is no random factor in
the model of average D2B pathloss [7]. The average D2B
pathloss is calculated by the cellular-to-UAV pathloss model
in [7], which can be expressed as follows:

0n—0
PL(rp. 0) = 100 log(rpp) + A® — 80)e" 5 ) + 19, (3)

where rpg is the horizontal distance between the drone-cell
and the BS. 6 indicates the vertical angle between the drone-
cell and the BS in degree. «, A, 6y, B, and no represent the
terrestrial pathloss exponent, excess pathloss scaler, angle
offset, angle scaler, and excess pathloss offset, respectively.
Except rpp and 0, all other parameters in Eq. (3) are con-
stants depending on different environments. For the suburban
environment investigated by [7], the values of parameter list
(a, A, 6o, B, o) is (3.04, —23.29, —3.61, 4.14, 20.7). Since
all experiments and modeling conducted in [7] use 850MHz
frequency band that falls into the widely used LTE bands
ranging from 700MHz to 900MHz, the carrier frequency is
not reflected as one parameter in Eq. (3).
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FIGURE 3. D2B pathloss model.

Curves of average D2B pathloss versus drone-cell to BS
vertical angle under different rpg are shown in Fig. 3.
All pathloss curves decrease first then increase with the
increasing of 6. The minimal pathloss values are achieved
around 0° for all curves. Different from D2U links, the D2B
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links can keep maintaining LoS condition due to less obsta-
cles between them, so the dominate coefficient that impacts
average pathloss is the spatial distance dpg between drone-
cell and the BS. For any fixed rpp, dpp that minimizes the
free space attenuation can be obtained when 6 equals to 0°,
which is reflected as the minimal value of the curve.

C. SYSTEM MODEL

Based on preceding drone-cell pathloss models, we investi-
gate the 3D deployment of multiple drone-cells correspond-
ing to one BS. Given the 3D space, the BS is fixed at
the origin point (coordinate (0, 0, 0)) with ground coverage
radius Rps. The ground coverage area of the BS on X-Y
plane | Ay, is modeled as a mesh that consists of multiple
grids in square shape. The area of each grid is denoted as
|Al4, with the side-length of ,/|.A|4,. By dividing | Al into
multiple grids densely, the side-length of each grid is far
smaller than Ry and the drone-cell flying height A, so the
average D2U pathloss of different users in one grid can be
considered as equal. Without loss of generality, in this paper
we normalize all D2U links within one grid to suffer the same
D2U pathloss between the drone-cell and the center of the
grid. Specifically, each DA is uniformed as a 20m x 20m grid.
Given the assumption that traffic is uniformly distributed in
space and independent with each other, dedicated number
of grids are randomly chosen as DAs. For an arbitrary grid,
the probability of being a DA can be calculated as follows:

Eq,
Pda = Ny’ “)
where Eg, is the average DA number calculated through
statistic, Ny is the total grid number within |.Al,s. Based
on Eq. (4), DAs are uniformly distributed over the |Al.
We assume that DAs change their size and location with a
low frequency, so each drone-cell deployment can treat the
random distributed DAs as a quasi-static scenario where no
spatial change occurs during the interval between adjacent re-
deployments. Based on the current snapshot of DAs distribu-
tion, the BS deploys drone-cells over DAs to maximize user
coverage, and re-deploys them when the DAs distribution

changes.

lll. THEORETICAL ANALYSES

In this part we analyze the user coverage and working zone
of drone-cells in DA-RAN. The main notations used in the
analyses are summarized in Table. 1.

A. DRONE-CELL USER COVERAGE ANALYSIS

Without loss of generality, we assume that the user distri-
bution follows a 2D Poisson Point Process (PPP) over the
| Alps with a user density A. Due to the independence of each
PPP point, the number of user locating in an arbitrary DA ug,
follows a Poisson distribution:

_ Gl o,

P(uga) igg!
al

&)
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TABLE 1. Summary of main notations.

Notations ~ Descriptions
h flying height of the drone-cell
r horizontal distance between one drone-cell and one DA
| Alps coverage area of the BS on X-Y plane
Ry coverage radius of the BS
| Alga area of each grid
Pda probability of being a DA for an arbitrary grid
Ng total grid number within the BS coverage
A user density
Uda number of user locating in an arbitrary DA
Ryc(h) effective coverage radius of one drone-cell at height 2

ELos D2U LoS probability threshold
YDU D2U free space pathloss threshold

Dyc(h) average DA number covered by one drone-cell at height &
Ugc(h) average user number covered by one drone-cell at height i
Uyde(h) upper bound of Uy, (h)
Lygc(h) lower bound of Uy, (h)
Hopt optimal drone-cell height for maximizing Ug.(h)
DB horizontal distance between drone-cell and the BS
Nyc number of drone-cells
Nya number of DAs
Cyc Capacity of one drone-cell
R minimal data rate required by each user
YDB D2B pathloss threshold
Nimax maximal multi-drone-cell interference suffered by one DA

Since NLoS D2U links are not capable of supporting
effective data transmissions in reality, the effective coverage
radius of the drone-cell Ry cannot be determined by directly
using Eq. (2) with NLoS links. By constraining both LoS
probability and free space pathloss, the refined drone-cell
coverage constraint is expressed as:

Pros(r, h) > &Los )
47rfm/ch2+r2 < ypU
Since the Pyos(r, h) is a decreasing functions of » while the
free space pathloss function is an increasing functions of r,
the function with a minor return value determines Ry.. For a
fixed height &, R4c can be expressed as a function of 4 through
rewriting Eq. (6) :
h ( CcyYDU

tan(a — § In 125e8) "\ "4 fe

Ryc(h) = min ( 2 —h?), (7)

where the the min function returns the minor one of its

two items, the former reflects the LoS probability constraint,

while the later represents the free space pathloss constraint.

Given R4c(h) and pq,, the average number of DAs covered by

one drone-cell flying at height & can be calculated as:
| Alga R3.(h)

Dyc(h) = paaNg7—— = pa S

W EeRA, TN R

In following analyses, we use Rgc and Dy to represent the
returns of Ryc(h) and Dyc(h) for a given h, respectively.

Assume that k DAs occurs in the |Aly, of an arbitrary

drone-cell. Based on Eq. (5), ugc users can be covered by the

drone-cell with the probability of:

®)

P(ugc) = ®

k Udc
QizoPMAls) 54 pirl Al
uge!
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where p; indicates the LoS link probability between DA i and
the drone-cell, which is calculated by Eq. (1). p;A represents
the number of users effectively covered by the drone-cell
in DA i.

According to the attributes of Poisson distribution,
the average number of users covered by the drone-
cell E(uge) is:

k
E(uge) = Y _ pirlAlga. (10)
i=0
Since the values of p; are affected by the horizontal
and vertical distances between DA i and the drone-cell,
even for a given flying height 4 and the correspond-
ing Ryc, pis of different DAs vary. On the other hand,
k in Eq. (10) is a random variable whose distribution
is impacted by Ryc. Therefore, we have the following
Proposition 1.
Proposition 1: Given the drone-cell flying at height h,
the average number of effectively covered users Uy, can be
calculated as follows:

Rac
Uge(h) = /
0

Proof: [Proof] Because the value of p; is determined
by the location of DA i for given h, p; turns to be an i.i.d
random variable for all DAs. Given the fact that p; and k are
independent, we have:

2r)¥|A|danaNg
RZ (1 + aexp(—b(arctan(2) — a)))

dr. (11)

Ude(h) = E(uge) = E(pir| Al g)E(k)
R2
= E(pl-MAlda)pdaNgR—‘;C. (12)
bs

In Eq. (12), the expectation of k equals to the average number
of DAs covered by one drone-cell Dy, calculated through
Eq. (8). The remaining task is calculating E(p;A|.Alq,). For
the fixed h, p; can be treated as a function of r, and its
PDF is dominated by r’s distribution. Leveraging the geo-
metric features of r, the PDF of r can be expressed as
follows:

dC(r) d(nrz)_ 2r
dr — drzR2 R%

P(r) = r € [0,Rac], (13)

where C(r) is the CDF of r. Based on Eq. (13),
the E(p;A|Alg,) is calculated:

E@ir|Alga)
= Al Alg.E(i(r))
A [ : d
= MAlga P
Ala /0 1+aexp(—b(arctan(é) —a) (r)dr
Ryc
_ / : MAlar dr.  (14)
0 Réc(l + aexp(—b(arctan(3;) — a))

With both E(p;A|.Alg,) and E(k) being derived, the expres-
sion of Ugc(h) can be obtained through substituting Eq. (14)
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into Eq. (12):

2
Uqc(h) = paaN,
bs
X /Rdc 2)‘|"4|da
0 (1 + aexp(— b(arctan( ) — a)))
2")\|-A|dapda g

Ryc
= / dr.(15)
0
Proposition 1 has been proven. [ |
Though Ugc(h) can be expressed as a function of & with
an integral of r included, the close-form of Ugc(h) is hard
to be derived due to hyper-geometric functions are involved
after calculating the integral. However, we can still ana-
lyze the upper and lower bounds of Ugc(h) through fixing
the Ppos(r, h) of each DA as 1 and the smallest available
P1os(r, h) which is achieved at the coverage boundary of Ry,
respectively. In this way, the integral of r can be removed
from both upper and lower bound expressions of Ugc(h).
Specifically, the upper bound of Ugc(h) is:

2

R
Uude(h) = A AlgapaaNg =5 (16)
Rbs

R2,(1 + aexp(—b(arctan(2) — a)))

and the lower bound is:
AA| R3,
da pdaNg
1 4+ aexp(— b(arctan(R ) —a))

_ )‘|~A|dapdaNg de (17)
Rgs(l +a exp(—b(arctan(Rde) —a)))
According to Eq. (7), Ryc is determined by the minimal
value of one increasing function of / and one decreasing func-
tion of 4. The maximal R4 can be obtained at the intersection
point of two functions, let:

Hopt (CVDU
tan(a — 3 Ly = ELOS) Awfe

ILfUdc(h) =

2 —Hgy,  (18)

the optimal height Hoy, equals to:

1 &Los \ €YD
" tan(a — aELLsS ) 471; (19)
opt =
\/ 1 +tan(a — 5 1a;;Lgs)

Based on preceding analyses, we have the Corollary 1 of
Proposition 1.

Corollary 1: Given the drone-cell flying height h,
the upper bound of the average user number Uqc(h) efficiently
covered by the drone-cell is the function of h, and obtains its
maximum when h equals to Hopy.

B. DRONE-CELL WORKING ZONE ANALYSIS

To maintain the qualities of D2B links, a working zone in
which drone-cell can maintain the D2B pathloss smaller
than a given threshold ypp has to be identified. However,
since the D2B pathloss model is a function of rpg and 6,
the available working zone of drone-cell in the 3D space
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cannot be estimated intuitively. In this section, we transform
0 into a function of & and rpp to represent the working
zone.
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FIGURE 4. Drone-cell working zone, a) 3D view, b) 2D projection on
X-Z plane.

Fig. 4 shows an example of the drone-cell working zone
in both 3D and side views. The BS in Fig. 4 is configured
with the height of 100m and Rps = 1000m, and ypp is
set as 80dB. According to Fig. 4, the drone-cell working
zone is constrained by a torus shape hovering around the
top of BS horizontally. By increasing rpg, the difference of
the upper and lower height boundaries increases first, then
decreases slowly. The maximal difference is achieved around
rpp = 700m with the available drone-cell height ranging
from 80m to 150m. The torus shape of drone-cell working
zone can be explained as follows. According to Fig. 3, given
a fixed pathloss threshold, the available 8 range is reduced
with the increasing of rpg. The corresponding /g for each 6
is calculated as:

hg = rpp tan(0) + Hys, (20)
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whose absolute value rises with rpp’s increasing as long as 0
is fallen into the available range. For a small rpp, the reducing
level of 6 range is compensated by the increasing of 4y, so the
working zone height range are extending by increasing rpg.
While for a large rpg, the increasing of sy cannot make up
the serious reduction of 6 range, and the working zone height
range turns to shrink when rpp keeps increasing.

One interesting effect observed from Fig. 4 is the sharp
height burst of the working zone that is close to the BS.
From Fig. 3, we notice that for a small rpg, the pathloss
curve can converge to a value less than the threshold when
height increases to infinity, such as the curve corresponding to
rp = 50m. Without a 6 to constraining the upper boundary,
the available height at such rpp can reach a large value until
being limited by the large-scale pathloss term in Eq. (3).
However, as long as rpp rises to certain value whose cor-
responding pathloss curve reaches higher than the threshold,
the upper boundary of height range is back to normal with the
constraint of 8. Though this height burst provide additional
space for drone-cell deploying, its usage is still relatively
limited in reality due to the narrow range.

IV. PROBLEM FORMULATION
Based on the preceding analyses, we formulate the 3D drone-
cell deployment problem in this section.

Considering a quasi-static DAs scenario between adjacent
re-deployments, Ny, grids are selected as DAs. A boolean
parameter ¢; is defined to show the coverage state of the ith
DA (0 <i < Nga):

_ 1 if DA i is covered by a drone-cell, 21

= 0 if DA i is uncovered.

By defining ¢;, the purpose of enhancing user coverage can
be translated to the objective of maximizing the summa-
tion of ¢; through deploying drone-cells in appropriate posi-
tions. Assuming the BS release Ny, number of drone-cells,
the pathloss between drone-cell j (0 < j < Ng.) and DA i is
constrained by Eq. (6). Defining that DA i can be effectively
covered by drone-cell j, as long as the D2U pathloss between
them is less than threshold ypy. Since that, Eq. (21) can be
updated as follows:

1 if Eq. (6) holds,
o= q. (6) o)
0 else,

where £ is drone-cell j’s hovering height, 7;; is the horizontal
distance between drone-cell j and DA j.

Three constraints are considered in the deployment prob-
lem. First, the maximum number of users served by one
drone-cell is defined as:

Cac
M, =1 R i (23)
where R is minimal data rate required by each user, and
Cyc is the capacity of one drone-cell. To simplify the analysis,
we assume that both R and Cy, are the same for arbitrary user
and drone-cell respectively. Leveraging the average number
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of effective users in one DA calculated by Eq. (14), Eq. (23)
can be transformed to express the maximal DA number that
can be supported by one drone-cell:

_ |_ Cdc
"~ "E(pirlAlg)R

The second constraint is maintaining the qualities for every
D2B links. Defining a pathloss threshold ypp, we argue that
any drone-cells being deployed must guarantee that their
average D2B pathloss level PL(rj, 0jp) is less than ypg,
where rj;, is the horizontal distance between drone-cell j and
the BS, and 6, represents the vertical angle between drone-
cell j and the antenna of BS. This constraint sets the working
zone in which drone-cells choose their optimal deploying
positions.

Multi-drone-cell interference is considered as the third
constraint. Noticing that all D2U communications are carried
by the same spectrum band, one user can only be allocated to
one drone-cell. When one DA is served by two or more drone-
cells simultaneously, the users in such DA can suffer serious
interference from redundant drone-cell, which is defined as
multi-drone-cell interference. To prevent this issue, we use
I; as the indicator of multi-drone-cell interference suffered
by DA i:

Caa I8 (24)

Ndc

I; = max{) e;—1,0}. (25)

=1

When DA i is uncovered or covered by only one drone-
cell, I; equals to O; otherwise I; equals to the number of
interfering drone-cells. By defining a maximal allowed I;
value, the overlapping of different drone-cell coverages can
be minimized effectively.

Finally, the 3D drone-cell deployment problem is formu-
lated as the following optimization problem to maximize U,
i.e., the number of DAs being covered:

Ngc Nda Ndaa
max U= E Zéij—Z[i
Xi,yihi
R =1 i=1 i=1

Nga

Cac
4 2 = L AR

PL(rjp, 9jp) < YDB
I; < Nimax, (26)

where (x;,y;j, hj) is the coordinate of drone-cell j being
deployed at. Nymax indicates the maximum allowed inter-
ference level suffered by one DA. Note that the con-
straints 1 and 2 are applying for each drone-cell j, while the
constraint 3 is examined for every DA i.

V. PER-DRONE ITERATED PSO ALGORITHM

Similar to the classic BS location planning problem [25],
the 3D drone-cell deployment problem in Eq. (26) is also rec-
ognized as NP-hard [16]. Due to the heterogeneous pathloss
models for D2U and D2B links in 3D space, the optimal
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solution is hard to reach through mathematical deductions.
So heuristic algorithms, especially the evolutionary heuristics
such as Genetic Algorithm (GA), PSO, etc., are considered as
alternative choices to approaching the optima.

PSO algorithm is employed by both [16] and [25] to
solve similar drone-cell coverage problems. Compared with
other heuristics (e.g., GA), PSO has following advantages:
1) fewer numerical parameters are required which simpli-
fies the implementation; 2) lower computational cost and
faster convergence speed can be achieved [26]; 3) PSO can
deal with an infinite set of drone-cell combinations unlike
other algorithms (e.g., GA) that require a finite set of drone-
cell combinations to be executed [25]. which is suitable for
drone-cell deployment scenario where re-deployment speed
matters.

Algorithm 1 Pure PSO Based Algorithm for Drone-Cell
Deployment in DA-RAN

1: Define a particle chosen space S as same as the drone-
cell working zone corresponding to ypg.

2: Generate L random particles in S as initial population.
For each initial particle W(0),l = 1,...,L, it is
expressed as a random vector with size Ngc.

3: Re-generate the invalid elements in each W(l)(O) vector
until they meet constraint 1 and 3 in Eq. (26) simultane-
ously. Randomly generate initial velocity vector V(0)
for each particle.

4: Calculate U"(0) through Eq. (26) for each W)(0). Set
ylebal) — max{u®(0),1 = 1,...,L}, Wlebah —
WO (0) which achieves the U€lbah  Set yhlocal) —
U (0), wi-lecah — Wb (). Define maximum iteration
number My,.

5: fort=1,..., My, do

6 for/=1,...,Ldo

7 Calculate WO(r).
8
9

while WO (¢) exceeds any Eq. (26) constraints do
: Re-generate the invalid elements in WO(z).
10: end while

11: Calculate UD(1),VO@).

12: if UD(r) > ydlocal) then

13 U(l,local) — U(l)([), W(IJOCGZ) — W(l)([)_

14: end if

15: if U(l,local) > U(gl(’bal) then

16: U(global) — U(l,local) W(global) — W(l,local).
17: end if

18: end for

19: end for

We customize the PSO algorithms proposed
in [16] and [25] to form a pure PSO based algorithm, which
is shown in Algorithm 1. Compared to the PSO algorithms
in [16] and [25], the pure PSO algorithm involves the D2B
link constraint specified in the DA-RAN scenario. In the pure
PSO algorithm, the velocity vector of particle / at iteration ¢
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is defined as follows:

V@) = VO — 1)
+c1pr(Whloeah i — 1) — W — 1))
+ capp(WGPbah(p 1y — Wz — 1)), (27)

where ¢ is the inertia weight that determines convergence
speed. c1 and ¢ are personal and global learning coefficients
respectively. ¢ and ¢, are positive random variables. With
the V((r) obtained from Eq. (27), W(z) is updated as:

WO = WD — 1) + VO@). (28)

The pure PSO based algorithm treats the combination of
Ny drone-cell positions as one particle represented in vector
form, which brings additional dependency between drone-
cells. Since WO(¢)’s elements (each drone-cell position) are
dependent with each other during iteration, the diversity of
the particle searching space is seriously reduced. Though
relatively less computational cost and shorter convergence
time can be obtained in this way, the probability of falling
into local optima increases. To compensate this, number pf
particle and iteration times have to be added, which increases
the complexity and total cost. Besides, the vector formed
WO (1) is hard to be re-generated to ensure that all elements
fits Eq. (26)’s constraints simultaneously, especially the inter-
ference constraint which only allows the adjustments of par-
tial elements. As a result, redundant re-generations must be
executed before randomly generating a suitable particle.

To alleviate the aforementioned issues of pure PSO based
algorithm, we propose the DI-PSO algorithm which employs
the PSO algorithm independently on each drone-cell. The
detail of DI-PSO is given in Algorithm 2. In DI-PSO, the par-
ticles are no longer vectors but individual positions. Due to
the different particle structures, the updating functions of
particle velocity and position are revised as follows:

v = ev - 1)
g WD — 1) = wha — 1))
+ g WEPDe — 1y —wha — 1)), (29)

and
1 1 1
w0 =wPa -1+ vPa). (30)

For each drone-cell d, PSO algorithm is used to calculate
its best deployed position in which the maximal number
of covered DAs is achieved. With each drone-cell being
independently deployed, the spatial ergodicity of DI-PSO is
increased which leads to higher probability of finding the
global optima. meanwhile, the set of DAs to be covered by
drone-cell d (A(d)) is updated by each drone-cell iteration
with only uncovered DAs remaining in it. This mechanism
can reduce the times of re-generating Wy)(t) through prevent
inter-drone-cells interference in a proactive way.
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Algorithm 2 DI-PSO algorithm for drone-cell deployment in
DA-RAN

1: Define a particle chosen space S as same as the drone-
cell working zone corresponding to ypg.

2: Initiate uncovered DAs set A(1) contains all DAs.

3: ford =1, ..., Ng. do

Generate L random particles W;)(O)(Z =1,...,L)
as initial population of drone-cell d within S.

5: Re-generate the invalid Wdl)(O) until they meet con-
straint 1 and 3 in Eq. (26) simultaneousl 3/ Randomly
generate initial velocity chl)(O) for each W (O)

6:  Calculate U;’)(O) with input A(d). Set Uflgl"b“” -

max{U$P(0),1 = (L), Wi — wh )
which achieves the U (gZUbal) . Set Ua(ll’local) = (1)(0)
W(l local) thl)(o)
7: forr =1, , My, do
8: forl:l,...,Ldo
9: Calculate W(gl)(t).
10: while W;)(z‘) exceeds Eq. (26) constraints do
11: Re-generate W(gl)(t).
12: end while
13: Calculate U 1),V P (1),
14: if U (1) > U"D then
15: U(l Jocal) U(l)(l) W(l Jlocal) W(l)(t)
16: end f
17: if U(l Jlocal) U((ngobal) then
18: U(global) _ U(l local)
19: W(global) W(l local)
20: end 1f
21: end for
22: end for

23: Calculate A, (d) as the set of DAs newly covered
by drone-cell d.

24: Update A(d + 1) = A(d)

25: end for

- Anew(d)-

TABLE 2. Simulation parameters.

Simulation Parameters

Numerical Values

BS coverage radius Ryg

DA size

(a, b, 1Loss TN Los)

(D2U f., D2B f,)

(ypu, ypB (normalized in dB))
Pl

Cac

R

Nlmax

Particle population

Maximum number of iteration

900m

20mx20m
(4.88,0.43,0.1,21)
(2.4GHz, 850MHz)
(89dB, 80dB)
0.025 person/m?
1Gbps

100Mbps

2

400

50

VI. NUMERICAL RESULTS

Simulations are conducted to compare the performance of
both proposed algorithms. Considering the single BS with
900m coverage radius in a suburban scenario, the simulation
parameters are listed in Table. 2. 2.4GHz WiFi band is chosen
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as the carrier f, for its wide adoption in previous works and
commercial drone products [19], [27]. The 850MHz LTE
band are used to support D2B communications. To suit the
scenario where the D2B pathloss model is built, propaga-
tion parameters for suburban are chosen. Allocating different
bands to D2U and D2B links also prevent the interference
between them. Both ypy and ypp are set within the range
used by related works [15].
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°
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(@)
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600 - [
]
400+ . e ]
__200F
£
k%) L A L} "
°
>
-200 1 °
Uncovered DA s T
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FIGURE 5. Drone-cell deployment example generated by DI-PSO
algorithm, a) 3D view, b) 2D projection on X-Y plane.

Fig. 5 shows one example drone-cell deployment generated
by the DI-PSO algorithm. Ny, is 20 and Ny. equals 10 in
this scenario. Triangle dot locating at the origin of coordinate
represents the BS. DAs are indicated as square dots and
drone-cells are illustrated as circle dots. DAs covered by
the same drone-cell are with the same color as the drone-
cell’s. In this example, 19 out of 20 DAs are covered by
drone-cells with only one uncovered DA that locates near
the edge of the BS coverage. Since all drone-cells have to
guarantee D2U and D2B pathloss less than ypy and ypp
simultaneously, the marginal location of the uncovered DA
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implies no drone-cell can be allocated for it without breaking
pathloss constraints. The label of each drone-cell in Fig. 5
represents its iteration order d in DI-PSO algorithm. The first
deployed drone-cell is allocated with 3 DAs, while the fifth to
tenth drone-cells can only occupy 1 DA by each. This trend
is caused by updating A(d) per-iteration with only uncovered
DAs being left, which can be regarded as one kind of greedy
mechanism to find the corresponding maximal coverage for
any given Ngc.

20 T T
—O— DI-PSO
18} =B Pure PSO

16

Number of Covered DAs

oL i i i i i i i i i
1 2 3 4 5 6 7 8 9 10

Drone-cell Number NDC

FIGURE 6. Coverage comparison between pure PSO and DI-PSO
algorithms with different number of drone-cells.

Fig. 6 shows the number of effectively covered DAs versus
the available drone-cell number Ny, for both algorithms.
Using the same DAs scenario shown in Fig. 5, simulations
are conducted 100 times for each algorithm under each drone-
cell number. Noting that the error-bars attached on each curve
indicate the standard deviation level of their corresponding
test points. As shown in Fig. 6, two algorithms are compara-
ble when Ny equals to 1 or 2. By increasing Ny, both curves
keep increasing while the DI-PSO always maintains average
2 more DAs being covered comparing with pure PSO. This
poor performance of pure PSO algorithm is caused by the
limited diversity of particle searching space. The increasing
trends of two curves are all dented when Ny reaches large
values, while the pure PSO curve increases slower with aver-
age 3 covered DAs being exceeded by DI-PSO curve when
Ngc = 10. Besides, little variance is achieved by DI-PSO
algorithm for each Ng., which indicates DI-PSO’s stability
of converging to optimized results.

Fig. 7 compares the coverage ratios of the two algorithms
for the DA number of 20, 50 and 100, respectively. The
coverage ratio is defined as the number of covered DAs over
the total number of DAs. The number of available drone-cells
Ny s fixed as 10. For each DAs number, 100 snapshots of DA
distribution are generated to run Monte Carlo tests. As Fig. 7
indicates, coverage ratios of both algorithms are decreased by
increasing the number of DAs. Since a larger number of DAs
leading to higher DA density within the fixed BS coverage
area, the serious inter-drone-cell interference caused by the
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FIGURE 7. Coverage comparison between pure PSO and DI-PSO
algorithms with different numbers of DAs.
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FIGURE 8. Performance comparison between pure PSO and DI-PSO
algorithms with different particle populations.

high DA density is the main reason for the decrease of the
coverage ratio. Comparing with the pure PSO algorithm,
the DI-PSO algorithm achieves higher coverage ratios with
less variances in all scenarios. Note that the performance of
pure PSO based algorithm in both Fig. 6 and Fig. 7 is better
than the similar simulation in [28]. This performance increase
is caused by applying new D2B pathloss model to generate
the working zone which constrains the particle searching
space for the pure PSO based algorithm. The number of par-
ticle re-generations is also reduced by applying the working
zone at the beginning of the algorithm.

To test the impacts of the limited particle searching space
in pure PSO. We further compare the performance of two
algorithms with the particle population set as 200, 400, and
800. The 100 snapshots of DA distribution with 100 DAs are
used for testing. Fig. 13 shows the simulation results. For
DI-PSO, its coverage ratios under different particle popula-
tions remains no change, with only the standard deviation
decreases by increasing the particle population. This result
indicates that the DI-PSO can effectively converge to the
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optimal solution with a small particle population. For pure
PSO based algorithm, its coverage ratio keeps rising with
the increasing particle population, and reaches the same level
when the particle population equals to 800. However, the cov-
erage ratio achieved by pure PSO with 800 particle population
size can be reached by DI-PSO with only 200 particle pop-
ulation size, which proves that the DI-PSO is more efficient
than the pure PSO based algorithm in terms of computation
costs.

VIi. CONCLUSION

In this paper, we have theoretically analyzed the drone-cell
user coverage and feasible working zone by leveraging the
emerging D2U and D2B pathloss models. The 3D deploy-
ment problem of drone-cell in DA-RAN has been formulated
to maximize the user coverage while maintaining D2B link
qualities, which is solved by the DI-PSO heuristic solu-
tion. With drone-cells’ capabilities of providing LoS links
and enabling dynamic deployments, the results from this
research can shed light on the DA-RAN research. In addi-
tion, the drone-cell user coverage and working zone analysis
results offer general understandings to inspire future research
concerning the drone-cell coverage. For our future work,
we will explore the drone-cell path-planning and scheduling
problems constrained by the energy capacity of drone-cells.
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