IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 24, 2017, accepted January 27, 2018, date of publication February 8, 2018, date of current version March 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2803160

Pedestrian Detection by Feature
Selected Self-Similarity Features

XINCHUAN FU"1, RUI YUZ, WEINAN ZHANG?, LI FENG*, AND SHIHAI SHAOQ', (Member, IEEE)

National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
2Department of Computer Science, University College London, London WCIE 6BT, U.K.

3Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China

*Engineering and Technology College, Sichuan Open University, Chengdu 610073, China

Corresponding author: Xinchuan Fu (xinchuan.fu@foxmail.com)

This work was supported by the National Natural Science Foundation of China under 61771107.

ABSTRACT This paper is concerned with the pedestrian detection problem. In this area, boosted decision
tree (BDT) methods are highly successful and very efficient. However, to achieve the best performance, most
BDT methods require a large number of input features, which make the algorithm scale poorly to large-
scale data. Inspired by the effectiveness of self-similarity (SS) features, we use linear discriminant analysis
to select features in the SS features according to their generalized Rayleigh quotient, leading to a small
number but most discriminative features. These features are called feature selected self-similarity (FSSS)
features. The FSSS features are only used for the late stages of the BDT cascade, making the training and
detecting much more efficient. Extensive experiments on four well-known data sets demonstrate that the
FSSS features are highly effective and the trained pedestrian detector achieves state-of-the-art performance
among all existing non-deep-learning methods on several benchmarks. We also compare our method with
deep learning methods and show its superiority in high-quality localization and will be a good complement
to deep learning methods.

INDEX TERMS Boosted decision tree, linear discriminant analysis, pedestrian detection, self-similarity

features.

I. INTRODUCTION

As a typical problem of object detection, pedestrian detection
is an active research topic in recent years. There have been
well established benchmark datasets [1]-[5] and a variety
of methods published to address this problem [3], [6]-[9].
Great progress has been made in recent years [1], [10].
Most state-of-the-art methods formulate pedestrian detection
as a binary classification problem, i.e. to classify all the
candidate windows in the target image as pedestrian or not,
followed by a non-maximum suppression. Various tools in
machine learning have been used to solve pedestrian detec-
tion problem, such as sparse representation-based classi-
fier (SRC) [11], support vector machine (SVM) [3], [9], [12],
BDT [6], [7], [13] and deep learning [8], [14], [15], etc.

In recent years, BDT and deep learning methods prevail
in this research area. Although currently the top performance
in pedestrian detection is achieved by deep learning method,
BDT methods remain highly competitive in this area. For a
typical image in practical application, there are much more
background patterns than pedestrian patterns and most of
them are very easy to classify, like sky, road, grass, etc.

This characteristic of pedestrian detection problem makes
boosted cascades especially suitable for this task, as it rejects
background patterns in early stages of cascades rather than
use the same computation overhead for all the candidate
windows. This strategy saves a lot of computation cost and
accelerates detection [16]. In fact, many leading deep learn-
ing solutions use BDT as the classifier or as a region pro-
posal [15], [17]-[19]. In this paper, we focus on the BDT
methods.

Although decision trees are able to select the most discrim-
inative features from the input feature pool, the discriminative
ability of the features in the feature pool itself could have a
great influence on the performance of the learned classifier.
Most state-of-the-art detectors use feature maps created from
CIE-LUV color channels, gradient orientation channels, and
gradient magnitude channels [20]. These feature maps could
be computed efficiently but using these features directly
suffers from limited performance. Research [21]-[23] show
that the discrimination of these simple features is raised
significantly with some linear transformation at a rela-
tively cheap computational cost, depending on the specific
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transformation and the number of output feature maps.
The type of transformation used are often explored with
domain knowledge [21], [22] or by learning from data [23].
Recently, features extracted by deep convolutional neural
networks (CNNs) have gained the best performance, but
the extraction of these deep features suffers from expensive
computational cost and often needs expensive devices like
GPUs. On the other hand, handcrafted features are shown to
be complementary to CNN features [24], [25].

The main contribution of this paper is to propose a new
type of features which achieve a good tradeoff between effi-
ciency and discrimination effectiveness. We call our proposed
features as Feature Selected Self-Similarity (FSSS) features
as they are similar to self-similarity (SS) features [26] but
with feature selection scheme to decrease the dimensionality
of feature space. Both types of features compute pixel differ-
ences of base features. While SS features consider all possible
pairs of the base features, FSSS uses linear discriminant
analysis (LDA) to select the most promising pairs from all
the possible pairs. The techniques allow us to use more base
features than SS. A BDT model is then built based on these
FSSS features to perform pedestrian detection efficiently.

The experiments on four well-known benchmark datasets
demonstrate that our method leads to the top performance
when GPU is not available. We also find that under a stricter
criteria, our method even outperforms the top deep learning
methods, showing our method has better localization preci-
sion than deep learning methods. Hence, our method may
serve as a good complement to deep learning methods.

The rest of this paper is organized as follows. We first give a
comprehensive review of the feature extraction approaches in
Section II. The FSSS features and some auxiliary techniques
are described in Section III. Experiment results are given in
Section IV. Finally, we conclude in Section V.

Il. RELATED WORK

To tackle the task of pedestrian detection, many papers have
been published with the focus on different aspects of this
problem and the majority of them are about feature design.
This is justified by the recent survey [10] which points out
that feature design seems more important than the choice of
classifier and is a consistent driver for the detection quality
improvement.

The first popular feature for pedestrian detection is his-
togram of oriented gradients (HOG) [3]. Many pedes-
trian detectors adopt this feature [9], [27], [28]. Based
on HOG, [20] proposed to use LUV color channels, gradient
magnitude channel and 6 orientation channels as base feature
maps and based on these maps, features are extracted by
region sums which are efficiently computed using the integral
image trick [16].

Later, [6] proposed Aggregated Channel Features (ACF)
which aggregate cells of pixels in each feature channel, and
then feature extraction is simplified as a single table lookup
in the 10 channels. Although very simple, ACF performs
well in practice [6]. Due to the advantages of ACF, many
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variants of these simple features were proposed in the last few
years.

Most of the proposed new features can be treated as a
linear transformation of ACF features. Some of the methods
pre-compute feature maps by performing convolution on the
original 10 channels using some filter banks. These are called
filter channel feature in [7]. For example, LDCF [23] uses
filter banks computed from PCA on local neighborhood fea-
tures, SquaresChnFtr [29] uses square-shaped uniform filter
banks of different sizes, and Checkerboard [7] contains 61
handcrafted filters. As these types of transformations are per-
formed in a convolutional fashion, the same filter is applied
in every position in a detection window. Thus there exists
possible waste of computation, since some of the features
might not be needed at detection time. InformedHaar [21]
is a different type of features. Its filter banks are based on
the average of many human shapes, thus different positions
in a detection window use different filters and a feature
is extracted just-in-time when it is needed by a tree node.
It seems more economical, but the detection efficiency will
be highly reduced if the transformation complexity is high
and the feature extraction process is slow.

These linear transformations only exploit feature relation-
ship in local neighborhood. On the other hand, [22] shows that
it is effective to use non-neighboring features. This type of
features is computed by taking the differences between non-
neighboring rectangle regions. Like InformedHaar, it takes
advantage of some prior knowledge of a typical pedestrian
window, called appearance constancy and shape symmetry.
The feature pool is generated exhaustively under some con-
straints (e.g., in the same horizontal) and then selected by
decision trees. Because these features are tailored particularly
for human, it cannot be transformed to other detection tasks
directly. Moreover, the constraints on the feature pool may
result in unnecessary limitations on possible features.

To compute region difference, an integral image [16] needs
to be computed, and accessing a feature needs 8 vertex
accessing and 7 add/minus operations, which has a high
computational cost. An alternative method is pixel differ-
ence, which is much easier to compute and is also effective.
Inspired by Local Binary Patterns (LBP) [30], the authors
in [31] proposed several kinds of pixel differences in a local
feature patch. The best one of them is called Total Pixel
Differential Features (TPDF), which considers all the possi-
ble combinations of pixel differences in a local region. The
combination number is (’;) where m is the number of pixels
in the local region. Apparently, m cannot be set too large, oth-
erwise the dimension of the computed feature vector will be
too high which requires a large amount of memory and long
training time. In TPDF, the authors only used a 5x5 region.
Because many of the created features are correlated, these
feature maps are highly redundant. The authors used LDA and
principle component analysis (PCA) to perform dimension
reduction, which results in extra computational cost.

The SS features [32] used in [25] and [26] can also be
treated as a kind of pixel difference features. In fact, it is a
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global version of TPDF, which means the corresponding pixel
pairs used in the minus operations are not constrained in a
local region but in the whole detection window. In various
kinds of handcrafted features considered in [25], SS features
are proved to be the best kind of features to trade off dis-
crimination effectiveness and efficiency. In order to limit m,
SS features need to shrink the original feature map of the
detection window to a smaller one in which each pixel cor-
responds to a local mean of the original feature map. In [25],
new feature maps only consider 72 pixels but still lead to
25,560 SS features. This suggests that some sorts of feature
selection or dimension reduction may be beneficial, which is
the main focus of our work.

Features used in BDT can be divided into two categories.
One of them is called pre-computed features, where all the
features are computed before they are fed into the BDT. This
family includes CNN based features, Checkerboards, LDCF
etc. Another family is called just-in-time (JIT) features, where
a feature is computed only when it is needed to be evalu-
ated by a tree node. This family includes haar-like features,
InformedHaar features etc.

The advantage of pre-computed features is the computed
features may be shared among different weak classifier and
windows. But for cascade classifier, this method turns out to
be inefficient. For example, there are more than 380,000 win-
dows to be classified in a 480x 640 image. But usually most
spaces in an image are background area, and most of the
windows will be rejected at very early stages of the cascade.
For example, when using ACF detector with 4096 weak
classifiers to detect pedestrians in Fig. 1(a), only a small
fraction of the windows will pass the last stage, as shown
in Fig. 1(b). In fact, after the first 20 weak classifiers, more
than 99% windows are rejected. Thus only a small fraction
of features may be used in BDT cascade while most of the
feature computation overhead is wasted.

4000
3500
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2000
1500
1000

500

(b)

FIGURE 1. lllustration of the number of weak classifier used in different
position of a typical image. (a) A test image from the Caltech dataset [1].
(b) The heatmap of the weak classifier number used in every position of
this image. Note in most positions, only a small number of weak
classifiers are used.

For JIT features, because the feature extraction happens at
every tree node, the complexity of feature extraction should
not be too high, otherwise the computational cost is huge. For
example, in [23] the authors used oblique splits learned by
LDA at each node, which bring considerable computational
expense.

Our FSSS features are computed just-in-time, and in detec-
tion time the feature extraction only involves two pixel
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indexing and a minus operation of these two pixels, the com-
plexity is only a slightly higher than ACF features, which only
involves a single pixel indexing. To further reduce computa-
tional cost, we put the FSSS features to the late stages of the
BDT cascade, using the simpler ACF features at early stages
as a proposal. After the ACF stages, only a small number
of windows are left. These windows are tackled with more
complex FSSS features.

llIl. THE PROPOSED APPROACH

As we stated in the last section, many types of features can be
treated as a linear transformation of the ACF features. This is
also true for our FSSS features. Throughout this paper, we use
the 10 channel ACF features as our base features, but our
method is able to extend to other types of feature maps.

Suppose we extract an n dimensional feature vector
X = [x1,x2,....x,07 € 9" in a detection window. The
SS features x¥ are constructed by all the combinations of
feature differences: x/ = x; —xj,1 <i < n,i <j < n.
These feature differences can be taken as projections from
the base feature vector to different projection vectors, that is
X7 = wh TX, where w7 is an n-dimensional vector with only
two non-zero elements w! = 1, w/ = —1. Thus selecting
promising features from all the SS features is equal to finding
good projection vectors with only two non-zero elements
+1 and —1. This inspires us to use LDA for feature selection.
We will see below that, under such a constraint (only two
non-zero elements 41 and —1), the computing become very
efficient.

In Section III-A, we first introduce the preliminaries of
LDA, then show how LDA is used as a feature selection
mechanism for SS features. In Section III-B and Section III-C
we describe two auxiliary techniques for our method. Each of
them corresponds to one important parameter which will be
discussed in detail in Section IV. The overall training process
is given in Section III-D. Section III-E gives a visualization
of FSSS features to show the reasonability of our method.
Section III-F deduces another feature selection mechanism
based on Pearson correlation coefficient and show its equiv-
alence with the LDA based method. In Section III-G we
introduce the ground plane constraint which is used in our
experiments.

A. PIXEL DIFFERENCES SELECTED BY LDA

LDA [33] is a technique to find a projection which maximizes
class separability. Specifically, in LDA, class separability
criterion is formulated as GRQ

wlSpw
max ———
w WTSWW ’

ey

where w is the LDA projection vector. Sp is the between-class
covariance matrix, given by

Sp = (1o — m)(po — )" 2
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Sw is the total within-class covariance matrix, given by

Sw= ) (x—mo)x—po) + ) x—p)x—p)’

xeCy xeCy

3

o and p are means of negative and positive samples respec-
tively. Cp and C are sets of negative and positive samples
respectively.

The optimal solution is written as

w=8," (o — py). “

LDA could serve as an alternative for linear SVM with
lower computational cost and little or no loss in perfor-
mance [34]. LDA can also be used to train oblique splits
when used in boosted tree classifiers [23]. That is, given input
feature vector x, at each node of a tree, compute z = wlx
using the projection w learned by LDA and find the optimal
threshold for z . Because in pedestrian detection, a typical
BDT contains thousands of trees and x is usually with a high
dimensionality, for fast detection, w must be sparse. In [23],
only a local region of m x m pixels is used for computing
LDA. Moghaddam et al. [35] proposed an algorithm to induce
sparse LDA (SLDA). In each step, the algorithm use for-
ward selection to choose the feature yielding the maximum
generalized eigenvalue. This technique is adopted in [36] to
train cascade classifier for pedestrian detection. Note that this
technique is to train one projection which leads to maximum
separability with the constraint of sparsity. So the weak classi-
fiers in the cascade are SLDA, and the features are provided
by applying decision dump to the original features (in fact,
here the so called original features are formed by applying
another traditional LDA to the covariance features [37]).
In our paper, we just use LDA to perform feature selection,
and leverage the decision tree as the weak classifier. Our
FSSS features can be taken as a special sparse LDA with a
sparsity of 2.

Because our objective is to select features for pixel defer-
ence, we constrain the projection w to have only 2 non-zero
elements, +1 and —1. That means we only consider oblique
splits of 45° in a 2-dimensional subspace. Unlike the general
LDA or sparse LDA, the total number of the projections under
such a constraint is relatively small, and we can afford to
compute them all. Let w¥ denote a projection vector with the
i-th element equal to +1 and the j-th element equal to —1,
the GRQ of w¥ is

wi' Spwii

Jwhy = T .
wY" SyywY

(%)
where the numerator equals

wi' Spwi = Sp(i, i) + S, ) — Sp(i. j) — Sz, ). (6)
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Next we show how to compute all the possible J(w¥) (for
every i and j). Consider the relative positions in the Sp
matrix

Sx(i. i) S5(i. )
Sp = : : ™
Ss(j. i) S5(.J)

We first subtracting the diagonal vector diag(Sp) from all
the rows (or columns) of Sp to get S, then compute
Joum = Sg + S/, which contains all the possible numer-
ators of J(w¥).! With the same method we compute Jd"
which contains all the possible denominators of J(w¥). Then
divide J™™ by J9 using element-wise division, we get the
GRQ matrix J which contains all the possible J(w¥), that is
Jwh) = 3G, ).

At this time, a possible choice is to select the k projections
corresponding to the k largest GRQs, where k is the feature
pool size we predefine. In practice, we find that pixel pairs
with similar GRQs tend to come from neighboring areas.
Thus if we sort the GRQs from high to low and choose pairs
corresponding to the highest £ GRQs, the selected features
are not diverse. To make the selected features more diverse,
we adopt the following strategy: for every pixel in the original
feature map, we select the subtrahend with the largest GRQ.
While in the top-k strategy, the selected pairs tend to stagnate
at some highest discriminative regions but ignore others, for
our new strategy, the minuend is forced to traverse the whole
feature map and it will also drive the subtrahend to move,
which result in a more diverse feature pool.

In this paper, we compute the GRQ matrix J separately
for each channel. Suppose there are 10 channels with 512
features per channel, the number of candidate pixel difference
features is 5120, i.e. the same number as of the original
feature map. In comparison, if we use SS features, the number
of pixel difference features is (5 52) x 10 = 1,308, 160,
which makes it infeasible to train without a large amount of
memory. With our method, memory constraint is not an issue
even if we allow pixel differences to be computed across the
10 channels.

Apart from alleviating memory issue, compared with
methods based on the general LDA, like [23], our classifier
is much faster to train. The speed improvement comes from
two aspects. One is that we do not need to compute the
inverse of Sy, which is the bottleneck of computing Eq. (4).
Another aspect is that the general LDA only computes one
optimal projection. Thus in order to form a feature pool,
LDA is applied in many patches of a detection window. For
our method, we generate a feature pool by finding many
suboptimal projections in single GRQ computation, which
brings much higher efficiency.

IThere is a minus sign, but can be canceled by the denominator.
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B. REGION-BASED FSSS FEARTURES

As is stated in [38], it is beneficial for occlusion handling
if we constrain all features of a single tree to be selected
from a local region. Because when occlusion occurs, only the
trees covering the occluded regions are affected. We adopt
this strategy in our paper and the FSSS features are computed
in a region at each iteration. Using region-based FSSS also
accelerate training, since only a part of the base features
are involved for GRQ computing at each iteration. In our
implementation, we randomly select a region for a weak clas-
sifier. The region size is important parameter for our detector.
In Section IV we will discuss the region size to choose.

Feature
permutation

=)

Region selection

ACE | U T ] e
FSSS FSSS FSSS

/—/% v A\ v
N P A B P N, P
Y Y P e U W e U e P

FIGURE 2. The training process of the last training round. FSSS features
are generated according to the weights of training samples and are only
used at late stages of the cascade.

C. TWO-STAGE TRAINING

Although calculating pixel difference is very efficient, its
complexity is still higher than the ACF feature which needs
only a single pixel indexing. For higher efficiency, we use
ACEF as a proposal to FSSS feature just as [39] and many deep
learning methods [17], [19] do. The scheme, as illustrated
in Fig. 2, is similar to that in [17]: (i) we use ACF features
to collect hard negative samples for the last training round;
(ii) in the last training round, the cascade is divided into two
parts; (iii) the earlier stages of the cascade still use ACF to
train, only the later stages of the cascade use FSSS features to
train. We will discuss the switching stage from ACF features
to FSSS features in Section I'V.

As we shown in Fig. 1, most of the negative windows will
be filtered out at early stages of the cascade and will not reach
the less efficient FSSS stages, thus the increase in detection
time is not significant. The speedup is also for the training
time. First, the number of weak classifiers using FSSS is
reduced by half. Second, when training the later stages of
the cascade, many of the sample weights are reduced to zero.
These samples are ignored in LDA computation, thus the
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training will also be faster in later stages compared to that
in earlier stages.

D. TRAINING PROCESS

Now we put together all the ingredients stated above and
introduce the training process. we use ACF features for hard
negative mining before the last training round. At the last
training round, the whole cascade include training stages
using ACF features and training stages using FSSS features,
as illustrated in Fig. 2. In the following, We only illustrate
the training stages using FSSS features which are the late
stages of the last training round. The algorithm is listed in
Algorithm 1.

Algorithm 1 The Training Process Using FSSS Features

Input: A set of labeled training samples
X1,¥1), -+ ., (Xn, yn), where y; = =£1; the first
part of the BDT cascade trained using ACF
features Hscp (x); weak classifier number T for
FSSS features; number of channels K.

Output: The final strong classifier H(x).

1 Initialize sample weights w; = exp [—y;iHacr (X;)].
2forr=1,...,Tdo

3 Randomly select a region R; and extract the index
vector of features in this region as s;.

4 fork=1,...,Kdo

5 For every x;,i = 1, ..., n, choose elements in
region R, and channel k to form a subvector Xf .

6 Compute between-class covariance S’g and
within-class covariance SI;V using {xf};’zl with
weights {w;}i_,.

7 Compute the GRQ matrix J* using the method
described in Section III-A.

8 Compute the permutation vector pf by selecting
the index of the maximum element in each row
of J¥

ko k I
p{ (i) = arg max J ®)
J
9 Concatenate the permutation vectors {p’t‘ }le for all
channels to form the overall permutation vector p;.
10 For every x;,i = 1, ..., n, compute a new feature
vector
X; = Xi(S1) — Xi(p;) ©))
11 Train a decision tree h;(x") using

&y, s (X, ).
12 Update weights w; = w; exp [—yih (x})].

[

3 Return the final strong classifier

T
H(x) = sign(Hacr(x) + Z hy(x(s;) — x(pr))) (10)

t=1
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For each iteration using FSSS features, we first randomly
select a region which corresponds to an index vector s;. The
elements of this vector denote the indexes of the features in
the original feature map. For each channel, we use LDA to
find the corresponding feature index which leads to the maxi-
mum GRQ for each feature in this region. These indexes form
a permutation vector (lines 4-8). Permutation vectors of all
channels {pﬂ‘ }kK: | are concatenated together to form an overall
permutation vector p;. Note the indexes in pf are region-
based. Before concatenation, we need to switch these region-
based indexes to their real indexes in the original feature map.
Then, we use the index vector s; and permutation vector p;
to compute new feature vectors and use these new feature
vectors to train a decision tree. Finally we update sample
weights for the next iteration.

The whole classifier is constructed by combining stages
using ACF features and stages using FSSS features. Note both
sx and p; are saved in each training iteration and will be used
at detection time.

For BDT, sample weights are recomputed after every
boosting iteration and training samples are divided into two
parts in every tree node split, thus the sample weights dis-
tribution are different for each node. In principle, we need
to recompute new feature vectors at each node, which takes
too much training time. The time cost not only comes from
the GRQ computation, but also from quantization of the new
feature vectors [40].2 Thus in our experiments, we renew
the feature vectors for every boosting iteration, not for every
node.

E. VISUALIZING SELECTED FEATURES
Our FSSS features are intuitive and reasonable. To see this,
we choose the #100 feature in each of the 10 channels and
show the corresponding GRQ maps of these features in Fig. 3.
The green square indicates the #100 feature, the red square
denotes the maximum GRQ in this map, the blue square
denotes the maximum GRQ in the yellow region. Some GRQ
maps do not show red squares, which means the position of
the red square coincides with the blue square. The meaning
of this map is that when we use the pixel at the position of the
green square as minuend, the corresponding subtrahend is the
pixel at the position of the red square for global FSSS, or the
pixel at the position of the blue square for region-based FSSS.
Note how interpretable of the GRQ maps and the chosen
corresponding pixels are. We take global FSSS as an example.
In the first map (L channel), the pixel chosen is at leg. Because
the green position in a pedestrian window is often sky which
has high luminance and the luminance of the face and upper
body are often brighter than the lower body, thus have similar
luminance with the sky. Hence choosing pixel at the lower
body to perform the differential operation may lead to a better
discrimination. In the second map (U channel), the pixel

2 A feature value is a continuous variable. To find the optimal split effi-
ciently, current implementations of BDT usually quantize the range of the
feature value into say, 256 bins. When the feature changes, the range changes,
thus we need to re-quantization.
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FIGURE 3. The GRQ map of the #100 feature in 10 channels. The green
square denotes the #100 feature, the red square denotes the feature
corresponding to the maximum GRQ in this map, the blue square denotes
the feature corresponding to the maximum GRQ in the yellow region.
Some red squares coincide with the blue squares. See the text for details.

chosen is at face/head, which is a very discriminative position
for the U channel [20]. In map 4 (gradient magnitude channel)
and map 8 (horizontal gradient channel) the red square is
chosen at feet, this position is very informative to imply a
pedestrian, which is stated in [31]. In map 9, the choosing
position is at shoulder, which is the well-known €2 position
for pedestrian detection [41]. The region-based FSSS may
give a different choice, and is also very reasonable. In a word,
the corresponding pixels automatically chosen by our method
are very informative and interpretable. Unlike [21], [22], [38]
which use shape prior to generate features, in our method,
the pixel pairs are automatically learned from training data.
Thus our method is promising to be extended to other object
detection tasks.

F. DISCUSSION

The feature selection procedure can also be performed using
Pearson correlation coefficient. Here we will show its cor-
relation with the LDA based method. Given the response
variable ¢ = {0, 1}, our aim is to find out which combination
of pixel difference provides the largest absolute correlation
coefficient with c. Suppose x and y are arbitrary two features
in a feature map, the weighted correlation coefficient between
x — y and c is computed by

Prye = > — yi)a— M;—y)(ci _P)Wi, (an
x—yOc

where p is the total weight of all positive examples, w,—y and
0x—y are the mean and standard deviation of (x — y). Thus the
numerator of p,_y . is

D (i — e = pywi — Y (i = my)ei — pwi, (12)
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with the first term calculated as

> (i = pa)ci = pyw;

=1 =p) > (i — Wi —p Y X — p)wi

ci=1 c¢;=0

= p(1 — p)(ix; — Mxy) (13)

Where u,, is the mean of feature x of all positive examples,
I, 1 the mean of feature x of all negative examples. The sec-
ond term of Eq. (12) has the same form. Thus the denominator
of px_y,c can be easily computed and we get

Px—y,c =/ p(1 _P)(MXI M) — U - I'Lyo). (14)

2 2
[of + oy — 20k

We prefer to choose the pixel pair with the largest |oy_y |-
Suppose the corresponding indexes of x and y are i and j,
then |,ox,y)c|2 is p(1 — p) times the J(wY) (see Eq. (9)).
Since both the coefficient p(1 — p) and the square operation
will not change the order of non-negative values, the index
selected by Pearson correlation coefficient coincides with the
one selected by GRQ criterion. Besides, J(w¥) could be taken
as the Fisher score [42] of (x — y) and —L__ could be taken

14J (wh)
as the Laplacian score [43] of (x — y).

G. CONTEXTUAL INFORMATION

Ground plane constraint (GPC) is an important context
information which is widely used for pedestrian detec-
tion [12], [13], [44]-[47]. The key idea of GPC is that under
some assumptions [12] which are valid for an onboard cam-
era, the projected height /4 and the vertical position y of a
pedestrian exhibit a linear relationship.

This relationship is used variously in different papers.
Park et al. [12] and Ohn-Bar and Trivedi [46] re-scored the
detection confidence s using SVM with 4 and y as features.
In [13] the authors found that in Caltech dataset the pedestrian
window centers are largely (over 99%) located between the
rows 140 and 300, thus only scan windows in this region.
Kim and Kim [47] modeled the position and the size of a
pedestrian in terms of normal distribution and ignored pedes-
trians out of the 3o scope.

Currently the top non-deep-learning methods on Caltech
benchmark use GPC. To make a fair comparison, we also
add this trick in our experiments. We directly use the linear
relationship of the heights and vertical positions of pedestri-
ans. Because the assumptions in [12] are not strictly satisfied,
the point (%, y) will deviate from the straight line. We argue
that the top position and height of the detection window
can be bounded by two straight lines as shown in Fig. 4
which shows the distribution of (k, y) of the pedestrians in
Caltech training set and the two bounding lines as an example.
More than 99.9% pedestrians in the training set belong to
this bounding area. When performing detection, we speed up
detecting by only searching for pedestrians in this bounding
area.
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FIGURE 4. (h, y) distribution of the ground truth in Caltech training set.
These points can be bounded by two lines.

IV. EXPERIMENTS

We evaluate our proposed method on several standard pedes-
trian detection datasets which are the most popular and
widely used ones in the literature, including INRIA [3],
ETH [4], KITTI [2] and Caltech [48] datasets. We use INRIA
for parameter tuning, as in [23], [29], and [45]. For INRIA,
KITTT and Caltech datasets, we only use their own training
data to train the model and test it on their test data. Since there
is no training data for ETH, the model trained on INRIA train-
ing dataset is used for experiment on ETH. The Intersection-
over-Union (IoU) threshold is set to 0.5 to determine true
positives for all datasets unless noted otherwise. Results on
INRIA, ETH and Caltech are compared using miss rate vs.
False-Positive-Per-Image (FPPI) curves, which is the well-
recognized evaluation metric for pedestrian detection [1].
Methods are ranked by log average miss rate which is com-
puted by averaging the miss rate at 9 FPPI points that are
evenly spaced in the log-space ranging from 1072 to 10°
unless noted otherwise. Results on KITTI are compared using
precision-recall curves, and methods are ranked by averag-
ing the precision at 11 evenly spaced recall points ranging
from O to 1.

All the methods involved in comparison in INRIA, ETH
and Caltech experiments are listed in the website of Cal-
tech Pedestrian Detection Benchmark® and all the methods
involved in comparison in KITTI experiment are listed in the
website of KITTI Vision Benchmark Suite.*

GPC is eligible for transporting scenario when the cam-
era setup is fixed for training and testing. In our experi-
ments, we only use GPC for the Caltech dataset. The result
with GPC is denoted as FSSSC. Results of Both FSSS
and FSSSC are shown. INRIA is not a transporting dataset,
ETH only has testing data, hence both INRAI and ETH
can not use GPC. KITTI will benefit from GPC (we got
about 1% improvement in our validation set), but the eval-
uation server only allow one version submission, thus we

3 http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
4http://WWW.cvlibs.net/datasets/kitti/
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only submit the FSSS result for evaluation to show our main
contribution.

A. EVALUATION ON INRIA DATASET

The INRIA dataset includes 614 positive images and
1218 negative images for training. Evaluation results are
reported on the 288 positive testing images. The model size
is set as 128 x 64 and the channels are downsampled by 4x,
thus the feature map size is 32 x 16. For multi-scale detection,
channels are computed over an image pyramid with 8 scales
per octave. The final classifier is built via three rounds of hard
negative mining (starting from a forest with 32 trees, and then
256, 1024, 4096 trees). Realboost [49] and level-3 decision
trees are used to train our model. In the last round, we switch
our RealBoost algorithm to the shrinkage version as is used
in [18] and [50]. The shrinkage parameter is set to 0.5. Two
hyper-parameters are considered here, one is the region size,
another is the switching stage. The default value of the region
size is set to 8 x 8 (half the model width) and the default value
of the switching stage is set to 2048 (half the weak classifier
number). When we test on one parameter, another is kept as
its default value.
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S
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FIGURE 5. Evaluation of different parameters on INRIA test set.
(a) Region size. (b) Switching stage.

First, we test the detector trained with different region
size, as shown in Fig. 5(a). Note ‘global’ means we do not
use region-based FSSS, e.g., the whole feature map in each
channel is involved in GRQ computing. From the figure we
see that the best region size is 8§ x 8 which happens to cover
half the model width. Intuitively, region size should not be
too small or too large. The region size needs to be suffi-
ciently large to ensure it contains enough foreground part. For
a 32 x 16 feature map, if the region size is smaller than
6 x 6, in some cases it will hardly cover any foreground part
(for example in the corner of the feature map), thus feature
differences in this region will be not useful. On the other hand,
if a region size is too large, the benefit for occlusion handling
will be small.
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The switching stage from ACF feature to FSSS feature is
also important. From Fig. 5(b) we see that though using FSSS
will lower the miss rate, ACF is a necessary complement.
Switching to FSSS too early will cause performance degra-
dation. Thus using FSSS at the later stages of the cascade not
only accelerates detection speed but also improves accuracy.
The optimal switching stage is 2048, which is half the total
weak classifier number. In the following experiments, we will
set the region size to 8§ x 8 and the switching stage to half the
weak classifier number.

"
80
64
50+

A0

30

20

miss rate

72.48% VJ
45.98% HOG
e 15.96% VeryFast
15.95% WordChannels
= = =15.37% RandForest
M 15.11% NAMC
14.43% InformedHaar
= = =13.79% LDCF
= = =13.70% Franken (I
13.53% Roerei \ ot
13.32% SketchTokens ‘1} [
11.22% SpatialPooling - g J
9.80% Ours-FSSS
6.88% RPN+BF*

===
]
6.78% F-DNN" I\L'- ’ il
o : i h ;

.05H

? 107 10

false positives per image

10° 10

FIGURE 6. Comparison with state-of-the-art methods on the INRIA
dataset.

The comparison with state-of-the-art methods is shown
in Fig. 6. Our method achieves a 9.80% log average miss
rate, which outperforms all non deep learning approaches (the
ones without * mark). Compared with the second best method
SpatialPooling which achieves a 11.22% log average miss
rate, our method not only provides a 12.66% relative improve-
ment, but has a much higher detection speed (See Tabel 1).

TABLE 1. Detection speed (FPS) and miss rate (MR) on the Caltech
dataset.

METHOD FPS MR
FPDW 2.6 57.4%
ChnFtrs 0.2 56.34%
CrossTalk 14 53.88%
Roerei 1 46.13%
ACF-Caltech 30 44.22%
FastCF 105 37.33%
SquaresChnFtrs 1 34.81%
InformedHaar 0.63 34.6%
SpatialPooling 0.13 29.23%
MRFC 20 19.09%
LDCF84 2.5 17.15%
NNNF-L4 1.14 16.84%
MRFC+Semantic 8 16.83%
Ours-FSSS 3.13 13.96%
Ours-FSSSC 3.46 13.13%

B. EVALUATION ON ETH DATASET
The ETH dataset only contains 1804 images for test-
ing and there is no training data. Thus we use the
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detector trained on INRIA for evaluation which is widely
adopted in the literature [15], [50], [51]. As there is color
offset in this dataset, we apply the automatic color equal-
ization algorithms (ACE) [52], [53] to the images before
we extract channel features. This treatment is also adopted
in [50]. For the evaluation results are reported on pedes-
trians taller than 50 pixels, the test images is upsampled
by one octave. The result is shown in Fig. 7. Again, our
method outperforms all non-deep-learning methods and some
the deep learning methods (DBN-Isol [54], JointDeep [55],
DBN-Mut [56], SDN [57]).
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FIGURE 7. Comparison with state-of-the-art methods on the ETH dataset.

C. EVALUATION ON KITTI DATASET

The KITTIs object detection benchmark has 7481 training
and 7518 test images. It contains three object classes for
evaluation: Car, Pedestrian, and Cyclist. Here we only choose
pedestrian class for evaluation. KITTI differentiates the diffi-
culty in identifying pedestrians to three levels: easy, moderate
and hard, corresponding to different height, occlusion and
truncation. All methods are ranked based on the moderate dif-
ficult level (the minimum height of bounding box is 25 pixels,
maximum occlusion level is partly occluded and a maximum
truncation of 0.30) in the benchmark. In our experiments,
most parameters are the same as we used in INRIA experi-
ment, except that we upsample the images by two octaves to
detect pedestrians with heights between 25 to 100 pixels and
we use level-5 decision trees instead of level-3 trees.

The Precision-recall curves (moderate difficult level) of
our method and some published methods on KITTI bench-
mark are shown in Fig. 8. The average precision of our
method is 62.09%, outperforming all the other non deep
learning method. The closest one to ours (FilteredICF)
only achieves 57.12%. Note the result of Regionlets [58]
is achieved by combining the Regionlets and CNN. Some
recent deep learning methods which achieve good perfor-
mance in other dataset are also outperformed by our method
(e.g., RPN+BF [15], CompACT-Deep [25]).

VOLUME 6, 2018

0.75r

0.5r

Precision

75.33% RRC*
73.62% MS—CNN*
65.91% Faster R-CNN*
62.09% Ours-FSSS
61.29% RPN+BF*

0251 61.16% Regionlets*
58.73% CompACT-Deep*
57.12% FilteredICF
54.58% pAUCENsT
47.29% ACF

T 1 i
0 0.25 0.5 0.75 1
Recall

FIGURE 8. Precision-recall curves of the moderately difficult level on
KITTI dataset.

Some top deep learning methods (MS-CNN [14],
RRC [59]) outperform ours by a large margin. We argue that
this has something to do with the KITTI evaluation metrics.
In KITTI metrics, there are two disadvantages for our method,
which happens to be advantages for some top deep learning
methods:

(1) Unlike other datasets which take pedestrians and
cyclists as the same class (e.g. Caltech pedestrian dataset),
the human data in the KITTI dataset consists of two disjoint
subsets (pedestrian class and cyclist class). Our method, like
other traditional methods, trained as a binary classifier for
pedestrian. At validation time, we find it is difficult for our
detector to discriminate pedestrian class and cyclist class
separately due to their similar appearance. This will lead
to false positives. On the other hand, some CNN methods
trained a multiclass detector and will naturally distinguish
pedestrian and cyclist.

(ii) The evaluation in INRIA, ETH, and Caltech dataset
follows the routine in [1] which standardize the aspect ratio
of all the ground truth and detected bounding boxes to 0.41.
Traditional sliding window method like ours use a fixed
aspect ratio which is suitable for this evaluation. KITTI
benchmark, on the other hand, does not standardize the
ground truth aspect ratio and the detected bounding boxes
may not have a good alignment with the ground truth. This
is not a problem for some current deep learning method for
they are with a bounding box regression operation which may
fit any aspect ratio.

We will see these disadvantages more clearly by compar-
ing two CNN-based methods RPN+4-BF and MS-CNN. The
RPN+-BF is a binary detector specialized for pedestrians and
it only use bounding box regression for Region Proposal
Network (RPN). MS-CNN is a multiclass detector which
perform bounding box regression at both RPN and the clas-
sification layers. Therefore, although RPN+BF outperform
MS-CNN on Caltech dataset (see Fig. 10), it is significantly
outperformed by MS-CNN.
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Based on the two drawbacks stated above, there are two
ways to improve the performance of our method on KITTI
dataset. One is to train a separate cyclist detector, another is
to train multiple detector corresponding to different aspect
ratio. Besides, according to [60], combining detectors with
multiresolution feature map will also significantly improve
the performance for KITTI dataset. All these methods are
about model combination and are orthogonal to our method.
They can be implemented on top of our method and further
improvement in detection accuracy is expected. To bene-
fit from this type of methods, some strategies need to be
carefully designed, such as subcategorization, calibration of
confidence scores and fusion of detection results. We will
explore this type of methods in our future work.

D. EVALUATION ON CALTECH DATASET

Finally we evaluate our method on Caltech pedestrian
datasets which is currently the largest and the most widely
used pedestrian detection dataset. It enables a comparison
among more than 60 state-of-the-art approaches published
during recent years. It consists 250,000 labeled 640 x 480
frames (in 137 approximately minute long segments) which
are divided into 11 sessions. The first 6 sessions are used
for training and the last 5 sessions are used for testing. The
standard evaluation is performed on every 30th frame of the
test set, which consists 4,024 images in all. The results are
evaluated using the reasonable difficulty which means the
pedestrian is at least 50 pixels in height and with a visibility
of at least 65%.

Training images is collected by sampling one image out of
every 4 consecutive frames, which result in 32,077 images.
Most parameters are the same as we used in KITTI exper-
iment, except we use twice the weak classifier number in
each bootstrapping round (that is, starting from a model with
64 trees, and then 512, 2048, 8196 trees). Note the corre-
sponding switching stage is also doubled to 4096. We also
upsample the test images by one octave to detect pedestrians
with heights between 50 to 100 pixels.

1) EVALUATION USING STANDARD ANNOTATIONS

Our FSSS features are constructed by feature differences of
ACF features. Here we first show our method will indeed
outperform the original ACF features. We train another BDT
with all the 8192 trees using ACF features and plot the log
average miss rate evolve with the weak classifier number. The
result is shown in Fig. 9. The blue line shows that the log
average miss rate of original ACF features get stuck about
19%. The red line shows the result of our FSSS framework,
in which the first 4096 stages still use ACF features (thus
the log average miss rate is the same with that of the blue
line) and the subsequent 4096 stages use FSSS features.
The figure shows that when we switch to FSSS features,
the log average miss rate decreases radically. Adding more
weak classifiers using ACF features makes no improvement
on performance indicating the discrimination power of the
ACEF features are exhausted after the first 4096 stages. It is
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FIGURE 9. Weak classifier number versus the log average miss rate on
Caltech test dataset.
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FIGURE 10. Comparison with state-of-the-art methods on the Caltech
dataset with standard annotations.

apparently that FSSS features are complementary to the ACF
features and will boost the performance.

Comparison with the state of the art methods are shown
in Fig. 10. Before using ground plane constrains (GPC),
the accuracy of our proposed FSSS (13.96%) already out-
perform the top non deep learning methods LDCF++
(14.98%) [46] and MRFC+Semantic (16.84% ) [13]. Note
both these two methods have already used GPC and
MRFC+Semantic trained on outside dataset to get semantic
channels. By using GPC (denoted as ‘FSSSC’), the log aver-
age miss rate of our detector is further lowered to 13.13%,
providing a 12.35% relative improvement to LDCF++-.

We also analyze performance under some difficult con-
ditions on the testing data. Fig. 11 shows the evaluation
results under conditions of small scale, atypical aspect ratio
and heavy occlusion. In all these circumstances, our FSSS
and FSSSC detectors outperform other non deep learning
method, except in atypical aspect ratio condition, FSSS is
outperformed by checkerbords+ [7]. Checkerbords+- is the
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FIGURE 11. Evaluation results under some difficult conditions on Caltech test set with standard annotations. (a) Small scale (50px < h < 80px).
(b) Atypical aspect ratio (jw/h — 0.41] > 0.1). (c) Heavy occlusion (35%-80% occluded).

baseline Checkerbords detector enhanced by motion fea-
tures [61] which need video information while our method
is only based on a single frame. In other circumstances,
checkerbords+ only achieve a little improvement to checker-
bords, but for the atypical aspect ratio condition, it lower
the average miss rate by about 6%. This implies that motion
information is very helpful to tackle this situation. This
may because the atypical aspect ratio often happens when
pedestrians are crossing a road, and showing their profiles.
In this circumstance, the part-centric motion is significant
which is the most useful motion information for pedestrian
detection [61]. Our method is hopefully further improved by
using motion information and this is left for future work.
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FIGURE 12. Comparison with state-of-the-art methods on the Caltech test
set with the new annotations.

2) EVALUATION USING NEW ANNOTATIONS

In [62], Zhang et al. conducted a detailed survey and provided
a new and more accurate ground truth labeling on Caltech
dataset. We also test our trained detector using the new anno-
tations, as shown in Fig. 12. Zhang et al. [62] also propose to
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extend the evaluation FPPI range from traditional (1072, 10°]
to [10_4, 10°]. In our experiments with the new annotations,
we use both the standard FPPI range [1072, 10°] and the
extended range [10~%, 10°]. Our method also ranks the first in
all non-deep-learning methods. With more accurate annota-
tions, the performance of both LDCF++ and FSSS improves,
but improvement of FSSS is more remarkable. With GPC,
our FSSSC achieves a log average miss rate of 9.99%,
providing a 27.92% relative improvement with respect to
LDCF++- (13.86%).

3) RUNTIME ANALYSIS

We measure the detection speed using a single core of
Intel i7 6700K CPU (4 GHz) on Caltech dataset. Table 1
provides a comparison of our approach with some state-
of-the-art non-deep-learning methods whose execution time
are provided. A more intuitive comparison of these methods
are also shown in Fig. 13. From the figure we see that our
method achieves the top accuracy with a moderate detection
speed. Note that the authors of the previous best method
LDCF++ [46] only give the computation time of LDCF84,
not LDCF++-. LDCF+-+ is an improved version of LDCF84.
The differences between them are: (i) LDCF++ does not use
the feature pyramid approximation [6] while LDCF84 does;
(i1)) LDCF++ uses SVM to re-score the detection result.
Both changes will lower the detection speed, thus LDCF++
will be slower than LDCF84, and of course, slower than our
method.

4) COMPARISON WITH DEEP LEARNING METHODS

Though some deep learning methods outperform our method,
their success is based on very deep CNN models and
external training data. For example, the currently top
method F-DNN+-SS [8] combine single shot multibox detec-
tor (SSD) [63], GoogleNet [64], ResNet-50 [65] and semantic
segmentation (SS) network [66], in which SSD and SS are
based on VGG16 network [67]. It runs at 2.48 second per
image on TITAN X, while our method runs at 0.289 sec-
ond per image using CPU. Apart from Caltech training
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FIGURE 13. Miss rates (MR) versus frames per second (FPS) on the
Caltech Dataset.
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FIGURE 14. Comparison on the Caltech test set with new annotations and
IoU > 0.7 to determine true positives.

set, F-DNN+SS uses ImageNet [68], Microsoft COCO [69],
Cityscape [70], ETH [4] and TudBrussels [S] for training,
while we only use Caltech training set.

Moreover, when we raise the IoU threshold from 0.5 to0 0.7,
all the deep learning methods exhibit dramatic performance
degradation and are outperformed by our method, see Fig. 14.
When using a larger threshold, in order to be taken as a true
positive, a detected bounding box needs to be better aligned
with a ground truth bounding box. Hence, increasing the
threshold means using a stricter criterion which focuses more
on localization quality. At this circumstances, the accuracy of
all detectors decreases without doubt, but the accuracy of the
deep learning methods deceases more than ours which means
the localization quality of our method is better than that of
the deep learning methods. As stated in [62], this weakness
in localization of current deep learning methods may be
due to their feature pooling operation. Tabel 2 summarizes
localization performances of top deep learning methods and
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TABLE 2. Comparison of mean lou between top deep learning methods
and Fsss at 10~ Fppi.

Method Miss Rate Mean IoU
MS-CNN 8.00% 78.05%
RPN+BF 7.02% 75.87%
F-DNN+SS 6.80% 77.97%
FSSS 11.84% 79.50%

FSSS in terms of the mean IoU between detection results
and ground truth at 10~! FPPL. From Table 2 we see that
although the top deep learning methods have lower miss
rate compared to FSSS, their location quality are all inferior
than our method. Therefore, when we use a stricter metric,
their weakness in precise localization is revealed. Note the
RPN+-BF has the worst localization quality among them, thus
shows the most dramatic performance degradation. Though
these deep learning methods use bounding box regression to
increase the localization quality, their performances are still
inferior than our method. Hence we believe that the proposed
approach may provide complementary information for deep
learning approaches, and will explore in our future work the
integration of these two kinds of approaches to get further
improvements.

V. CONCLUSION AND FUTURE WORK

In this paper we have proposed a new type of features based
on LDA and SS features. They are incorporated into the BDT
model for pedestrian detection. The main contribution of our
work is a novel feature selection method which uses LDA
to generate a feature pool for classification. The generated
FSSS features are only used at late stages of the BDT, hence
the increase of computation cost is small. Experiments have
shown that our features achieve top accuracy with moderate
detection speed. We compare our method with deep learning
methods and show its superiority in high-quality localization.
We have also discussed some possible directions to further
improve the performance of our detector and will explore
them in our future work.

REFERENCES

[1] P. Dollar, C. Wojek, B. Schiele, and P. Perona, ‘““Pedestrian detection:
An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 4, pp. 743-761, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2011.155

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Providence, RI, USA, Jun. 2012, pp. 3354-3361.
[Online]. Available: https://doi.org/10.1109/CVPR.2012.6248074

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., San Diego, CA, USA, Jun. 2005, pp. 886—893. [Online]. Avail-
able: http://dx.doi.org/10.1109/CVPR.2005.177

A. Ess, B. Leibe, K. Schindler, and L. J. V. Gool, “A mobile vision system
for robust multi-person tracking,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Anchorage, AK, USA, Jun. 2008,
pp. 1-8, [Online]. Available: https://doi.org/10.1109/CVPR.2008.4587581
C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard pedestrian detec-
tion,” in Proc. IEEE CVPR, Jun. 2009, pp. 794-801. [Online]. Available:
https://doi.org/10.1109/CVPRW.2009.5206638

2

—

3

—

[4

=

[5

[t

VOLUME 6, 2018



X. Fu et al.: Pedestrian Detection by FSSS Features

IEEE Access

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. Dollar, R. Appel, S. J. Belongie, and P. Perona, “Fast feature
pyramids for object detection,” [EEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 8, pp. 1532-1545, Aug. 2014. [Online]. Available:
https://doi.org/10.1109/TPAMI.2014.2300479

S. Zhang, R. Benenson, and B. Schiele, “Filtered channel features for
pedestrian detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Boston, MA, USA, Jun. 2015, pp. 1751-1760. [Online].
Available: https://doi.org/10.1109/CVPR.2015.7298784

X. Du, M. El-Khamy, J. Lee, and L. S. Davis, “Fused DNN:
A deep neural network fusion approach to fast and robust pedestrian
detection,” in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Santa Rosa, CA, USA, Mar. 2017, pp. 953-961. [Online]. Available:
https://doi.org/10.1109/WACV.2017.111

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32,n0.9, pp. 1627-1645, Sep. 2010.
[Online]. Available: https://doi.org/10.1109/TPAMI.2009.167

R. Benenson, M. Omran, J. H. Hosang, and B. Schiele, “Ten years of
pedestrian detection, what have we learned?”” in Proc. Eur. Conf. Comput.
Vis., Ziirich, Switzerland, Sep. 2014, pp. 613-627.

X. Zhao, Z. He, S. Zhang, and D. Liang, “Robust pedestrian detec-
tion in thermal infrared imagery using a shape distribution his-
togram feature and modified sparse representation classification,” Pat-
tern Recognit., vol. 48, no. 6, pp. 1947-1960, 2015. [Online]. Available:
https://doi.org/10.1016/j.patcog.2014.12.013

D. Park, D. Ramanan, and C. C. Fowlkes, ‘“Multiresolution models for
object detection,” in Proc. ECCV, 2010, pp. 241-254.

A. D. Costea and S. Nedevschi, “Semantic channels for fast pedestrian
detection,” in Proc. IEEE CVPR, Jun. 2016, pp. 2360-2368. [Online].
Auvailable: http://dx.doi.org/10.1109/CVPR.2016.259

Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale
deep convolutional neural network for fast object detection,” in Proc. 14th
Eur. Conf. Comput. Vis. ECCV, Amsterdam, The Netherlands, Oct. 2016,
pp. 354-370.

L. Zhang, L. Lin, X. Liang, and K. He, “Is faster R-CNN doing well for
pedestrian detection?”” in Proc. ECCV, 2016, pp. 443-457.

P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137-154, 2004.

J. Cao, Y. Pang, and X. Li, “Learning multilayer channel features
for pedestrian detection,” IEEE Trans. Image Process., vol. 26,
no. 7, pp. 3210-3220, 2017. [Online]. Available: https://doi.org/
10.1109/TIP.2017.2694224

Q. Hu, P. Wang, C. Shen, A. van den Hengel, and F. M. Porikli, “Push-
ing the limits of deep cnns for pedestrian detection,” CoRR, Mar. 2016.
[Online]. Available: http://arxiv.org/abs/1603.04525

J. Li, X. Liang, S. Shen, T. Xu, and S. Yan, ‘“Scale-aware fast
R-CNN for pedestrian detection,” CoRR, Oct. 2015. [Online]. Available:
http://arxiv.org/abs/1510.08160

P. Dolldr, Z. Tu, P. Perona, and S. J. Belongie, “Integral channel fea-
tures,” in Proc. Brit. Mach. Vis. Conf. (BMVC), London, U.K., Sep. 2009,
pp. 1-11. [Online]. Available: http://dx.doi.org/10.5244/C.23.91

S. Zhang, C. Bauckhage, and A. B. Cremers, “Informed haar-like fea-
tures improve pedestrian detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Columbus, OH, USA, Jun. 2014, pp. 947-954.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2014.126

J. Cao, Y. Pang, and X. Li, “Pedestrian detection inspired by appear-
ance constancy and shape symmetry,” [EEE Trans. Image Process.,
vol. 25, no. 12, pp. 5538-5551, Dec. 2016. [Online]. Available:
https://doi.org/10.1109/TIP.2016.2609807

W. Nam, P. Dollar, and J. H. Han, “Local decorrelation for improved
pedestrian detection,” in Proc. Syst. 27th Annu. Conf. Neural Inf.
Process. Syst., Montreal, QC, Canada, Dec. 2014, pp. 424-432.
[Online]. Available: http://papers.nips.cc/paper/5419-local-decorrelation-
for-improved-pedestrian-detection

B. Yang, J. Yan, Z. Lei, and S. Z. Li, “Convolutional channel features,”
in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2015,
pp- 82-90. [Online]. Available: https://doi.org/10.1109/ICCV.2015.18

Z. Cai, M. J. Saberian, and N. Vasconcelos, ‘“‘Learning complexity-aware
cascades for deep pedestrian detection,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Santiago, Chile, Dec. 2015, pp. 3361-3369. [Online]. Avail-
able: https://doi.org/10.1109/ICCV.2015.384

J. J. Lim, C. L. Zitnick, and P. Dollar, ““Sketch tokens: A learned mid-
level representation for contour and object detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Portland, OR, USA, Jun. 2013,
pp- 3158-3165. [Online]. Available: https://doi.org/10.1109/CVPR.2013.
406

VOLUME 6, 2018

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

[42]

(43]

[44]

[45]

[46]

[47]

Q. Zhu, M. Yeh, K. Cheng, and S. Avidan, “Fast human detec-
tion using a cascade of histograms of oriented gradients,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),
New York, NY, USA, Jun. 2006, pp. 1491-1498. [Online]. Available:
https://doi.org/10.1109/CVPR.2006.119

S. Maji, A. C. Berg, and J. Malik, “Classification using intersection kernel
support vector machines is efficient,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Anchorage, AK, USA, Jun. 2008,
pp. 1-8. [Online]. Available: https://doi.org/10.1109/CVPR.2008.4587630
R. Benenson, M. Mathias, T. Tuytelaars, and L. J. Van Gool, “Seeking
the strongest rigid detector,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Portland, OR, USA, Jun. 2013, pp. 3666—3673. [Online]. Avail-
able: https://doi.org/10.1109/CVPR.2013.470

T. Ojala, M. Pietikdinen, and T. Midenpéd, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, 2002.
[Online]. Available: https://doi.org/10.1109/TPAMI.2002.1017623

J. Shen, X. Zuo, J. Li, W. Yang, and H. Ling, “A novel pixel neigh-
borhood differential statistic feature for pedestrian and face detection,”
Pattern Recognit., vol. 63, pp. 127-138, Mar. 2017. [Online]. Available:
https://doi.org/10.1016/j.patcog.2016.09.010

E. Shechtman and M. Irani, “Matching local self-similarities across images
and videos,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Minneapolis, MN, USA, Jun. 2007, pp. 1-8. [Online].
Available: https://doi.org/10.1109/CVPR.2007.383198

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). New York, NY, USA: Springer-Verlag, 2006.

B. Hariharan, J. Malik, and D. Ramanan, “Discriminative decorrelation for
clustering and classification,” in Proc. ECCV, 2012, pp. 459—472.

B. Moghaddam, Y. Weiss, and S. Avidan, “Fast pixel/part selection with
sparse eigenvectors,” in Proc. IEEE ICCV, Oct. 2007, pp. 1-8.

C. Shen, S. Paisitkriangkrai, and J. Zhang, “‘Efficiently learning a detection
cascade with sparse eigenvectors,” IEEE Trans. Image Process., vol. 20,
no. 1, pp. 22-35, Jan. 2011.

O. Tuzel, E Porikli, and P. Meer, “Human detection via classifica-
tion on Riemannian manifolds,” in Proc. IEEE CVPR, Jun. 2007,
pp. 1-8.

Y. Zhao, Z. Yuan, D. Chen, J. Lyu, and T. Liu, “Fast pedestrian
detection via random projection features with shape prior,” in Proc.
IEEE Winter Conf. Appl. Comput. Vis. (WACV), Santa Rosa, CA,
USA, Mar. 2017, pp. 962-970. [Online]. Available: https://doi.org/
10.1109/WACV.2017.112

D. Zhang, S. Z. Li, and D. Gatica-Perez, ‘‘Real-time face detection using
boosting in hierarchical feature spaces,” in Proc. 17th Int. Conf. Pattern
Recognit. (ICPR), Cambridge, U.K., Aug. 2004, pp. 411-414. [Online].
Available: https://doi.org/10.1109/ICPR.2004.1334238

R. Appel, T. J. Fuchs, and P. Dolldr, and P. Perona, “Quickly boosting
decision trees - pruning underachieving features early,” in Proc. 30th Int.
Conf. Mach. Learn. (ICML), Atlanta, GA, USA, Jun. 2013, pp. 594-602.
[Online]. Available: http://jmlr.org/proceedings/papers/v28/appel13.html

N. Dalal, “Finding people in images and videos,” Ph.D. dissertation,
Dept. Math. Sci. Technol. Inf., Grenoble Inst. Technol., Grenoble, France,
2006. [Online]. Available: https://tel.archives-ouvertes.fr/tel-00390303

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
Wiley, 2000.

X. He, D. Cai, and P. Niyogi, “Laplacian score for feature
selection,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
Vancouver, BC, Canada, Dec. 2005, pp. 507-514. [Online]. Available:
http://papers.nips.cc/paper/2909-laplacian-score-for-feature-selection

D. Hoiem, A. A. Efros, and M. Hebert, ‘“‘Putting objects in perspective,”
Int. J. Comput. Vis., vol. 80, no. 1, pp. 3-15, 2008. [Online]. Available:
https://doi.org/10.1007/s11263-008-0137-5

J. Marin, D. Vazquez, A. M. Lépez, J. Amores, and B. Leibe, ‘““‘Random
forests of local experts for pedestrian detection,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Sydney, NSW, Australia, Dec. 2013, pp. 2592-2599.
[Online]. Available: https://doi.org/10.1109/ICCV.2013.322

E. Ohn-Bar and M. M. Trivedi, “To boost or not to boost? On the limits of
boosted trees for object detection,” in Proc. 23rd Int. Conf. Pattern Recog-
nit., (ICPR), Canctin, NM, USA, Dec. 2016, pp. 3350-3355. [Online].
Available: https://doi.org/10.1109/ICPR.2016.7900151

H. K. Kim and D. Kim, “Robust pedestrian detection under deformation
using simple boosted features,” [Image Vis. Comput., vol. 61,
pp. 1-11, May 2017. [Online]. Available: https://doi.org/10.1016/
j-imavis.2017.02.007

14235



IEEE Access

X. Fu et al.: Pedestrian Detection by FSSS Features

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

P. Dollar, C. Wojek, B. Schiele, and P. Perona, ‘‘Pedestrian detection:
A benchmark,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Miami, FL, USA, Jun. 2009, pp. 304-311. [Online].
Available: https://doi.org/10.1109/CVPRW.2009.520663 1

J. H. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” Ann. Stat., vol. 28, no. 2, pp. 337-407,
2000.

S. Paisitkriangkrai, C. Shen, and A. van den Hengel, “‘Strengthening the
effectiveness of pedestrian detection with spatially pooled features,” in
Proc. ECCV, 2014, pp. 546-561.

Y. Tian, P. Luo, X. Wang, and X. Tang, ‘“Pedestrian detection aided by
deep learning semantic tasks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Boston, MA, USA, Jun. 2015, pp. 5079-5087. [Online].
Available: https://doi.org/10.1109/CVPR.2015.7299143

A. Rizzi, C. Gatta, and D. Marini, “A new algorithm for unsu-
pervised global and local color correction,” Pattern Recognit. Lett.,
vol. 24, no. 11, pp. 1663-1677, Jul. 2003. [Online]. Available:
https://doi.org/10.1016/S0167-8655(02)00323-9

P. Getreuer, “‘Automatic color enhancement (ACE) and its fast implemen-
tation,” Imag. Process. Line, vol. 2, pp. 266-277, Nov. 2012. [Online].
Auvailable: https://doi.org/10.5201/ipol.2012.g-ace

W. Ouyang and X. Wang, “A discriminative deep model for pedestrian
detection with occlusion handling,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Providence, RI, USA, Jun. 2012, pp. 3258-3265.
[Online]. Available: https://doi.org/10.1109/CVPR.2012.6248062

W. Ouyang and X. Wang, “Joint deep learning for pedestrian
detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Sydney,
NSW, Australia, Dec. 2013, pp. 2056-2063. [Online]. Available:
https://doi.org/10.1109/ICCV.2013.257

W. Ouyang, X. Zeng, and X. Wang, “Modeling mutual visibility relation-
ship in pedestrian detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Portland, OR, USA, Jun. 2013, pp. 3222-3229. [Online]. Avail-
able: https://doi.org/10.1109/CVPR.2013.414

P. Luo, Y. Tian, X. Wang, and X. Tang, “Switchable deep network for
pedestrian detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR) Columbus, OH, USA, Jun. 2014, pp. 899-906. [Online].
Auvailable: https://doi.org/10.1109/CVPR.2014.120

X. Wang, M. Yang, S. Zhu, and Y. Lin, “Regionlets for generic
object detection,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 10, pp. 2071-2084, Oct. 2015. [Online]. Available:
https://doi.org/10.1109/TPAMI.2015.2389830

J. S. J. Ren et al., “Accurate single stage detector using recurrent
rolling convolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Honolulu, HI, USA, Jul. 2017, pp. 752-760. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.87 and doi: 10.1109/CVPR.2017.87.
R. N. Rajaram, E. Ohn-Bar, and M. M. Trivedi, ‘“Looking at pedestrians at
different scales: A multiresolution approach and evaluations,” IEEE Trans.
Intell. Transp. Syst., vol. 17, no. 12, pp. 3565-3576, Dec. 2016. [Online].
Available: https://doi.org/10.1109/T1TS.2016.2561262

D. Park, C. L. Zitnick, D. Ramanan, and P. Dollar, “Exploring weak
stabilization for motion feature extraction,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Portland, OR, USA, Jun. 2013, pp. 2882-2889.
[Online]. Available: https://doi.org/10.1109/CVPR.2013.371

S. Zhang, R. Benenson, M. Omran, J. H. Hosang, and B. Schiele, ‘““‘How
far are we from solving pedestrian detection?”” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 1259-1267. [Online]. Available: https://doi.org/10.1109/CVPR.2016.
141

W. Liu et al., “SSD: Single shot multibox detector,” in Proc. 14th Eur.
Conf. Comput. Vis. (ECCV), Amsterdam, The Netherlands, Oct. 2016,
pp. 21-37.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun. 2015,
pp. 1-9. [Online]. Available: https://doi.org/10.1109/CVPR.2015.7298594
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770-778. [Online]. Available:
https://doi.org/10.1109/CVPR.2016.90

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” CoRR, Nov. 2015. [Online]. Available: http://arxiv.
org/abs/1511.07122

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, Sep. 2014. [Online]. Available:
http://arxiv.org/abs/1409.1556

14236

[68] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248-255. [Online]. Avail-
able: https://doi.org/10.1109/CVPRW.2009.5206848

[69] T. Lin et al., “Microsoft COCO: Common objects in context,” in Proc.
13th Eur. Conf. Comput. Vis. (ECCV), Ziirich, Switzerland, Sep. 2014,
pp. 740-755.

[70] M. Cordts et al., “The cityscapes dataset for semantic urban scene under-
standing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 3213-3223. [Online]. Available:
https://doi.org/10.1109/CVPR.2016.350

XINCHUAN FU received the B.Eng. and M.Eng.
degrees from the University of Electronic Sci-
ence and Technology of China in 2009 and 2012,
respectively, where he is currently pursuing the
Ph.D. degree with the National Key Laboratory
of Science and Technology on Communications.
His research interests include object detection and
image processing.

RUI YU received the B.Sc. and M.Sc. degrees
in computer science from the Digital Video
Processing Group, School of Computer Sci-
ence, Northwestern Polytechnical University,
in 2009 and 2012, respectively, under supervision
of Prof. Y. Zhang and Prof. T. Yang. He is cur-
rently pursuing the Ph.D. degree as a member of
the Vision and Imaging Science Group, Depart-
ment of Computer Science, University College
London, under the supervision of L. Agapito and
C. Russell.

WEINAN ZHANG received the bachelor’s degree
from the ACM Class of Shanghai Jiao Tong Uni-
versity in 2011, and the Ph.D. degree from the
University College London in 2016. He is cur-
rently a tenure-track Assistant Professor with the
John Hopcroft Center for Computer Science,
Department of Computer Science, Shanghai
Jiao Tong University. His research interests
include machine learning and big data mining, par-
ticularly, deep learning, and reinforcement learn-
ing techniques for real-world data mining scenarios, such as computational
advertising, recommender systems, text mining, web search, and knowl-
edge graphs. He and his teammate received the third place in KDD-CUP
2011 for Yahoo! Music recommendation challenge and the final champion
in 2013 Global RTB Adbvertising Bidding Algorithm Competition.

VOLUME 6, 2018


http://dx.doi.org/10.1109/CVPR.2017.87

X. Fu et al.: Pedestrian Detection by FSSS Features

IEEE Access

LI FENG received the B.Eng. and M.Eng. degrees
in information engineering from the Southwest
University of Science and Technology, in 2004 and
2007, respectively, and the Ph.D. degree from the
University of Electronic Science and Technology
of China in 2017. He is currently an Associate
Professor with the Engineering and Technology
College, Sichuan Open University. His research
interests include cognitive radio networks,
energy-efficient transmission, and radio resource

management in relay system.

VOLUME 6, 2018

SHIHAI SHAO (S’05-M’10) received the B.E.
and Ph.D. degrees in communication and infor-
mation systems from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2003 and 2008, respec-
tively. Since 2015, he has been a Professor
with the National Key Laboratory of Science
and Technology on Communications, UESTC.
His current research interests include the design,
modeling, and the analysis of full-duplex

transceivers, MIMO detection, and all-digital transceivers.

14237



	INTRODUCTION
	RELATED WORK
	THE PROPOSED APPROACH
	PIXEL DIFFERENCES SELECTED BY LDA
	REGION-BASED FSSS FEARTURES
	TWO-STAGE TRAINING
	TRAINING PROCESS
	VISUALIZING SELECTED FEATURES
	DISCUSSION
	CONTEXTUAL INFORMATION

	EXPERIMENTS
	EVALUATION ON INRIA DATASET
	EVALUATION ON ETH DATASET
	EVALUATION ON KITTI DATASET
	EVALUATION ON CALTECH DATASET
	EVALUATION USING STANDARD ANNOTATIONS
	EVALUATION USING NEW ANNOTATIONS
	RUNTIME ANALYSIS
	COMPARISON WITH DEEP LEARNING METHODS


	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	XINCHUAN FU
	RUI YU
	WEINAN ZHANG
	LI FENG
	SHIHAI SHAO


