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ABSTRACT This paper investigates the optimal component sizing problem for a four-wheel-independently-
actuated electric vehicle. First, a real-time optimal distribution strategy is devised to allocate the torque
demands to each actuation motor of the vehicle with the aim to make them work in high-efficiency regions
as often as possible. The primary goal is to minimize the energy consumption per hundred kilometers while
maximizing the driving range per charge. Then, the particle swarm optimization (PSO) is employed to
globally search for the optimal sizing solution, which is later verified by the Genetic algorithm. Simulation
results show that the proposed PSO-based optimization method, combined with the real-time torque
distribution strategy, can effectively downsize the main powertrain components and lead to better energy
consumption.

INDEX TERMS Four-wheel-independently-actuated electric vehicle, optimal sizing, real-time torque
distribution strategy, particle swarm optimization.

I. INTRODUCTION
Electric vehicles (EVs) have been ubiquitously considered
as a promising means to deal with the dilemma of oil
depletion and environmental pollution [1], [2]. EVs can
make use of electricity stored in onboard energy storage
devices for vehicle propulsion. The consumed electricity can
be produced from renewable energy sources such as solar
and wind energy and hydro-electric power. Recently, four-
wheel-independently-actuated electric vehicles (FWIA EVs)
have attracted tremendous interest from both industry and
academia because of its actuation flexibility and potential
for overall powertrain efficiency improvement [3]. Typically,
four in-wheel motors are used yet independently controlled
through the vehicle control unit (VCU) in a FWIA EV. These
motors can generate different torques in a coordinatedmanner
to generate an additional yaw-moment. This actuation flexi-
bility has the potential to enhance the vehicle lateral stability
and handling performance [4], [5]. Moreover, the overall
powertrain efficiency can be further improved, owing to the
elimination of mechanical transmission systems and the opti-
mized operating regime of each motor [6], [7]. For example,

only front-axle motors are designated to work near their
high-efficiency zones on occasions where the totally required
driving power is far below the sum of the rated power of
motors, thus resulting in elevated powertrain efficiency.

There exists a rich library of literature that presents all-
around studies on FWIA EVs, in which research on dynamic
performance and powertrain efficiency improvements are the
focuses. It is well acknowledged that these improvements
are highly related to enabling torque allocation strategies,
which has incurred considerable endeavors. Generally, torque
allocation strategies can be grouped into two categories,
i.e., the equal distribution strategy and the real-time torque
distribution strategy. The former is actually a special form of
real-time torque distribution strategy where the total torque
requirement is evenly dispatched to the front- and rear-
axle motors. It intuitively represents a scenario in which
all the in-wheel motors work in a very similar condition
and somehow can be regarded as a generic motor. This can
serve as the benchmark to assess the performance of the
real-time torque distribution strategy, which often makes
the most of activation flexibility of FIAW EVs through
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optimal torque distribution to each motor. For the later,
the axial load transfer, tire slip rate limitations, and motor
and inverter losses constitute the main concerns. For instance,
Harada et al. proposed a model-based range exten-
sion control scheme for acceleration and deceleration
scenarios, and developed a real-time torque distribu-
tion strategy considering tire slip ratio, copper loss and
iron loss of motors [8]. Wang et al. [9] presented a
torque distribution strategy for a front-and-rear-wheel-
driven electric vehicle, which accounts for the weight
transfer between front- and rear-axles and motor losses.
Fujimoto and Harada [10] presented a method to address
front and rear driving-braking forces distribution, which was
proved to be effective in increasing the driving range of
EVs in simulation and bench tests. Park et al. [11] devel-
oped an integrated torque distribution strategy taking into
consideration of tire slip and vehicle cornering. Kim [12]
investigated the optimal power distribution of the front and
rear motors for minimizing energy consumption of a FWIA
EV, and evaluated its performance by comparing the energy
consumption to that with the simple power distribution con-
trol. Wang et al. [13] proposed a torque distribution algorithm
to minimize the power consumption during the longitudinal
motion. Lee et al. [14] proposed a method of regulating
the switchings between two-wheel and four-wheel drives
for FWIA EVs to realize overall efficiency optimization
considering the losses of motors and inverters. Chen and
Wang [15] put forward various energy-efficient control allo-
cation strategies for FWIA EVs, and verified them in a set
of driving conditions. The above mentioned studies mainly
focused on improving overall system efficiency, but there is
a lack of literature exploring the optimal component sizing
problem for FWIA EVs.

In contrast, there exist a considerable number of research
papers reporting on sizing for hybrid electric vehicles
(HEVs), plug-in HEVs (PHEVs), and multi-energy source
(fuel cell/battery/supercapacitor) EVs [16]–[18]. Both energy
management strategies and advanced optimization algo-
rithms need to be included for optimal component sizing.
The commonly-used optimization methods include Particle
Swarm Optimization (PSO), Genetic Algorithms (GAs) and
Simulated Annealing (SA), and the like. For example, Dim-
itrova and Maréchal [19] presented a design methodology
based on the GA method for HEVs. Li et al. [20] proposed
a novel hybrid GA for the simultaneous optimization of the
powertrain and control parameters for a plug-in electric bus
considering both fuel economy and dynamic performance.
Still, Chen et al. [21] presented a novel optimal power man-
agement approach for PHEVs against uncertain driving con-
ditions. Similarly, the PSO algorithm was used to optimize
the threshold parameters of a rule-based power management
strategy under a certain driving cycle [22].

Similar to the GAs, PSO is a stochastic global optimiza-
tion approach, which has the advantages of simplicity, easy
implementation and requiring few parameters. Moreover, the
aforementioned studies have revealed that PSO is a rapid

and reliable tool for developing energy management strate-
gies, and can always outperform other evolutionary algo-
rithms [23]–[25].

The primary aim of this study is to analyze the co-
relationship between vehicle dynamic performance and pow-
ertrain parameters. This is cast as an optimal component
sizing problem, with emphasis on the influence of param-
eters variation. The main contributions of this study lie in
the following aspects: (1) a component sizing optimization
problem for a FWIA EV is formulated and solved by PSO,
whose reliability is further verified by the GA algorithm;
(2) under the prerequisite of vehicle performance preserva-
tion, the maximum driving range and the specific equivalent
energy consumption are balanced through a multi-objective
cost function under typical driving conditions.

The remainder of this paper is structured as follows:
Section II presents the vehicle model for an FWIA EV.
Section III formulates and derives the optimization problem.
Section IV presents and discusses themain simulation results,
followed by the key conclusions summarized in Section V.

FIGURE 1. The configuration of the powertrain structure.

II. VEHICLE MODELING
The powertrain of the studied FWIA EV is mainly composed
of four in-wheel motors, a DC\DC converter, an on-board
charger, a vehicle control unit (VCU), four motor control
units (MCUs) and a battery pack and battery management
system (BMS). It is worth noting that the in-wheel motors
are independently controlled by their respectiveMCUs. Since
MCUs and BMS have much less energy consumption com-
pared to the loss of motors, it is reasonable to ignore their
influence on the overall power consumption in this study. The
vehicle configuration is sketched in Figure 1 for demonstra-
tion.

The quasi-static system model is adopted here as shown
in Figure 2. It includes a vehicle dynamics model, a general-
ized battery model, an in-wheel motor model and several tar-
get driving cycles. The vehicle is able to follow the dynamic
profiles generated from a library of selected driving cycles.
The model has a loop control structure, which calculates
the required mechanical power to follow the target dynamic
cycles. This control loop is termed as ‘‘back and forward’’,
which allows for simulating the energy consumption on a
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FIGURE 2. The system model of four-wheel independently actuated
electric vehicle.

given driving profile, and the energy flow is computed back-
wards from the wheels to the energy source.

A. GENERALIZED BATTERY MODEL
In this study, a generalized lithium-ion battery model is
adopted due to its simplicity and acceptable accuracy. The
battery voltage during charging/discharging processes can be
derived according to the Kirchhoff’s current law as [26]{

Ub = Uoc − IaRint (Discharge)
Ub = Uoc + IaRint (Charge)

(1)

As illustrated in Figure. 2, the model input is the power
demand and the output is the battery state-of-charge (SOC).
Their functional relationship can be expressed as{

Pbat = UbIa
Pbat = UocIa − I2aRint

(2)

The battery SOC is defined as the ratio of the delivered charge
Q(t) over the nominal battery capacity Q0 in Ah, which can
be derived by

SOCend = SOCini −

∫ t
0 Iadt

Q0
(3)

The total mass mbat of the battery pack includes the weights
of constituent battery cells and the associated enclosure. The
specific energy of battery qbatt and themass of enclosurembox
are approximately 80Wh/kg and 28kg, respectively. Then, the
relationship between the total mass and the voltage and rated
capacity of the battery pack can be derived as

mbat =
CU0N
qbatt

+ mbox (4)

As shown in Figure 3, experiments have been conducted
on lithium-ion phosphate (LiFePO4) batteries with different
capacities to analyze how the open circuit voltage(OCV)
and the internal resistance change with battery SOC. Then,
the surface fitting is applied to approximate the OCV and the

internal resistance based on capacity and SOC values using
the cubic polynomial functions as follows:

Uoc = −2.73× SOC − 0.15× C − (4.32× SOC2)

− 0.002× C2
× 10−6 − 0.004× SOC × C

+ 2.47× SOC3
+ 8.16× 10−6C3

− 1.06 (5)

Rint = −0.08× SOC + 0.01× C + 0.07× SOC2

− 0.0002× C2
× 10−6 + 0.0004× SOC × C

− 0.03× SOC3
+ 7.54× C3

+ 0.81 (6)

B. GENERALIZED IN-WHEEL MOTOR MODEL
The permanent magnet synchronous in-wheel motors [27] are
utilized, and the mass of each motor can be approximated as

mmotor = a× Tmax + b (7)

where a and b are the empirical fitting parameters. Normally,
a = 0.0567 Kg/Nm and b = 16.3kg.
The calculation model proposed by Abdul-Hak [28] is

applied here to calculating the motor efficiency. Once the
maximum power of motor Pmax (kW), the maximum torque
of motor Tmax (Nm), the maximum rotation rate ωmax (rad/s),
the rated power TN (Nm) and the rated voltage of battery pack
Ubat are given, the motor efficiency can be determined based
on the following assumptions:

(1) The Kulun torque and viscous friction account for 2%
and 6% of all power losses of the motor under the maximum
power corresponding to the maximum speed, and the motor
achieves the highest efficiency at the point of rated operation.
Accordingly, under the maximum output power of the motor,
the motor achieves the maximum efficiency at the point of
motor speed corresponding to the rated torque, which can be
calculated as ωTN = Pmax /TN .

(2) The motor efficiency working at its maximum power
and maximum speed is known and defined as ηpnmax ,
the phase angle of voltage/current as 8N , the power factor
of the motor corresponding to this phase angle as cos8N .
The Kulun torque and viscous friction can be calculated by

Tcoul = 0.02
Pmax

ωmaxηPnmax
(8)

Bvis = 0.06
Pmax

ω2
maxηPnmax

(9)

The electromagnetic torque corresponding to the rated torque
is defined as

Ten = Tcoul + BvisωT−N + TN (10)

The motor is designed based on parameters including the
motor speed corresponding to the rated torque, the maxi-
mum power, and the minimum bus voltage. The motor speed
is approximately proportional to the terminal voltage. The
motor is capable of outputting the maximum speed at the
minimum bus voltage, and the value of the corresponding
modulation parameter mimax is 1. Therefore, if the motor is
designed based on the rated torque, the modulation parameter
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FIGURE 3. The relationship between the OCV and the internal resistance with different SOCs and capacities of
batteries.

corresponding to the minimum supply voltage of the motor
can be calculated as

miN =
ωT−N

ωmax
mimax (11)

_

UPN = miN
UBat,min

2
(12)

The voltage of d- and q-axis of the motor are given as

UdN = −
_

UPN sin fN (13)

UqN =
_

UPN cosφN (14)

The motor parameters are calculated by making magnetic
field vector and current vector orthogonal as

Lq = −
4UdNPmax

3PωTN ηmmax
(15)

Rs =
3
(
PPmaxU2

qN − TeNωeNUqNηmmax

)
2PPmaxPmmax

(16)

Once the output torque and speed of the motor are given, its
efficiency can be calculated by

iq =
Tcoul + Bvisω + T

3× P
4λm

(17)

Uq = Rsiq +
P
2
λmω (18)

ηm =
P
Pm
=

Tω
3
2Uqiq

(19)

C. TORQUE DISTRIBUTION STRATEGIES
1) EQUAL DISTRIBUTION STRATEGY
The total driving torque equates to the sum of torques gen-
erated by each actuation motor as given in Eq. (20). The
torque allocation is equally designated to each motor under
the equal distribution strategy as shown in Eq. (21). In this
study, the steering motion is neglected so that the left and
right motors output the same torque for both the front- and
rear-axle wheels.

Ttotal = Tfront + Trear (20)

Ti =
Ftotalr

4
, i = 1, 2, 3, 4 (21)

2) REAL-TIME OPTIMAL DISTRIBUTION STRATEGY
The torque demands distributed to the front-axle wheels are
different from that to the rear-axle ones. The distributed
torque demands are calculated with the principle of enhanc-
ing the overall powertrain efficiency, which is time-varying
and strongly dependent on the driving cycles. Figure 4 shows
the flow chart of the proposed real-time distribution strategy.

The driving torque of each wheel is defined in Eq. (22),
assuming that the inertial torque is ignored. The k denotes the
distribution coefficient. Particularly, k = 0 means the front-
axle drive only while k = 1 means the rear-axle drive only.

Ti = Fir =


r
2
kFtotal, i = 1, 2
r
2
(1− k)Ftotal, i = 3, 4

(22)

where Fi represents the driving force of the i-th wheel.
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FIGURE 4. Flow chart of the real-time distribution strategy.

The constraint to each in-wheel motor is defined as

−Timax ≤ Ti ≤ Timax (23)

For a single-wheel model, the slip ratio is given as

λi =
ωir − Vx

max(ωir,Vx)
(24)

where Vx , λi andωi are the vehicle velocity, tire slip ratio, and
angular velocity of the wheel.

Moreover, the friction coefficient between the tire and road
is a function of λi, and the driving force can be represented
as

Fi = Ds · Ni · λi (25)

For simplicity, the driving stiffness Ds is substituted into
Eq. (26) by assuming a linear relationship between λi and µi
as

Ds =
∂µi

∂λi

∣∣∣∣
λi=0

(26)

The normal forces on the four wheels are
N1 = N2 =

mtotal ·
(
lr · g− hg · V̇x

)
2l

N3 = N4 =
mtotal ·

(
lr · g+ hg · V̇x

)
2l

(27)

mtotal = mbat + mmotor + mbody (28)

The total driving/braking torque is calculated according to the
real-time working conditions, and the efficiency is derived
from the efficiency map, which is later used to estimate the
actual power consumption. The wheel angular velocity of
each wheel can be obtained as

ωi =


Vx
r
·

1
1− λi

,Vx ≥ ωir

Vx
r
(1+ λi),Vx ≤ ωir

(29)

The total motor output Pmot can be deduced as

Pmot=



2∑
i=1

Tikωi

ηfront
+

4∑
i=3

Ti(1− k)ωi

ηrear
(Discharge)

ηfront

2∑
i=1

Tikωi

+ηrear

4∑
i=3

Ti(1− k)ωi (Charge)

(30)

where ηfront and ηrear represent the efficiencies of the front-
axle and rear-axle motors, respectively. The motor efficiency
depends on the working conditions including the motor
torque and speed. In other words, the battery power can
be conserved by improving the overall efficiency through
regulating the working conditions of motors, which means to
optimize the torque allocation to the front-axle and rear-axle
motors. The discharging efficiency of the battery is assumed
to be 95%, and thus the battery power can be calculated by
Pbat = Pmot/95%.

Thus, the consumed energy Eveh can further derived by

Eveh =
∫
Pbatdt (31)

At each time index, the optimal distribution coefficient k can
be determined by comparing the energy consumption under
each k . Consequently, this real-time distribution strategy can
save the stored energy to a great extent by increasing the
driving efficiency through torque allocation optimization.

FIGURE 5. The schematic of the multi-objective optimization.

III. PARAMETERS OPTIMIZATION PROBLEM
FORMULATION
The schematic of the proposed multi-objective optimization
problem formulation is illustrated in Figure 5. The optimal
component sizing is cast as an optimization problem, inwhich
the optimization variables represent a possible combination
of components sizing. In each iteration of PSO/GA algo-
rithms, the equal and real-time torque distribution strategies
are implemented respectively to evaluate the objective func-
tion under a specific driving cycle. This process is iterated
until the termination conditions are fulfilled, and the best
sizing is derived.
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TABLE 1. Performance requirements.

FIGURE 6. The flow-process diagram of the PSO algorithm.

A. THE OPTIMIZATION VARIABLES
The primary goal of component sizing is to minimize the
power consumption per hundred kilometers and maximize
the driving range without compromising the vehicle perfor-
mance. However, these two aspects are conflicting. In this
study, the optimal design is formulated as a multi-objective
optimization problem by taking these two objectives into con-
sideration. The battery cell capacity, the number of batteries,
the rated rotatory speed and the rated torque of the motor are
selected as the optimization variables, which are capsulated
as

X = [Q0,N , ωN ,TN ] (32)

B. OPTIMIZATION CONSTRAINTS
The vehicle performance requirements are incorporated
into the optimization problem as the constraints, as listed
in Table I.

C. OPTIMIZATION PROBLEM DESCRIPTION
The driving range calculation under the driving-cycle case
is more complicated than that in the constant-speed case
because vehicles would endure different driving modes
including the constant speed, acceleration, deceleration and
idle speed in a single driving cycle.

Considering the regenerative braking, the energy consump-
tion of the vehicle in a driving cycle can be calculated as
follows.

When the in-wheel motors are in the driving mode,
the power in need can be deduced by

Pcyc_d =
Vx

3600ηtηmηac

(
mtotalgf +

CdAV 2
x

21.15
+ δmtotal V̇x

)
(33)

FIGURE 7. Simulation results with different distribution strategy. (a)
NEDC speed profile; (b) Torque of the front wheels; (c) Torque of the rear
wheels; (d) Efficiency of the front wheels; (e) Efficiency of the rear wheels
(f) Battery SOC.

When the in-wheel motors are in the braking mode, the power
in need can be obtained as

Pcyc_c = ηtηmηac
Vx
3600

(
mtotalgf +

CdAV 2
x

21.15
+ δmtotal V̇x

)
(34)
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FIGURE 8. Selection of vehicle parameters for different torque distribution strategies.

The total energy consumption in the whole driving cycle can
be calculated by

wcyc =
100
Scyc

(∫ Tcyc

0

Pcyc_d
ηb_d

dt +
∫ Tcyc

0
Pcyc_cηb_cdt

)
(35)

With the goal-attainment method, the multi-objective opti-
mization problem can be converted into a single-objective

problem as follows:cos t_func = ω1λ1/ s(X )+ ω2λ2wcyc (X) (X ⊂ �)
λ1 ≥ 0, λ2 ≥ 0
λ1 + λ2 = 1

(36)

where s(X ) and wcyc(X ) represent the driving range per
charge and the power consumption per hundred kilometers,
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FIGURE 9. Vehicle performance under different torque distribution strategies. (a) Energy consumption for
100 kilometers; (b) Driving range.

TABLE 2. PSO parameters.

respectively; � denotes the feasible solution space; λ1 and
λ2 are the coefficients to balance the weights of the two
optimization objectives; ω1 and ω2 are the adjustment coef-
ficients that serve to reduce the value range difference of the
two optimization objectives.

D. PARTICLE SWARM OPTIMIZATION ALGORITHM
The PSO is an evolutionary optimization algorithm firstly
presented by James Kennedy and Russell C. Eberhart [29]
based on themovement and intelligence of the swarms.Math-
ematically, the PSO method [30], [31] can be described as
follows: Each particle has an adaptive value that is determined

by the objective function, and the PSO maintains a mem-
ory set P= {P1, P2, · · · PN}T, where Pi is the best position
ever visited by the i-th particle. In addition, as the PSO
allows particles to mutually communicate their experiences,
the best position ever visited by all particles can be shared.
We define g as the index of the global best position in P,
and the global best position is accordingly defined as Pg.
At each iteration step t , the particle velocity and position are
updated successively according to its own experience as well
as the experience of other particles [32]. This process can be
described by

vt+1i = vti + αr1(P
t
i − x

t
i )+ βr2(Pg − x

t
i )

x t+1i = x ti + v
t+1
i (37)

where r1 and r2 are two uniformly random numbers inde-
pendently distributed in the interval [0, 1], and are used to
maintain the diversity of the swarm. vi and xi are the velocity
and the assigned position of each particle; α and β are the
cognitive and the social parameters (or acceleration param-
eters), which drives particles towards local and global best
positions. The flowchart of the PSO algorithm is illustrated
in Figure 6.

IV. SIMULATION RESULTS AND DISCUSSION
In this section, we firstly discuss the energy consumption
under the proposed distribution strategy and the equal dis-
tribution strategy. Then, the parameter optimization results
and vehicle performance under two kinds of torque distribu-
tion strategies are discussed. As described in Eq. (36), the
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FIGURE 10. The selection of vehicle parameters for PSO and GA algorithm.

coefficients λ1 and λ2 are used to balance the weights of
the driving range per charge and the energy consumption per
hundred kilometers.

It is worth noting that the proposed algorithm was
coded in MATLAB, and simulations were conducted on a
E5-2630@2.6GHz Intel Xeon V2 processer with 32GB ran-
dom access memory (RAM). The task of optimizing each
mechanical design problemswas carried out by using 25 inde-
pendent runs [33], [34].

A. OPTIMAL TORQUE DISTRIBUTION OF THE FWIA
The real-time distribution strategy for the front-axle and rear-
axle motors considering the efficiency of in-wheel motors
was proposed to increase the overall efficiency. A complex
driving simulation was performed to evaluate its validity.
Here, a test based on the New European Driving Cycle

(NEDC) was employed to compare the real-time torque dis-
tribution strategy with the equal distribution strategy.

Figure 7(a) shows the vehicle velocity in the NEDC driving
cycle.

Figure 7(b) and (c) show that the driving torques from the
front-axle and rear-axle motors under the two torque distribu-
tion strategies. The first one is the equal distribution strategy,
which means the driving torques generated from the front-
axle and rear-axle motors are always identical. The second
one is the proposed optimal real-time distribution strategy,
in which discrepant torques are dispatched to the front-axle
and rear-axle motors. On occasions that require high accel-
erations, such as the time periods of 11-14s, 206-209s and
401-404s, larger torque allocation is placed on the front-axle
motors to fulfill the power demand with consideration of the
overall motor efficiency.
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FIGURE 11. The weight coefficient of the PSO and GA algorithm; (a) The driving range and (b) The driving range
per kilowatt hour.

FIGURE 12. Function Value of PSO and GA algorithm.

Figure 7(d) and (e) depict the variation of the efficiencies
in the front-axle and rear-axle motors with the two torque
distribution strategies.

For the front-axle motors, it can be seen that the frequency
of using low-torque area becomes lower in the low-efficiency
area under high acceleration scenarios. However, the front-
axle motors do not often work under the real-time torque
distribution strategy. For the rear-axle motors, it can also
be seen that the motor efficiency increases when the real-
time torque distribution strategy is applied, and the motor
efficiency is improved compared with that under the equal
distribution strategy. This can be attributed to the fact that

both efficiencies of the front-axle and rear-axle motors are
considered when distributing torques, which allows to rea-
sonably expect an improved overall powertrain efficiency.

Figure 7(f) presents the relationship between the SOC val-
ues to the driving range per charge, and the simulation results
reveal that the driving range per charge can be improved by
about 7.8% under the NEDC cycle.

B. POWERTRAIN COMPONENT SIZING OPTIMIZATION
As shown in Figure 8, in order to further examine the effects
of the real-time torque distribution strategy and the equal
distribution strategy, a series of component optimization
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FIGURE 13. The standard deviation of function value for PSO and GA algorithm.

FIGURE 14. Convergence of two algorithms for PSO and GA (a) PSO; (b) GA.

experiments based on the PSO algorithm were conducted in
a wide range of λ1. Figure 8(a)-(d) compare the capacity,
battery serial number, and rated motor speed and torque with
the presented strategies. As shown in the figures, the vehicle
performance with the real-time torque distribution strategy
is better than that with the equal distribution strategy under
all different weighting coefficients. Especially, the battery
cell capacity under the equal distribution strategy increases
considerably in comparison with that under the real-time
torque distribution strategy, and the maximum increase can
reach as high as 4%. The battery number under the equal
distribution strategy is also larger than that under the real-
time torque distribution strategy, and the maximum increase
reaches about 2%. This validates that both battery cell capac-
ity and battery number can be effectively reduced without
compromising the vehicle performance under the real-time
torque distribution strategy. The rated torque and speed of the
selected motors under the equal distribution strategy increase
12% and 9% in contrast to the selection under the real-time
torque distribution strategy, respectively. This also verifies
that lighter and smaller motors can be used under the real-
time torque distribution strategy. In all, it can be reasonably

concluded that the component sizing under the real-time dis-
tribution strategy is better than that with the equal distribution
strategy, which verifies the superiority of the proposed real-
time torque distribution strategy.

The driving range per charge and the energy consumption
per hundred kilometers are also evaluated and compared
under the two torque distribution strategies as shown in
Figure 9. It can be seen that the real-time torque distribution
strategy outperforms its counterpart on both criteria. The
proposed real-time torque distribution strategy can effectively
enhance the overall powertrain efficiency through optimizing
the operating points of motors. As such, smaller sizing of
battery packs and motors can be realized, which would fur-
ther contribute to vehicle weight reduction and driving range
extension.

C. COMPREHENSIVE ANALYSIS OF THE
COMPONENT SIZING
In the component sizing optimization, the main parameters
of the PSO algorithm need to be defined suitably in advance.
According to the value variation ranges of optimization
parameters presented in several existing papers and some

VOLUME 6, 2018 49533



Z. Wang et al.: Optimal Component Sizing of a FWIA EV With a Real-Time Torque Distribution Strategy

primary tests, the values of these parameters adopted in this
study are listed in Table II.

In order to verify the optimization results [35]–[38], the
GA was also utilized to search for the optimal sizing.
As shown in Figure 10, the difference between the opti-
mization results is quite small so that the mutual verification
can be reasonably claimed. However, regarding to the two
concerned criteria, the optimization results based on the PSO
is generally better than that based on the GA as indicated
in Figure 11. This is also manifested by the objective function
values achieved by the two optimization methods as depicted
in Figure 12 and Figure 13. It is clear that the objective
values under distinct weight coefficients based on the PSO are
smaller and more robust as implied by the smaller standard
deviation. Furthermore, the PSO exhibits faster convergence
as illustrated in Figure 14. Thus, it is reasonable to conclude
that the proposed PSO-based optimization procedure for opti-
mal sizing of an FWIA EV is effective and outperforms the
state-of-art GA algorithm.

V. CONCLUSIONS
In this paper, the particle swarm optimization method (PSO)
is presented to realize the optimal component sizing of a
FWIA electric vehicle. A real-time optimal torque distri-
bution method was also developed and used with the aim
to simultaneously increase the driving range per change
and reduce the specific energy consumption. To this end,
the characteristics of the main components and their key
influencing factors were analyzed. Compared with the equal
torque distribution strategy, the proposed real-time optimal
torque distribution strategy can substantially increase the
driving range while reducing the power consumption, which
considerably benefits for the vehicle weight reduction and
component downsizing. Finally, the PSO-based component
sizing, combined with the real-time torque distribution strat-
egy, was proved effective through simulation, and exhibited
better performance than the state-of-art GA-based optimiza-
tion, regarding to optimization results, robustness, and con-
vergence time.

APPENDIX
Nomenclature
m vehicle mass
mbat battery mass
mmotor motor mass
Q0 battery rated capacity
qbatt mass specific energy of the battery
Pcyc_d the battery output power under driving state
Pcyc_c the battery output power under braking state
v(t) vehicle velocity
ηt mechanical efficiency of transmission system
ηm efficiency of motors and motor controllers
ηac the proportion of energy consumption for

accessories
Tcyc the driving time of single driving cycle

ωcyc motor rotary speed under certain driving cycle
R the internal resistance of the battery
mbox battery box mass
mr the rest of the components mass
U0 the battery rated voltage
N the number of batteries
Tmax the maximum torque of motor
ηb_d discharge efficiency of battery
ηb_c charge efficiency of battery
ωN motor rated rotary speed
ωmax maximum rotary speed
TN rated power of motor
Tmax maximum power of motor
ξSOC discharge depth
UOC the voltage of the battery
Pbmax battery maximum power
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