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ABSTRACT Internet of Energy (IoE) is a novel decentralized energy supplying paradigm, which integrated
highly scalable and distributed energy resources to satisfy the various demands in future green applications.
The existing works focus on the monitor and control of the state of networked energy storage devices.
However, optimizing the security of demand response (DR) management with given energy states under
IoE circumstance is rarely studied. Due to the connection to the Internet, the DR management in IoE faces
a number of unique cyber-physical security challenges. First, as distributed energy resources have a large
number of stakeholders and any illegal skip-level energy access may cause disastrous results, it requires fog
computing paradigm to enforce a more secure DR management. Second, in the localized energy networks
of IoE, a corrupt DR participator can maliciously read and write DR strategies by using collusion attacks
(e.g., reputation-based cheating and unfair competing). To address these issues, we propose a fog computing-
enabled secure demand response (FSDR) scheme for IoE against collusion attacks using consensus and
access control encryption. In FSDR, the fog node was reconstructed as a sanitizer to randomly transfer
encrypted energy states and DR strategies with homomorphic operations. Moreover, a simulated annealing-
based consensus algorithm was presented to examine the validity of the energy states and DR strategies.
In addition, we establish the mathematical models of collusion attacks and attack defense approaches. The
performance evaluation validated its efficiency.

INDEX TERMS Internet of Energy (IoE), fog computing, demand response (DR), consensus, access control
encryption (ACE).

I. INTRODUCTION
Internet of energy (IoE) is a decentralized energy supplying
paradigm by developing a revolutionary vision of smart grids
into the Internet [1], [2]. The IoE has been perceived to
provide an interface between distributed alternative energy
generating sources and various green applications (e.g., green
industry and city). To perform the targeted applications and
realize its functionalities, IoE adopts a a series of information
and communication technology (ICT) to monitor and control
the distributed energy resources and the behavior of con-
sumers to gain useful insights for the optimization of energy
utilization. In traditional power grid, a satisfactory demand

response (DR)management is critical for operators to enforce
peak-load shifting. Nowadays, IoE brings DR management
into a revolutionary period [3].

The existing DR management schemes mainly consisted
of two branches, namely, centralized and decentralized
schemes. In terms of centralized schemes, energy infor-
mation is collected from individual distributed sources and
transmitted back to a central location, usually the cloud, for
analyzing and access. In the decentralized case, the energy
information is stored locally or at some designated nodes
within the network instead of immediately transmitting them
to a remote center out of the network. This energy information

11278
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-3913-5001
https://orcid.org/0000-0003-2483-6980
https://orcid.org/0000-0003-0901-8621
https://orcid.org/0000-0002-2561-3116


G. Li et al.: FSDR for IoE Against Collusion Attacks Using Consensus and ACE

can be accessed by IoE users in a distributed way. Com-
pared to the centralized schemes, decentralized DR reduces
response latency since the energy information is no longer
transmitted to a centralized location out of the network [4].
Meanwhile, it reduces electricity transmission losses.
As both distributed alternative energy generating devices
and advanced energy storage devices are now possible to
be equipped with smart sensors [5]–[8], balancing electricity
demands on local aggregator becomes much more efficient
than transmitting over cloud [9], [10]. Thus, decentralized
DR implies higher energy efficiency. Additionally, decen-
tralized DR improves the robustness of energy supplying
against large-area blackout, which is inevitable in the central-
ized scheme. These advantages together result in the recent
increasing popularity of decentralized DR.

FIGURE 1. The illustration of fog computing based DR management
in IoE.

As a large amount of electricity and data are distribut-
edly stored and maintained in individual accumulators, even
mobile vehicles, the recent works innovatively exploited
some emerging technologies (such as fog computing, big
data) to aggregate andmine energy information to achieve the
above functions [11]–[13]. Fig. 1 illustrates the architecture
of DR management for fog computing in IoE. By pulling
down the intelligent data processing services into IoE edge
devices, fog computing has presented a number of promis-
ing advantages (such as ultra-low latency, context-awareness,
and privacy-preserving) [14]. However, fog computing still
cannot provide satisfactory decentralized DR management to
adapt to the rigorous requirements of future green applica-
tions due to a number of security challenges. Actually, it is
very distinct that security threats of fog computing in IoE
are cyber-physical. Firstly, in many application scenarios,
the electricity is closely related to safety issues and should
be accessible only to authorized users. Moreover, in some
specific application scenes, electricity aggregated from dis-
tributed sources may belong to different security levels and
thus are meant to be accessed only by specified users. There-
fore, it requires fog computing to enable more meticulous
DR, in which accessibility of a particular energy to users is
exclusively based on access control list and illegal energy
occupation may cause disastrous results. Secondly, since fog

computing usually serves for distributed energymanagement,
a corrupt aggregator is easy to launch collusion attacks.More-
over, resource-constrained fog node is also easily subject to
strong attacks such as distributed denial of service attacks
(DDoS) [15]. Thus, illegal reading and writing DR strategies
is extremely dangerous.

The existingworks on the security of fog computing cannot
simultaneously deal with the above two challenges in IoE
due to the following reasons. Different from data manage-
ment that can easily achieve high security by improving tra-
ditional security strategies (e.g., authentication, encryption,
and access control), secure DR management in IoE needs
a trusted, accurate, and tamper-proof enforcement circum-
stance to resist the collusion attacks. In this paper, we pro-
posed a fog computing-enabled secure demand response
(FSDR) scheme for IoE against collusion attacks using con-
sensus and ACE. In FSDR, the fog node was reconstructed
as a sanitizer to randomly transfer encrypted energy states
and DR strategies with homomorphic operations. Moreover,
a simulated annealing based consensus algorithm was pre-
sented to examine the validity of the energy states and DR
strategies. Contributions of this paper mainly contained the
following two aspects. 1) A secure networking circumstance
for DR strategies’ transmission and enforcement was estab-
lished. 2) A fog computing based secure DR (FSDR) scheme
was proposed based on the consensus and ACE to prevent
from convert collusion attacks.3) We designed a simulation
approach to the defense utility of FSDR scheme.

The remainder of this paper is structured as follows.
Section II gives an overview of the related work and states
the strengths of the proposed scheme. Section III describes
the architecture of FSDR and its core components. Section IV
introduces the design principles of FSDR and discusses the
security analysis. Further, the extension of DR for large-scale
IoE is also formulated in this section. Performance evaluation
is demonstrated in Sections V. Finally, Section VI draws the
conclusion and gives the future work.

II. RELATED WORK
Typically, the improvement in energy utilization can be done
by DR management [16], [17]. As the increasing popularity
of distributed energy, decentralized DR requires deploying
more smart devices (such as intelligent electric devices, smart
meters, and smart transformers) to monitor and control the
energy sources and users’ behaviors. As the smart devices
increase, the amount and velocity of data lead to communi-
cation congest in smart grid, which aggravates the difficulty
of decentralized DR management. Meanwhile, Internet of
energy (IoE) aims to build a visible, scalable and reliable
smart grids for future green applications by the Internet.
Large-scale power grid infrastructures connecting to Inter-
net incurs some specific cyber-physical challenges. Thanks
to the recent advances in information and communication
technology, deploying fog computing in IoE to optimize the
decentralized DR in smart grid has drawn increasing atten-
tion. Processing energy information on the edge network
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elements becomesmuchmore efficient than transmitting over
the Internet [18]–[20].

It has been claimed that efficiency, flexibility, and
resiliency are the most important requirements of future
green applications, and consensus-based distributed energy
management (including state estimation, economic dispatch,
and optimal power flow) can be as good as the centralized
optimal solutions [21]. Especially, in mobile energy network
(e.g. vehicle-to-grid [22]), localized electricity trading among
plug-in hybrid electric vehicles has better performance on
security and users’ experience (maximized social welfare),
for it doesn’t need to transport electricity over long distances
and through complex electricity transportation meshes [23].
Since demand side can reliably contribute to primary fre-
quency control [24], the recent works focus on exploiting
decentralized DR management to optimize frequency con-
trol [25], [26]. In the past, decentralized DR usually served
for small-scale power systems such as microgrid, but not suit-
able to large-scale connected distributed energy resources.
Sakurama et al. [27] proposed a communication-based decen-
tralized DR, in which control signals (corresponding to prices
and/or incentives) are generated in communication networks
consisting of smart meters, but not by a central authority. In a
word, IoE makes distributed prosumers that can access the
Internet to participate in DR management [28]. However, all
of the existing solutions required power users to exchange
information including their electricity usage, which leads to
the leak of privacy data.

The security and privacy-preserving issues of fog com-
puting are still in the initial stage. Studies on security and
privacy-preserving for fog computing usually focused on
the Internet of things (IoT [29], [30]. For IoE, it has spe-
cial cyber-physical security requirements (such as meticulous
DR, collusion-resistant and geographical interaction). Thus,
current proposals cannot be directly applied in IoE. Similar
to [31] and [32], the proposed security schemes for fog
computing guaranteed the traditional CIA (confidentiality,
integrity, and availability) of data transmitted among IoT
entities (including fog and cloud), but it cannot resist some
strong outside attacks or convert internal corruptions. For
example, public power users may be enticed by false incen-
tives to do what they should not do. And also, a user with top-
security level may betray and leak sensitive data to others.
No existing solutions can address the above two challenges
simultaneously.

Recently, consensus-based optimization was applied to
energy management systems in the smart grid due to its
credible control signals, but these approaches didn’t enforce
any restriction on what kind of control signals one should
do response. For example, resilient decentralized consensus
algorithm presented in [33] reliably estimated global state
variables replacing local observability and against false data
injection. Incremental welfare consensus algorithm proposed
by [34] achieved the global optimum not relying on a central
energy management but relying on the localized peer-to-peer
communications among smart devices, this proposal gained

credible DR strategy under an untrustworthy environment.
By perceiving neighbors cost variables, the improved consen-
sus algorithm in [35] drives all connected regions of a power
system to approach its own optimal state gradually.

Different from the recent approaches, we exploit decentral-
ized consensus algorithm and a novel cryptographic primitive
called access control encryption (ACE) [36] to achieve fog
computing-enabled secure demand response (FSDR) scheme
for IoE against collusion attacks. Originally, the ACE scheme
was designed to ensure that one user with high-security level
can not tamper the data transmitted on the Internet. The
ACE introduces a sanitizer to enforce the key transform and
opportunistic encryption. The sanitizer will maintain a trans-
form key, which is exploited to re-encrypt the data randomly.
The features of the FSDR scheme included: 1) it ensures
that no matter what regulation policy fog nodes publish and
what actions power users take (after being processed by fog
node) looks like random execution of a random behavior;
2) The FSDR as a typical fog services improved the energy
utilization by consensus-based optimization.

FIGURE 2. The basic architecture of FSDR and its core components.

III. BASIC ARCHITECTURE OF FSDR
IoE plays an important role in future green applications
due to real-time energy monitoring and efficient demand
response management. meanwhile, fog computing brought
great opportunities for IoE to deal with the increasing energy
information. To overcome the unique cyber-physical security
challenges of energy management in IoE, we proposed fog
computing-enabled secure demand response (FSDR) scheme.
This scheme facilitated the applicability of fog computing in
IoE. The energy management was outsourced to distributed
fog nodes. The FSDR achieves high-level security by inno-
vatively integrating consensus-based optimization and access
control encryption (ACE) into fog services. The basic archi-
tecture of FSDR is shown as illustrated in Fig. 2 and the core
components of FSDR were described as follows.

A. GENERALIZED ENTITIES FOR FRDR
Generalized entities for FSDR are described as follows.
1) DR participators: The DR participators act as multiple
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roles in fog spot: energy supplier, aggregator, energy user,
energy market manager, etc. Each DR participator chooses its
role according to current energy status. 2) Fog node (FN): The
FN provides a state statistics of local energy resources and
broadcasts these energy states to local DR participators. DR
participators with corresponding smart devices upload energy
information to the FN. In proposed scheme, the FN acts as an
actuator to enforce consensus and ACE among DR participa-
tors to guarantee IoE’s security. (Details on this actuator are
introduced in Section IV. 3) Smart devices: Smart devices are
responsible for real-time energy monitoring and utility test
of DR enforcement. By smart devices (such as smart meters,
intelligent electronic devices, and IoT elements), fog node
can aggregate a large number of energy states.

B. RANDOMIZED AND ENCRYPTED DATA
TUPLE FOR FSDR
All energy information (such as location, capability, and price
signal) transmitted between DR participators are encrypted
as ciphertext by a specific encryption key, and then the
ciphertext and the mentioned encryption key will be sent
to the FN. In particular, FN will act as a sanitizer to ran-
domly refresh all of the received ciphertexts by homomorphic
operation.

Different from the traditional encryption scheme, the
properties of homomorphic operation allow the data admin-
istrators to do some simplex statistics (such as addition, sub-
traction andmultiplication) on the ciphertext. Such properties
naturally adapt to the demand response (DR) management in
IoE, which requires to enforce the secure demand or response
fusion. Moreover, in consideration of the privacy-preserving,
IoE users do not expect their data that will be processed on
the Internet are public so that the data administrators for IoE
should have ability to directly handle the encrypted data.
In this paper, we focus on the defense of collusion attacks
to achieve more secure demand response, the homomorphic
operation can provide a satisfactory ciphertext processing
functionality.

We exploit the fog nodes to act as the sanitizers of access
control encryption (ACE) scheme to execute the ciphertext
transforming. Many works has studied the dynamic resources
offloading to achieve a smarter fog computing paradigm in
which the resources can be configured relying on the con-
text (e.g., data scale, service level) [37], [38]. Moreover,
to reduce the processing time on fog nodes, the computing
tasks of homomorphic operations can be sliced into several
sub-modules and smartly assigned to the idle fog servers.
In addition, the fog computing paradigm is implemented with
a hierarchicalmodel, time-consuming computing tasks can be
uploaded to cloud layer adaptively.

We defined a data tuple as the minimum data unit for
FSDR. The format of defined data tuple is denoted as
(α0, α1, α2) = (ek ,E(m), S(ek + E(m))), where ek is the
encryption key of ACE, E(m) is the ciphertext encrypted with
ek , and S(ek + E(m)) is the signature of ek and E(m).

C. LOCALIZED P2P ENERGY NETWORKING FOR FSDR
As energy in IoE is often aggregated from distributed energy
resources and stored at individual accumulators, energy
exchanging was achieved in a peer-to-peer (P2P) networking
manner [39]. The communication between local DR partic-
ipators is based on a localized peer-to-peer (P2P) energy
networking model. Thus, in such P2P energy networking
mode, each DR participator can receive messages and elec-
tricity sent by other nodes. This localized P2P energy net-
working model is the basic communication infrastructure
for DR participators to share energy information and elec-
tricity. FSDR exploited this P2P energy networking model
to achieve consensus-based power grid optimization. Let
=x be a set of DR participators joining the group in con-
sensus session x. Let ∂x be DR strategy set authorized
in consensus session x. Let ςx be a set of security lev-
els of DR participators. All DR strategies in ∂x should
be broadcasted to each DR participator. Each DR partic-
ipator should select one optimal DR strategy as response
securely.

Both energy exchanging and data transmission is opti-
mized by consensus optimization algorithm on fog nodes.
The function of fog node in FSDR scheme consists
of four processing steps: 1) energy distribution abstract;
2) energy status revivification; 3) generating DR strate-
gies; 4) secure DR enforcement. For each processing step,
peers should achieve a collective objective. By consensus
between DR participators, the topology discovery, sensed
state, received DR strategies of connected energy resources
can be trusted unless there exist corrupt peers [40]. In the
localized P2P energy networking model, energy usage of
peers is verified by all DR participators. As energy infor-
mation will be published to all DR participators, it is
easy for a corrupt DR participator to launch collusion
attacks.

IV. PROPOSED FSDR SCHEME AGAINST
COLLUSION ATTACKS
In this section, we introduce the designing principles of pro-
posed FSDR scheme against collusion attacks. The collusion
attacks are formulated with mathematical models. As men-
tioned in advance, we use two key technologies 1) consensus-
based optimization and 2) access control encryption to
securely achieve robust demand response in IoE. Security
analysis is also described in this section.

A. MODELING OF COLLUSION ATTACKS IN FSDR
FSDR is designed for the purpose of making robust demand
response among the DR participators. In a decentralized
architecture, DR participators are unknown to each other.
A DR participator makes demand response with another DR
partic ipator either on behalf of their reputation value or by
another DR participators’ recommendations. Malicious DR
participators may attack the networks by using the following
approaches. For convenience, Table 1 summarizes the main
symbols for modelling collusion attacks.
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TABLE 1. Symbols and explainations for modelling collusion attacks.

1) UNFAIR COMPETING
IoE enables freedom competitions on prices, power quality,
etc. In an open structure, unfair competition is vulnerable
to collusion attack. The usual illegal competition methods
contain mislead act and defame act. A group of corrupt DR
participators can collectively defame some normal peers by
giving guidance information. If a large number of power users
are misguided to charge during peak time, they will obtain
worse power quality, even it may lead power failure.

Reputation can be an algebraic value, which represents
the word-of-mouth of the peer’s earlier behavior. Reputation
value can be calculated by using the following equations:

Rij =
n∑

k=1

(tij ∗ σkj) (1)

Rj =
n∑
i=1

(Rij) (2)

Where, Rij denotes the reputation of j with respect to i;
tij denotes the trust value of i on j; σkj denotes the feedback
factor after i completes event k; Rj denotes the reputation
value of j in the whole network. Therein, σkj ∈ (−1, 1).
Each power user may receive the recommendation from

multiple other users. Usually, the recommendation from DR
participator with a higher reputation value is higher possible
to be adopted. We can model user’ decision with the equation
shown as follows:

ηj = 1+ λjRj −
j−1∑
k=1

λkRk −
n∑

l=j+1

λlRl (3)

Where, λj, λk , and λl are the corresponding coefficients
of the reputation value’ influence on users’ decision and
are positive. We observe that adopting the recommendation
of j directly depends on the reputation values of all DR
participator.

Unfair competing means that the corrupt DR participators
will illegally actuate λj, λk , or λl . For example, collectively
reducing the reputation value of j and rising the reputation
value of k or l up, the possibility to adopt recommendation
generated by jwill decrease. Once one’s reputation decreases,
the DR participator will switch to the other DR participators
to collect available DR strategies.

2) REPUTATION-BASED CHEATING
A DR participator or group of DR participator acts as honest
peers and vigorously join some consensus sessions to accu-
mulate reputation. But sometimes corrupt DR participators
with higher reputation may cheat with the other DR participa-
tors by giving dishonest decisions. For example, if a reputable
charging station is corrupt, it may provide bad power quality
for users’ charging or publish some messages what it should
not send into the networks.

The network topology is open to each DR participa-
tor. Assuming that DR participator j is attacker and let
O = {O1,O2, . . . ,On} denote the victims in the localized
P2P energy network. As the existing security and privacy-
preserving schemes do not give any restriction on what jwith
a higher reputation should provide, the victims’ decisions
under reputation-based cheating circumstance can be formu-
lated as shown in equation (4).

η
Oi
k = t0Oik + e

j
Oik

1
e|ω0−ω|

(4)

Where ηOik denotes the possibility of Oi to select DR par-
ticipator k under reputation-based cheating. t0Oik denotes the
original trust value between Oi and k . ω is the influence of
j’s cheating. ejOik represents the corresponding coefficients
of the influence of j’s reputation on Oi’s selection. We can
observe that reputation-based cheating has a great impact on
attacked DR participator’s selection. For example, if ω < ω0,

as the ω increases, ηOik increases. Otherwise, if ω > ω0, η
Oi
k

decreases. Additionally, as ejOik increases, ηOik increases lin-
early. In summary, both reputation-based cheating and unfair
competing have great threat on the security of decentralized
DR management in IoE.

B. COLLUSION-RESISTANT USING CONSENSUS AND ACE
To clearly bring out the designing principles of FSDR against
collusion attacks, we first consider a simple network topology
with only one fog node. And then, we extended it to general-
ized scenarios.

1) FSDR SCHEME FOR SINGLE FOG NODE
Assume that there are n providersP1,P2, . . . ,Pn, n consumers
C1 ,C2, . . . , Cn, n = {1, 2, . . . , }, and one fog sanitizer
(FSan) deployed on the fog node. There is a communication
connectivity matrix Mn×n, where Mij ∈ {0, 1}. Therein,
Mij = 1 means that Cj is allowed to receive messages
sent by Pi, while Mij = 0 means that Cj is not allowed
to receive messages sent by Pi. We assume that providers
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FIGURE 3. The diagrammatic map for data encryption and transmission process of FSDR scheme.

are connected to all consumers with a public Internet.
All messages should be sanitized with the transform key rk
and no provider is allowed to send messages to a specific con-
sumer. Meanwhile, each consumer can receive all messages
from the providers. Moreover, all messages are transmitted
with ciphertext encryptedwith random encryption key ek , and
only the illegal consumers will be assigned with decryption
key dk .
Let us denote a set of timestamp for consensus process of

DR optimization as T , (tk | k ∈ N ), where N represents a
positive integer. Correspondingly, let us denote a sequence of
energy transmission events during tk as V , (DT tkP′iC ′j

| P′i ∈

C, Sj ∈ Z). And also, M , (M tk
P′iS
′
j
| P′i ∈ P,C ′j ∈ C) is the

message sent from P′i to C
′
j , where P = {P1,P2, . . . ,Pn} and

C = {C1,C2, . . . ,Cm}. M
tk
P′iC
′
j
= null means that there is no

message that is sent from P′i to C
′
j during the period Tk .

To resist the collusion attacks as mentioned in the equation
(3) and (4), we use ACE to randomly encrypt the energy
information transmitted between providers and consumers.
And also, by using consensus optimization, we minimize the
utility functions. The workflow of proposed FSDR scheme is
shown as illustrated in Fig. 3.

Z1 = λj1Rj −
j−1∑
k=1

λk1Rk −
n∑

l=j+1

λl1Rl (5)

Z2 = 1t0Oik (ω0 − ω)+ t0Oik1ω (6)

Where, 1 is a mathematical operation that represents the
variation of Rj. Usually, 1 is decided by tij according to the
equation (1) and (2).

On the basis of consensus between DR participators, trust
value is decided by the security of energy information. Thus,
the first thing we do is introducing ACE scheme into FSDR
to ensure the CIA (confidentially, integrity, and availability)
of energy control signals (such as prices regulating, DR
management, and electricity scheduling). This novel encryp-
tion primitive achieves a fair energy information sharing,
in which the energy control signals sent by attacker looks
like randomization. By using this encryption primitive, each
consumer is equiprobable to receive energy control signals.
Equiprobable DRmanagement prevents the convert collusion
attack because attacker can not illegally force up reputation
value of some DR participators or maliciously defame one’s
reputation by spreading rumors to the localized P2P energy
networks. In ideal circumstances, this will make objective
function of equation (6) be approximate to 0.

To bring out the advantages of ACE’s randomiza-
tion, we describe its workflow and give detail explains
as follows.

• Step 1: Initially, fog node enforce a Setup algorithm to
generate a master key and public parameters for ACE.
The input consists of a system security level and the
access control structure over the connectivity matrix
Mn×n. The public parameters for ACE mainly contains
message space and ciphertext space.

• Step 2: Secondly, a key generation algorithm is exe-
cuted. The inputs of this algorithm contain the master
key, the identities i, j ∈ {1, 2, . . . , n}, and the role of
DR participators {Provider, consumer, fog sanitizer}.
The outputs of this algorithm include encryption key ek i,
transform key rk , and decryption key dk j.
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• Step 3: All keys will be distributed into different types
of DR participators according to the access control struc-
ture. If the providers obtaining encryption key ek i want
to inform consumers to change energy usage states, they
should encrypt their energy control signals with ek i and
output the corresponding ciphertext.

• Step 4: All ciphertext should be transmitted to fog node
and they will be encrypted by FSan with transform
key rk . This operation transforms the ciphertext into
sanitized ciphertext. Note that the fog node can not learn
any information about the original ciphertext except for
its arriving time and the FSan will send the sanitized
ciphertext to all consumers.

• Step 5: After the consumers received the sanitized
ciphertext, they will try to decrypt original energy con-
trol signals using dk j. Only the correct dk j can decrypt
correct message.

The second thing we should do is to minimize the equa-
tion (5). In IoE, the DR participators’ reputation values
frequently change at spatial and temporal dimension. After
the consumers decrypt a correct energy control signal, each
consumer will compute the ηj according to the equation
(3). Because of the competitive nature, we formulate this
problem as Nash Equilibrium [41]. All DR participators that
can decrypt the energy control signals can join a group for
consensus. LetG = [N ,Uj,Zj(.)] denote the non-cooperative
game among DR participators with decryption capability. N
represents the DR participators with decryption capability in
this consensus group, {Uj = ηj} is the set of user’ responses
and Zj(.) is the utility function of DR participator j. For
convenience, we use U−j to denote the responses of all DR
participator excluding j. Therefore, in the demand response
game, each DR participator tries to minimize its own utility
by solving the formulated optimization problem for all j ∈ N
as follows.

min
uj∈Uj

Zj(uj,U−j),∀j ∈ N (7)

According to the analysis of game-theoretic problem,
the optimal strategy set U?

j is called Nash Equilibrium,
which should make Zj(U?

j ,U−j) < Zj(Uj,U−j). In this
paper, we follow and simplify the approach of simulated
annealing (SA) algorithm [42] to efficiently find the NE
point in FSDR scheme, which enables stochastic global
optimization. The solving process is shown as illustrated in
Table 2.

As a result, it should be characterized that we find a set of
DR strategies where all DR participators are satisfied with the
utility the obtain.

2) GENERALIZED FSDR TO 0 FOG NODES
We can extend the localized P2P energy network with one
fog node to a generalized case with K fog nodes. Let 0 =
{F1,F2, . . . ,F0} denote a set of localized P2P energy net-
works, which are connected to fog node τ . The decision

TABLE 2. Solving process for consensus.

function of each fog node can be defined as equation (8).

ηFi = 1+ λFiRFi −
0−1∑

τ=1,τ 6=i

λFτRFτ (8)

In this case, the λFτ is the corresponding coefficient of
the influence of fog node’s reputation value on its decision
and are positive. Unfair competing upgrades that the corrupt
fog nodes will illegally change λFτ . For example, collectively
reducing the reputation value of fog node i and rising the rep-
utation value of τ up, the possibility to adopt recommendation
generated by i will decrease. Once one fog node’s reputation
value decreases, the neighbourly fog node will switch to the
other fog nodes to collect available DR strategies. Therefore,
for DR scheduling between 0 fog nodes, the collusion attack
threats still exist. Following the previous section, the mini-
mization problem of each fog node Fi ∈ 0 can be formulated
as the following model.

Z ′1 = λFi1RFi − λ(Fτ )
0∑

τ=1,τ 6=i

1R(Fτ ) (9)

The collusion-resistant minimization model against
reputation-based cheating between fog nodes can be defined
as follows.

Z ′2 = 1t
0
OiFτ (ω0 − ω)+ t0OiFτ1ω (10)

It should be noted that the RFi is the reputation value
of fog node Fi. This parameter depends on the resource
configuration of the fog node. Usually, one fog node having
more resources (like computing, storage, and electricity) will
obtain a high reputation value except it is a vicious fog node.

Moreover, in the demand response game, each fog node
will try to minimize its own utility by finding the NE point of
equation (11).

min
uFi∈UFi

ZFi (uFi ,U(−Fi)), ∀Fi ∈ N (11)

U(−Fi) denotes the responses of fog nodes excluding Fi.
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C. ENERGY UTILIZATION OF FSDR ENFORCEMENT
As mentioned in Section II, the function of fog node in
FSDR mainly consists of four processing steps. In terms of
the energy distribution abstract and energy status revivifi-
cation, the FSDR is more suitable to aggregate distributed
energy resources (DERs) for enabling location-based ser-
vices, in which energy demands can be satisfied by localized
energy suppliers.

Low latency nature of fog computing can be exploited to
reduce the peak time and improve the energy utilization. For
generalized FSDR to 0 fog nodes, the fog node classifies
energy requests into different types according to the requests’
locations. In this case, we consider three kinds of location
types: 1) Home area (HA), 2) Local area (LA), and 3) Remote
area (RA). Let Lr denote the location of responders, Lr ∈
{HA,LA,RA}.

TABLE 3. Workflow of responder placement algorithm.

Table 3 show the responder placement algorithm for FSDR
enforcement. Therein, placeList is a list that store the identity
of each pending placed responder. Ereqr represents for the
requested energy of responder r , while Esupr ′ represents for
the supplied energy of responder r ′. In addition, Eavalf is the
energy capacity of fog node (charging station).

FSDR scheme makes the unoccupied energy in localized
domain join DR management of power grid systems, which
improved the energy utilization shows as illustrated in next
section.

V. PERFORMANCE EVALUATION
The performance evaluation are divided into there differ-
ent aspects. Firstly, we discuss the quantization of collu-
sion attacks and compare how the victims’ decisions varies
under the reputation-based cheating circumstance. Secondly,
the collusion-resistant utility of proposed FSDR scheme

is evaluated. Thirdly, the energy utilization under collusion-
resistant is analyzed.

A. QUANTIZATION OF COLLUSION ATTACKS
We consider the communication between DR participators in
localized P2P energy network and the interaction between
fog nodes. However, we did not evaluate the impact of the
dynamics of resources partitioning of fog nodes for the fol-
lowing reasons. Firstly, the collusion attack defense utility of
proposed scheme did not closely depend on the efficiency of
resources offloading and partitioning in IoE. The resources
offloading and partitioning of fog computing can not change
the encryption or decryption results. Secondly, although the
dynamics of resources offloading and partitioning in fog
computing has not been well addressed, we deduce this
problem can be resolved by the hot topic of service-oriented
computing (SOC) in future [43], [44]. For example, we can
design a attribute-based computation allocation algorithm,
which can selectively encrypt the passing data on the fog
nodes according to the data attributes (such as data popularity,
security level and QoS parameters).

In this case, the number of DR participator is set as
n = 100. The corresponding coefficients of the reputation
value’s influence on user’s decision is configured as λj =
[0.2 0.4 0.6 0.8 1.0], while λk and λl are generated by ran-
dom function, which can produce random number belong to
(0− 1). Additionally, the reputation value of DR participator
j is set to a group of uniform scores from 0.1 to 1.0.

FIGURE 4. The user’s response varies as the reputation value increases
for different coefficients.

1) UNFAIRNESS
Fig. 4 shows how the user’s response varies as the reputation
value increases for different coefficients. It can be observed
that the reputation value of one DR participator has great
impact on user’s decision. Collusion attackers often try to do
something to impact the DR participator’s reputation value to
illegally disturb user’s decision.
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FIGURE 5. The victims’ decisions varies under the reputation-based
cheating circumstance.

2) AUTHENTICITY
Fig. 5 shows how the victim’s decision varies under the
reputation-based cheating circumstance. In this scenario,
the original trust value between Oi and DR participator k
is set to 0.1. The corresponding coefficients ejOik of the
influence of j’s reputation on Oi’s selection is generated as
[00.30.50.70.9]. The influence of j’s cheating is configured as
ω0 = 3.8. Ifω < ω0, as theω increases, ηOik increases. Other-
wise, when ω > ω0, η

Oi
k decreases. This result means that the

utility of cheating is limited in IoE because widely spreading
in the localized P2P energy network will arouse someone’s
suspicion on the authenticity of attackers’ messages sent to
the network.

B. COLLUSION-RESISTANT UTILITY OF FSDR
This simulation experiment consists of three steps. Firstly,
we collect the energy usage data from some reports on Inter-
net and exploit statistic analysis methods to analyze the daily
energy demands in a distinct. Secondly, we generate a outlier
on the original energy demand curve to simulate the collusion
attack. Thirdly, we implement the pricing-based DR algo-
rithm and the FSDR under this collusion attack circumstance,
respectively.

In FSDR scheme, the number of gateway is set to 2 and the
number of fog nodes on per gateway is set to 5. Each fog node
will maintain [7], [20] power consumers. The energy of each
fog node is configured as 30, while the gateway energy is set
to 50. The distributed energy sources consists of wind and
solar energy. The DR management of FSDR is implemented
by responder placement algorithm.

To bring out the benefits of proposed FSDR scheme on
resisting collusion attacks, we depict the demand curves of
different DR schemes under collusion attack circumstance as
illustrated in Fig. 6. It can be observed that FSDR scheme
provides better performance on peak-load shifting and the
outlier caused by collusion attacks is eliminated.

FIGURE 6. The demand curves of different DR schemes under collusion
attack circumstance.

FIGURE 7. The utilization of distributed energy resources at different
DR schemes.

C. ENERGY UTILIZATION UNDER COLLUSION RESISTANT
The FSDR enables bidirectional energy exchanging between
distributed energy resources and power grid. Moreover, as the
fog node provides a temporary storage place for distributed
energy, the responder placement algorithm stimulate power
consumers to use distributed energy. Different from the
pricing-based DR scheme that uniformly use distributed
energy resources, FSDR scheme smartly resorts to real-
time energy monitoring to schedule the distributed energy
resources. Only when the distributed energy is inadequate to
cover power consumers’ demands, FSDR will request energy
from power grid. This scheme significantly improves the
utilization of distributed energy resources as shown in Fig. 7.

VI. CONCLUSION AND FUTURE WORK
In this paper, we investigated the security challenges
of integrating fog computing into Internet of Energy.
To resist the collusion attacks and optimize energy utilization,
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we presented a fog computing-enabled robust demand
response (FSDR) scheme to achieve smarter, secure, and
stabilized demand-side management using consensus and
ACE. The main work in this paper can be summarized as
follows. Firstly, the mathematical model of collusion attacks
and proposed FSDR scheme were described in detail. The
accessibility of electricity collected from distributed sources
were allocated by fog node, which enables more meticulous
demand response. Illegal energy occupation caused by col-
lusion attacks was estimated. Secondly, the data encryption
and transmission process of FSDR scheme were introduced
by using a diagrammatic map. Thirdly, we exploited the
simulated annealing algorithm to find the Nash equilibrium
point, which provided stochastic global optimization. And
also, a responder placement algorithm was proposed to effi-
ciently and distributedly schedule the consumers’ demands.
Finally, we verified the feasibility of proposed FSDR scheme
by simulations. The influence of collusion attack on power
users’ behaviors was quantified, the utility of FSDR scheme
on collision resistant was demonstrated, and the improve-
ment on energy utilization of distributed energy resources
under collusion resistant was achieved. While the FSDR has
presented many strengths on both security and efficiency,
a lightweight design should be provided in future work to
enhance its scalability in more IoE scenarios.
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