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ABSTRACT The problem of state observer design for the linear discrete-time periodic (LDP) system and
its robust consideration are discussed in this paper. Applying the lifting technique and algebraic operations
based on the well-known CG-algorithm, an iterative algorithm for periodic observer gain can be generated.
By optimizing the free parameter matrix in the proposed algorithm, an algorithm on the minimum norm and
robust observer design for the LDP systems is presented. One numerical example is worked out to illustrate
the effect of the proposed approaches.

INDEX TERMS Linear discrete-time periodic (LDP) systems, state observer, robustness, iterative algorithm.

I. INTRODUCTION
The controller design requires us tomaster the state character-
istics of the system.However, it is impractical to directlymea-
sure all state variables precisely in practical applications. As a
result, it requires us to make reliable estimates of the states
that cannot be measured directly. The state observer that can
accurately reconstruct the state of the system is designed to
meet the requirements of this task. State observers, including
full order state observers and reduced order state observers,
play very important roles in modern control theory and con-
trol engineering. They have been widely studied in different
fields( [1]–[5]). Therefore, state observer design has drawn
much attention worldwide and there are many important rele-
vant works existed, one can see [6]–[8] and references therein
for instance.

For discrete-time systems, several state observers using
quick geometrical forms have been constructed. Based on
minimum-volume bounding parallelotopes, an approach to
the problem of recursively estimating the state uncertainty
set of a discrete-time linear dynamical system is derived
in [9]. Algorithms for computing minimal-volume ellipsoidal
bounds on the state of a linear, discrete-time dynamical
system are presented in [10] and [11]. Paper [12] presents
an algorithm to compute a set, which is represented by a
zonotope and contains the states consistent with the measured
output and the given noise and parameters. These solutions
are based on open-loop observers so that the error caused by

these methods will be disappointing, thus losing the practical
application value.

In this paper, the problem of state observer design is
transformed into the solution to the corresponding matrix
equation, and a neat iterative algorithm is given based on
the well-known CG algorithm. Initially, we consider the state
observer design problem for linear discrete-lime periodic
systems without disturbances and give the expected algo-
rithm. On this basis, we consider the case where uncertain
disturbances existed in the system parameters, and give the
algorithm under the consideration of minimum norm and
robustness.

The main contribution of this paper is to present the
approach to state observer design of linear discrete-time
periodic (LDP) systems. Applying lifting technique and
algebraic operations, the problem to be considered can be
solved by the extend algorithm. In the case of uncertain
disturbance existed, the proposed robust optimization algo-
rithm obtains the ideal approximation of the state of the
original system. The validity of the proposed algorithms
is reflected in the numerical example at the end of the
paper.

Here, we give descriptions of some symbols which will be
encountered in the rest of this paper. tr(A) means the trace
of matrix A. Norm ‖A‖ is a Frobenius norm of matrix A.
3(A) means the eigenvalue set of matrix A and 9A denotes
the monodromy matrix AK−1AK−2 · · ·A0. For a column

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8539

https://orcid.org/0000-0001-8995-7199


L. Lv et al.: Periodic Observers Synthesis Approach for LDP Systems Based on Iteration

sub-block matrix X =
[
X1 X2 · · · Xn

]
∈ Rm×n, vec(X )

denotes
[
XT
1 XT

2 · · · X
T
n
]T
∈ Rmn

II. PRELIMINARIES
Consider the observable linear discrete-time periodic system
as the following state-space model:{

xt+1 = Atxt + Btut
yt = Ctxt

(1)

where t ∈ Z is the set of integers, xt ∈ Rn, ut ∈ Rr and
yt ∈ Rm are the state vector, the input vector and the output
vector respectively, At ∈ Rn×n, Bt ∈ Rn×r and Ct ∈ Rn×m

are coefficient matrices with T -periodic property (T ≥ 1),
which indicate that

AT+t = At , BT+t = Bt , CT+t = Ct .

The state observer could give an asymptotic estimation of
xt in cases where the state xt of system (1) could not be
measured under some practice restrictions but the input ut and
output yt can be utilized. State observer based on state error
feedback is widely used, which can be taken the form as

x̂t+1 = At x̂t + Btut + Lt
(
yt − ŷt

)
, (2)

where x̂t ∈ Rn is the state of the observer, ŷt = Ct x̂t is the
output of the observer and Lt ∈ Rn×m is a real matrix with
periodic T .

Obviously, system (2) is equivalent to the following
T -periodic closed loop system

x̂t+1 = (At − LtCt) x̂t + Btut + Ltyt , (3)

whose monodromy matrix is

9A = ÃT−1ÃT−2 · · · Ã0

where Ãi = Ai − LiCi, i ∈ 0,T − 1. Then the problem of
observer design for linear discrete-time periodic system (1)
can be represented as
Problem 1: Consider the observable linear discrete-time

periodic system (1), seek the periodic matrix Lt ∈ Rn×m,

t ∈ 0,T − 1, such that the observer system (2) gives an
asymptotic estimation of state xt .

The first thing to consider is the existence condition for a
full order state observer. A simple proposition is given and its
proof is omitted.
Proposition 1: For an observable system, there exists a

periodic matrix Lt ∈ Rn×m, t ∈ 0,T − 1 making Problem 1
solvable if and only if all the eigenvalues of the monodromy
matrix 9A of system (3) lie in the open unit disk.
Let 0 = {s1, · · · , sn, s ∈ C} be the predetermined set of

poles of system (3), which is symmetric with respect to the
real axis. Let Ft ∈ Rn×n be the T -periodic matrix satisfying
3(9F ) = 0. Clearly,3(9A) = 0 if and only if there exists a
T -periodic invertible matrix Xt such that

X−1t+1ÃtXt = Ft . (4)

Because the transpose dose not change eigenvalues of the
matrix, equation (4) is equivalent to

ÃTt Xt = Xt+1Ft . (5)

Obviously, Equation (5) can be rewritten as

ATt Xt − C
T
t L

T
t Xt = Xt+1Ft , (6)

which is a variant form of periodic Sylvester matrix equation.
Namely, the problem of observer design has been trans-
formed into the problem of solving periodic Sylvester matrix
equation.

When the system is disturbed by external environment,
the closed loop system matrix will deviate from the nominal
matrix Ãt , which can be generally expressed as

At − LtCt 7→ At +1a,t − Lt
(
Ct +1c,t

)
, t ∈ 0,T − 1,

in which 1a,t ∈ Rn×n, 1c,t ∈ Rm×n, t ∈ 0,T − 1 are
random small perturbations. Thus, the problem of robust
observer design for linear discrete-time periodic system (1)
can be portrayed as
Problem 2: Consider the observable linear discrete-time

periodic system (1), seek the periodic matrix Lt ∈ Rn×m,

t ∈ 0,T − 1, such that the following conditions are met:

1) Observer system (2) gives an asymptotic estimation of
state xt .

2) Eigenvalues of the closed loop observer are as insensi-
tive as positive to small perturbations.

III. MAIN RESULTS
Starting from the problem of observer design for linear
discrete-time periodic system (1), the problem can be trans-
formed into the problem of solving the following periodic
Sylvester matrix equation equivalently:

ATt Xt + Xt+1F̄t = Mt , t ∈ 0,T − 1 (7)

in which F̄t = −Ft , M = CT
t L

T
t Xt . Utilizing cyclic lifting

technique, equation (7) can be rewritten as following time-
invariant equation:

ACX + XF̄C = MC , (8)

where

AC =


0 0 0 · · · AT0
AT1 0 0 · · · 0
0 AT2 0 · · · 0
...

. . .
...

0 0 · · · ATT−1 0

,

F̄C =


0 0 0 · · · F̄T−1
F̄0 0 0 · · · 0
0 F̄1 0 · · · 0
...

. . .
...

0 0 · · · F̄T−2 0

,
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X =



0 X1 0 · · · 0
0 0 X2 · · · 0

0 0 0
. . .

...
...

...
. . . XT−1

X0 0 0 · · · 0

,

MC
=


M0 0 0 · · · 0
0 M1 0 · · · 0
0 0 M2 0
...

...
. . .

...

0 0 0 · · · MT−1

.
By using theKronecker product and vectorization operator,

the time-invariant equation (8) can be formulated into the
following equation:[

I ⊗ AC F̄CT ⊗ I
]
vec(X ) = vec(MC ), (9)

which is a variant of equation Ax = b. Hence, the solving
of the equation (8) is equivalent to the solving of the equa-
tion (9). In order to solving the equation Ax = b, a CG-based
method is presented as follows:

Algorithm 1 CG-Based Method for Solving Ax = b
1) Choose initial vector x(0) ∈ Rn, and tolerance ξ ;
2) Calculate

q(0) = b− Ax(0);

r(0) = AT q(0);

p(0) = −r(0);

k := 0;

3) For ‖r(k)‖ > ξ , calculate

α(k) =
tr
[
rT (k)p(k)

]
‖Ap(k)‖2

;

x(k + 1) = x(k)+ α(k)p(k);

q(k + 1) = b− Ax(k + 1);

r(k + 1) = AT q(k + 1);

p(k + 1) = −r(k + 1)+
‖r(k + 1)‖2

‖r(k)‖2
p(k);

k = k + 1;

What can be seen is that Algorithm 1 is a neat method
to solve the equation Ax = b. However, the large-size and
the non-sparsity of coefficient matrices of (9) restrict the
application of the algorithm. In order to solve the periodic
Sylvester matrix equation (7) and further solve Problem 1 by
the CG-based method, we extend Algorithm 1 to a periodic
iterative algorithm which can be used in the case of solving
Problem 1.

Firstly, for the following index:

J =
1
2

T−1∑
t=0

∥∥∥CT
t Gt − A

T
t Xt (k)− Xt+1(k)F̄t

∥∥∥2 , (10)

seek the minimizer periodic matrix X∗t such that

∂J
∂Xt

∣∣∣∣
Xt=X∗t

= 0.

Remark 1: Since the function J is a quadratic function,
there is only one extreme point, and the extreme point is the
global minimum point. This means that the index function
will not fall into the local optimum for every choice of initial
value.
Remark 2: What should be pointed out is that the variable

CT
t Gt in equation (10) is equivalent to theMt in equation (7).

Since the Gt is a given free parameter matrix, CT
t Gt can be

seen as a known matrix.
The algorithm to seek the matrix Lt can be presented as

follows:

Algorithm 2 Periodic CG-Based Algorithm

1) Let Ft ∈ Rn×n, t ∈ 0,T − 1 be a real periodic matrix,
which satisfies 3(9F ) = 0 and 3(9F ) ∩ 3(9A) = 0.
Further, let Gt = LTt Xt ∈ Rr×n, t ∈ 0,T − 1 be a real
parametric matrix such that periodic matrix pair (Ft ,Gt )
is completely observable;

2) Set tolerance ε; Choose arbitrary initial periodic matrix
Xt (0) ∈ Rn×n, t ∈ 0,T − 1; calculate

Qt (0) = CT
t Gt − A

T
t Xt (0)− Xt+1(0)F̄t ;

Rt (0) = AtQt (0)+ Qt−1(0)F̄T
t−1;

Pt (0) = −Rt (0);

k := 0;

3) While ‖Rt (k)‖ ≥ ε, t ∈ 0,T − 1, calculate

α(k) =

∑T−1
t=0 tr

[
RTt (k)Pt (k)

]∑T−1
t=0

∥∥ATt Pt (k)+ Pt+1(k)F̄t∥∥2 ;
Xt (k + 1) = Xt (k)+ α(k)Pt (k) ∈ Rn×n

;

Qt (k+1) = CT
t Gt−A

T
t Xt (k+1)−Xt+1(k + 1)F̄t ;

Rt (k + 1) = AtQt (k + 1)+ Qt−1(k + 1)F̄T
t−1;

Pt (k+1) = −Rt (k+1)+

∑T−1
t=0 ‖Rt (k+1)‖

2∑T−1
t=0 ‖Rt (k)‖

2
Pt (k);

k = k + 1;

4) Let Xt = Xt (k). The real periodic matrix Lt can be
obtained as

Lt =
(
GtX−1t

)T
, t ∈ 0,T − 1.

Remark 3: Themain part of the algorithm does not contain
nested loops, so the computational complexity of the algo-
rithm is O(n).
Next, the convergence and correctness of the algorithm are

proved.
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Lemma 1: For sequences {Rt (k)}, {Pt (k)}, t ∈ 0,T − 1,
the following relations hold for k ≥ 0:

T−1∑
t=0

tr
[
RTt (k + 1)Pt (k)

]
= 0 (11)

T−1∑
t=0

tr
[
RTt (k)Pt (k)

]
+

T−1∑
t=0

‖Rt (k)‖2 = 0 (12)

∑
j>0

(∑T−1
t=0 ‖Rt (k)‖

2
)2

∑T−1
t=0 ‖Pt (k)‖

2
< ∞ (13)

Proof: According to the expression of Rt (k+1), the fol-
lowing deduction is established.

Rt (k + 1)

= AtQt (k + 1)+ Qt−1(k + 1)F̄Tt−1

= At
(
CtGt − ATt Xt (k + 1)− Xt+1(k + 1)F̄t

)
+

(
Ct−1Gt−1 − ATt−1Xt−1(k)− Xt (k)F̄t−1

)
F̄Tt−1

= At
(
CtGt − ATt Xt (k)− Xt F̄t

)
+

(
Ct−1Gt−1 − ATt−1Xt−1 − Xt (k)F̄t−1

)
F̄Tt−1

−α(k)At
(
ATt Pt (k)+ Pt+1(k)F̄t

)
−α(k)

(
ATt−1Pt−1(k)+ Pt (k)F̄t−1

)
F̄Tt−1

= Rt (k)− α(k)At
(
ATt Pt (k)+ Pt+1(k)F̄t

)
−α(k)

(
ATt−1Pt−1(k)+ Pt (k)F̄t−1

)
F̄Tt−1

Then, based on the deduction mentioned above and the
expression of α(k) as well as the definition of Frobenius
norm, the following deduction holds.

T−1∑
t=0

tr
[
RTt (k + 1)Pt (k)

]
=

T−1∑
t=0

tr
[
RTt (k)Pt (k)

]
−α(k)

T−1∑
t=0

[(
ATt Pt (k)+ Pt+1(k)F̄t

)T
ATt Pt (k)

]

−α(k)
T−1∑
t=0

[(
ATt−1Pt−1(k)+ Pt (k)F̄t−1

)T
Pt (k)F̄t−1

]

=

T−1∑
t=0

tr
[
RTt (k)Pt (k)

]
−α(k)

T−1∑
t=0

∥∥∥ATt Pt (k)+ Pt+1(k)F̄t∥∥∥2
= 0

Thus, Equation (11) holds. Obviously, Equation (12) holds
for k = 0. Then, according to the expression of Pt (k+1) and

Equation (11), the following deduction holds:
T−1∑
t=0

tr
[
RTt (k + 1)Pt (k + 1)

]
= −

T−1∑
t=0

tr
[
RTt (k + 1)Rt (k + 1)

]
+

∑T−1
t=0 ‖Rt (k + 1)‖2∑T−1
t=0 ‖Rt (k)‖

2

T−1∑
t=0

tr
[
RTt (k + 1)Pt (k)

]
= −

T−1∑
t=0

‖Rt (k + 1)‖2

That’s to say, Equation (12) holds. Applying Kronecker
product, we can conduct as Equation (14), shown at the
bottom of the next page, where,

π =

∥∥∥∥∥∥∥∥∥∥∥


E ⊗ AT0 F̄T0 ⊗ E

E ⊗ AT1 F̄T1 ⊗ E
E ⊗ AT2

. . . F̄TT−2 ⊗ E
F̄TT−1 ⊗ E E ⊗ ATT−1



∥∥∥∥∥∥∥∥∥∥∥

2

.

Review the Index (10) and again using the expression
of α(k), the following deduction holds for k ≥ 0.

J (k + 1)

=
1
2

T−1∑
t=0

∥∥∥Qt (k)− α(k) [ATt Pt (k)+ Pt+1(k)F̄t]∥∥∥2
=

1
2

T−1∑
t=0

‖Qt (k)‖2 +
1
2
α2 (k)

T−1∑
t=0

∥∥∥ATt Pt (k)+ Pt+1(k)F̄t∥∥∥2
−α(k)

T−1∑
t=0

tr
[
QTt (k)

(
ATt Pt (k)+ Pt+1(k)F̄t

)]
= J (k)+

1
2
α(k)

T−1∑
t=0

tr
[
PTt (k)Rt (k)

]
−α(k)

T−1∑
t=0

tr
[
PTt (k)AtQt (k)+ P

T
t (k)Qt−1(k)F̄

T
t−1

]
= J (k)−

1
2
α(k)

T−1∑
t=0

tr
[
PTt (k)Rt (k)

]
.

Then, one has

J (k + 1)− J (k) = −
1
2

(
∑T−1

t=0 tr
[
PTt (k)Rt (k)

]
)2∑T−1

t=0

∥∥ATt Pt (k)+ Pt+1(k)F̄t∥∥2
≤ 0, (15)

which means that {J (k)} is a descent sequence, so that

J (k + 1) ≤ J (0)

holds for all k ≥ 0. Then
∞∑
k=0

[J (k)− J (k + 1)] = J (0)− lim
k→∞

J (k) <∞. (16)

8542 VOLUME 6, 2018



L. Lv et al.: Periodic Observers Synthesis Approach for LDP Systems Based on Iteration

In view of Equation (12), (14) and (16), the following
deduction holds:

∑
k≥0

(∑T−1
t=0 ‖Rt (k)‖

2
)2

∑T−1
t=0 ‖Pt (k)‖

2

=

∑
k≥0

(∑T−1
t=0 tr

[
RTt (k)Pt (k)

])2
∑T−1

t=0 ‖Pt (k)‖
2

≤ π
∑
k≥0

(∑T−1
t=0 tr

[
RTt (k)Pt (k)

])2
∑T−1

t=0

∥∥ATt Pt (k)+ Pt+1(k)F̄t∥∥2
= 2π (J (0)− lim

k→∞
J (k))

< ∞.

To summarize, the Lemma 1 has been proved.
Based on the above lemma, the following conclusion could

be drawn as:
Theorem 1: Consider the completely observable periodic

discrete-time linear system (1), the T -periodic matrix Lt ,
t ∈ 0,T − 1, derived from Algorithm 2 is a solution of
Problem 1.

Proof: To explain that matrices Lt , t ∈ 0,T − 1,
which derived from Algorithm 2 are solutions to Problem 1,
we first prove the convergence of matrix sequence {Rt (k)},
t ∈ 0,T − 1 generated from Algorithm 2.

By Lemma 1 and the expressions of Pt (k + 1) in
Algorithm 2, we have
T−1∑
t=0

‖Pt (k + 1)‖2

=

T−1∑
t=0

∥∥∥∥∥−Rt (k + 1)+

∑T−1
t=0 ‖Rt (k + 1)‖2∑T−1
t=0 ‖Rt (k)‖

2
Pt (k)

∥∥∥∥∥
2

=

(∑T−1
t=0 ‖Rt (k + 1)‖2∑T−1
t=0 ‖Rt (k)‖

2

)2 T−1∑
t=0

‖Pt (k)‖2

+

T−1∑
t=0

‖Rt (k + 1)‖2 . (17)

Equation (17) can be written as

t(k + 1) = t(k)+
1∑T−1

t=0 ‖Rt (k + 1)‖2
(18)

equivalently, where

t(k) =

∑T−1
t=0 ‖Pt (k)‖

2(∑T−1
t=0 ‖Rt (k)‖

2
)2 .

Assume that

lim
k→∞

T−1∑
t=0

‖Rt (k)‖2 6= 0, (19)

which implies that there exists a constant δ > 0 such that
T−1∑
t=0

‖Rt (k)‖2 ≥ δ

T−1∑
t=0

∥∥∥ATt Pt (k)+ Pt+1(k)F̄t∥∥∥2 = T−1∑
t=0

∥∥∥(E ⊗ ATt ) vec(Pt (k))+ (F̄T
t ⊗ E

)
vec(Pt+1(k))

∥∥∥2

=

∥∥∥∥∥∥
(
E ⊗ AT0

)
vec (P0 (k))+

(
F̄T0 ⊗ E

)
vec (P1 (k))(

E ⊗ AT1
)
vec (P1 (k))+

(
F̄T1 ⊗ E

)
vec (P2 (k))

+
(
F̄TT−1 ⊗ E

)
vec (P0 (k))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥


E ⊗ AT0 F̄T0 ⊗ E

E ⊗ AT1 F̄T1 ⊗ E
E ⊗ AT2

. . . F̄TT−2 ⊗ E
F̄TT−1 ⊗ E E ⊗ ATT−1




vec (P0 (k))
vec (P1 (k))
vec (P2 (k))

...

vec (PT−1 (k))



∥∥∥∥∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥∥∥∥∥


E ⊗ AT0 F̄T0 ⊗ E

E ⊗ AT1 F̄T1 ⊗ E
E ⊗ AT2

. . . F̄TT−2 ⊗ E
F̄TT−1 ⊗ E E ⊗ ATT−1



∥∥∥∥∥∥∥∥∥∥∥

2 ∥∥∥∥∥∥∥∥∥∥∥


vec (P0 (k))
vec (P1 (k))
vec (P2 (k))

...

vec (PT−1 (k))



∥∥∥∥∥∥∥∥∥∥∥

2

= π

T−1∑
j=0

∥∥Pj(k)∥∥2 (14)
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for all k ≥ 0. It follows from (18) and (19) that

t(k + 1) ≤ t(k)+
1
δ
≤ · · · ≤ t(0)+

k + 1
δ

,

which means
1

t(k + 1)
≥

δ

δt(0)+ k + 1
.

So we have
∞∑
k=1

1
t(k)
≥

∞∑
k=1

δ

δt(0)+ k + 1
= ∞.

However, according to Equation (13) that
∞∑
j=1

1
t(k)

<∞.

This gives a contradiction. Thus, there holds

lim
k→∞

T−1∑
t=0

‖Rt (k)‖2 = 0,

which indicates that the T -periodic matrix Xt generated by
Algorithm 2 is one solution to the equation (7). Thereby,
the T -periodic matrix Lt derived from Algorithm 2 is one
solution to Problem 1.

A. MINIMUM NORM AND ROBUST CONSIDERATION
The design of state observer also need to consider the problem
of robustness. In previous work, we discussed the robustness
of small gain and immunity to system uncertainty [13]. There-
fore, we propose an index function, which takes into account
both minimum norm processing and anti-interference
processing.
Lemma 2 [13]: Let 9 = A(T − 1)A(T − 2) · · ·A(0) ∈

Rn×n be diagonalizable and Q ∈ Cn×n be a nonsingu-
lar matrix such that 9 = Q−13Q ∈ Rn×n, where
3 = diag{λ1, λ2, · · · , λn} is the Jordan canonical form
of matrix 9. For a real scalar ε > 0, 1i(ε) ∈ Rn×n,

i ∈ 0,T − 1, are matrix functions of ε satisfying

lim
ε→0+

1i(ε)
ε
= 1i,

where 1i ∈ Rn×n, i ∈ 0,T − 1 are constant matrices. Then
for any eigenvalue λ of matrix

9(ε) = (A(T − 1)+1T−1(ε)) · · · (A(0)+10(ε)) ,

the following relation holds:

min
i
{|λi − λ|} ≤ εnκF(Q)

(
T−1∑
i=0

‖A(i)‖T−1F

)
max
i
{‖1i‖F}

+O(ε2). (20)
Then, one could take the index of anti-interference

property as

J1(Gt ) = κF(X (0))
T−1∑
t=0

‖At − LtCt‖
T−1
F . (21)

When it comes to minimum norm processing, the paper takes
the index as

J1(Gt ) =
T−1∑
t=0

‖Lt‖2F . (22)

Under the consideration of minimum norm and robustness,
takes a tradeoff between J1 and J2:

J (Gt ) = αJ1(Gt )+ (1− α)J2(Gt ), (23)

where 0 ≤ α ≤ 1 is a weighting factor. The algorithm for
robust and minimum norm observer design can be presented
as follows.

Algorithm 3 Robust and Minimum Norm Observer Design

1) Let Ft ∈ Rn×n, t ∈ 0,T − 1 be a real periodic matrix,
which satisfies 3(9F ) = 0 and 3(9F ) ∩ 3(9A) = 0.
Further, let Gt = LTt Xt ∈ Rr×n, t ∈ 0,T − 1 be a real
parametric matrix such that periodic matrix pair (Ft ,Gt )
is completely observable;

2) Set tolerance ε; Choose arbitrary initial periodic matrix
Xt (0) ∈ Rn×n, t ∈ 0,T − 1; calculate

Qt (0) = CT
t Gt − A

T
t Xt (0)− Xt+1(0)F̄t ;

Rt (0) = AtQt (0)+ Qt−1(0)F̄T
t−1;

Pt (0) = −Rt (0);

k := 0;

3) While ‖Rt (k)‖ ≥ ε, t ∈ 0,T − 1, calculate

α(k) =

∑T−1
t=0 tr

[
PTt (k)Rt (k)

]∑T−1
t=0

∥∥ATt Pt (k)+ Pt+1(k)F̄t∥∥2 ;
Xt (k + 1) = Xt (k)+ α(k)Pt (k) ∈ Rn×n

;

Qt (k + 1)=CT
t Gt−A

T
t Xt (k+1)−Xt+1(k+1)F̄t ;

Rt (k + 1) = AtQt (k + 1)+ Qt−1(k + 1)F̄T
t−1;

Pt (k + 1)=−Rt (k+1)+

∑T−1
t=0 ‖Rt (k+1)‖

2∑T−1
t=0 ‖Rt (k)‖

2
Pt (k);

k = k + 1;

4) Based on gradient-based search methods and the
index (23), choosing the appropriate weighting factor α,
solve the optimization problem

Minimize J (Gt ),

and denote the optimal decision matrix by Gopt,t .
5) Substitute Gopt,t into step 2-3 gives optimization solution

Xopt,t (k)
6) Let Xopt,t = Xopt,t (k). The robust and minimum norm

periodic matrix Lopt,t can be obtained as

Lopt,t =
(
Gopt,tX−1opt,t

)T
, t ∈ 0,T − 1.

8544 VOLUME 6, 2018



L. Lv et al.: Periodic Observers Synthesis Approach for LDP Systems Based on Iteration

FIGURE 1. State response error polyline respectively corresponding to Lrand
t and Lrobu

t .

IV. A NUMERICAL EXAMPLE
Example 1: Consider the observable discrete periodic sys-

tem (1) with following parameters:

At =



−4.5 −1 2
2.5 0.5 1
0.2 0.4 0.1

, t = 3k

 0 1 0.5
1 2 1.2
1.2 0 1

, t = 3k + 1

 0 2 1
1 1 0
0 0.1 0.3

 , t = 3k + 2

,

Bt =
[
1 1 1

]T
, t = 0, 1, · · · ,

Ct =



[
2 0.5 1

]
, t = 3k[

−1 0.3 1
]
, t = 3k + 1[

0 3 1
]
, t = 3k + 2

where k = 0, 1, · · · , and let the pole set of the observer
be 0 = {−0.1 ± 0.1i,−0.1}. Let G(t) = [1.5 1 − 1.5]
randomly and substitute the parameters into Algorithm 2,
the following periodic observer gain can be obtained:

Lrandt =



[
−1.9047 1.2999 0.3712

]T
, t = 3k[

3.4261 6.7995 −0.0732
]T
, t = 3k + 1[

0.7874 −7.2746 0.2120
]T
, t = 3k + 2.

Giving α = 0.5 and applying Algorithm 3 give the follow-
ing robust periodic observer gain:

Lrobut =



[
−2.2170 1.1513 0.3406

]T
, t = 3k[

0.1512 0.1517 −0.1218
]T
, t = 3k + 1[

0.6359 −0.2399 0.0857
]T
, t = 3k + 2.

As far as minimum norm is concerned, by computing ‖L‖ =√∑3
t=0 ‖Lt‖

2
F for L

rand
t and Lrobut respectively, we can obtain

that
∥∥Lrand∥∥ = 10.8174 and

∥∥Lrobu∥∥ = 2.6242. What can
be concluded is that the minimum norm processing of the
observer gain is successful.

Let the periodic close-loop system matrix be perturbed by
random disturbance 1A

t ∈ R3×3 and 1C
t ∈ R3×1, which

satisfy
∥∥1A

t

∥∥
F = 1,

∥∥1C
t

∥∥
F = 1, t = 0, 1, · · · . Then the

disturbed close-loop system matrix can be represented as:

At + µ1A
t − Lt

(
Ct + µ1C

t

)
, t = 0, 1, · · · ,

where µ > 0 is a factor representing the disturbance level.
Let discrete reference input v(t) = 0.1 sin(π2 + t) and error
et = x̂t − xt . Then the results of the state response error
polyline respectively corresponding to Lrandt and Lrobut in step
40 can be obtained in Figure 1. By comparison, the robust
observer design algorithm proposed in this paper is effective.

V. CONCLUSION
The paper presents an ideal approach to design state observers
for linear discrete-time periodic systems. The algorithm can
also be applied in the cases where uncertain disturbances
existed. It is reasonable and successful to transform the
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observer design problem into the solution to the corre-
sponding matrix equation. Simulation results have shown the
correctness and efficiency of the proposed algorithm.
Observer-based robust stabilization of linear discrete-time
periodic systems will be the focus of the next step.
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