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ABSTRACT One of the most crucial challenges in quantum communication is the discrimination of the
non-orthogonal coherent states approaching the Helstrom limit. In this paper, a soft iterative quantum
receiver is derived for discriminating among the coherent states. The receivers employing the iterative
strategy for optimizing the feedback measurement are capable of operating closer to the theoretical error
probability limit, actuating about 1.05 dB improvement over a recent proposed quantum receiver. The
iterative quantum receivers achieve excellent performance despite using a reduced number of feedback
measurement steps. Monte Carlo simulations are performed for quantifying the influence of practical
quantum-domain impairments. These results suggest that iterative detection offers substantial robustness
against many imperfections degrading realistic experimental implementation.

INDEX TERMS Quantum communications, soft iterative quantum receiver, Helstrom limit, quantum-
domain impairments, robustness.

I. INTRODUCTION
The laws of quantum mechanics provide a promising solu-
tion to our quest for miniaturization and increased process-
ing power [1], while quantum information transmission is
becoming one of the most promising topics in the field of
communications. Coherent states are the best known infor-
mation carriers in quantum communication owing to their
robustness [2]. High-confidence identification of the coherent
states in the face of the inherent quantum effects to approach
the ultimate physical limit is of both practical and theoretical
interest [3].

Binary coherent state discrimination has been theoretically
treated and experimentally tested [4]–[8], which has also been
shown to outperform the error probability limit of classi-
cal receivers that was referred to as the standard quantum
limit (SQL) [9]. Indeed they have also been shown to
approach the limit of quantum receivers termed as the
Helstrom limit (HL) [10]. More recently, in the case of

M -ary communications, the feedback-aided optimized strate-
gies of [11] and [12] have achieved a theoretical error prob-
ability below the SQL. The quantum receiver of [13] is
a hybrid scheme amalgamating both the homodyne detec-
tor [14] and optimized displacement receiver [15] that
carries out a pair of successive measurements. Another quan-
tum receiver designed for M -ary communications [16] has a
hybrid structure relying on the phase shift and the optimized
displacement based receiver. These receivers all utilize the
classic Bayesian rules to update the feedback signals. How-
ever, these two types of optimized displacement receivers
require different quantum states to feed back, which is too
complex. Moreover, at the time of writing, there is still a gap
between the error probability achieved by the aforementioned
non-iterative receivers designed for M -ary communication
and the HL.

The photon number-resolving detector (PNRD) has been
routinely applied for coherent states discrimination to carry
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out a generalized measurement, leading to an inconclusive
result [17]. The benefit of invoking the PNRD for M -ary
coherent states discrimination was also intimated in [18],
which was shown to be superior to the conventional ON-OFF
detector. In practice, the non-ideal quantum efficiency and the
dark count of the photon detector, the non-ideal transmittance
of the beam splitter as well as the mode mismatch between
the signal and the local oscillating field will degrade the
performance of the quantum receiver [16]. Investigating the
impact of each imperfection separately by numerical simula-
tions allows us to quantify their individual impact [19].

Against this background we propose a novel quantum
receiver, which relies on a sequence of feedback measure-
ments optimized by a new iterative strategy. More explicitly,
our novel contribution mainly lies in the conception of an
efficient iterative a posteriori probability (APP) soft demap-
ping strategy conceived for anM -ary quantum receiver. The
technique proposed in aforementioned paper uses the classic
Bayesian updating procedure in each subsequent detection.
By contrast, in our approach, we conceived an iterative detec-
tion feedback block, which is activated during each subse-
quent detection iteration. The soft log-likelihood ratio (LLR)
of each information bit is used for choosing the specific state
for optimizing the feedback to the local oscillating field for
the subsequent detection and demodulation. Hence the key
contributions of this paper can be summarized as follows:
(1) the proposed iterative receiver exceeds the sensitivity

of the recently proposed non-iterative receivers of [20]
and [21] and approaches the HL;

(2) the iterative receiver achieves an outstanding error per-
formance at a reduced number of feedback steps, when
compared to the conventional non-iterative receiver;

(3) the iterative receiver exhibits robustness to the imper-
fections of the realistic quantum devices, for example
the fidelity degradation due to dark counts.

In a nutshell, the goal of this paper is to provide a char-
acterization of the proposed iterative scheme. The remainder
of this paper is organized as follows. In Section II, we out-
line our notations and formally characterize the coherent
states of M -ary quadrature amplitude modulation (QAM)
signals. In Section III, we introduce the schematic based
on 4QAM in simple words to make the paper easier to
read both by physicists and engineers. A detailed receiver
model and the proposed iterative strategy is then derived for
M -ary QAM. In Section IV, simulations are provided for
characterizing the performance of the iterative receiver both
for 4QAM and 16QAM, compared to the recently proposed
non-iterative receiver of [20] and [21]. The robustness of
the receiver is also discussed in the face of several imper-
fections including the sub-unity mode mismatch between
the signal and the local oscillating field [22], the non-ideal
transmittance of the beam splitter [20], the non-ideal quan-
tum efficiency and non-zero dark count of photon detec-
tors [23]. Moreover, we use EXtrinsic Information Transfer
(EXIT) charts [24] for analyzing the convergence of the iter-
ative quantum receiver. Section V offers our simulations, our

FIGURE 1. The subset partitioning for each of the two or four bit position
of (a) 4QAM or (b) 16QAM coherent state constellations. The numbers
above the constellations point represent the binary information bit. The
shaded regions correspond to the decision regions for xi = 1 and the
unshaded region correspond to xi = 0.

discussions on the performance of the iterative receiver and
provides our conclusions.

II. NOTATIONS AND DEFINITIONS
In quantum detection theory, the information is mapped both
to amplitude and phase for QAM signals relying on coherent
states. QAM signals can be characterized by a pair of quadra-
ture amplitudes x̂c and x̂s, which are defined as:

x̂c ≡ (â+ â†)/2, x̂s ≡ (â− â†)/2i, (1)

where â and â† denote the annihilation and the creation
operators respectively, while i =

√
−1. These amplitudes

can be determined independently. When each of the two
amplitudes takes L values, the total number M of the signals
is represented by

M = L2, L = 3, 4, 5, · · · . (2)

For convenience, the QAM alphabet index set� is defined
as follows:

� = {−(L − 1)+ 2(l − 1) | l = 1, · · · ,L}. (3)

Using the index above, the QAM signals can be defined as
a set of coherent states:∣∣ψSig.ω〉 = ∣∣nSig(ωp + iωq)〉 , ωp, ωq ∈ �, (4)

where nSig is the average number of photons of the signal
and ω represents the index of the signal, which is related
to ωp and ωq. The 4QAM scheme encodes each of the two
information bits x1x2 into M = 4 different signals and the
16QAM scheme encodes each of the four information bits
x1x2x3x4 into M = 16 different signals.

As shown in Fig. 1, the subset partitioning of the 4QAM
and 16QAM coherent state constellations for each two
bits or four bits is depicted. The shaded regions (only shown
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FIGURE 2. The receiver splits the received 4QAM signal into N parts.
Quantum state after splitting is displaced by D̂(βj ) and then measured by
a PNRD. Via iteration and feedback control, the value of displacement
D̂(βj ) in each part depends on the output of iterative detection
feedback block.

inside the unit square) correspond to the decision regions for
each bit in xi = 1, while the unshaded region to xi = 0.
Observe in Fig. 1 that the 4QAM constellation is translated
to a binary signalling selected from two possible pairs, while
the 16QAM constellation is translated to a binary signalling
selected from eight possible pairs.

III. ITERATIVE QUANTUM RECEIVER
In this section, the model of the iterative quantum receiver
is derived. The relevant basic iterative detection principles
are detailed in a tutorial style in [25]. The receiver has four
main components: beam splitters, displacement operations,
PNRD and iterative decoders. To present the underlying prin-
ciple of our iterative quantum receiver, we consider the simple
case of 4QAM, as shown in Fig. 2.

Once a quantum state is observed, it is collapsed to a certain
classical state. In order to distinguish the information carried
by the state, beam splitters can be utilized to split the state,
during which the amplitude of the state is reduced but the
phase information remains on each split state. The received
coherent state 4QAM signal is split into N equal-amplitude
parts by (N − 1) beam splitters. In our scheme we test the
hypothesized state

∣∣βj〉 selected from the 4QAM alphabet
and then the input signal is displaced by the displacement
operation D̂(βj), invoked for shifting the amplitude to the
vicinity of the vacuum state |0〉. Following this displacement,
the signal is detected by the PNRD and the output of the
detector is forwarded to the iterative decoders for the iterative
feedback process. Prior to the displacement, the signal is
delayed to synchronize the iteration and feedback actions.
Again, our scheme relies on the iterative strategy using the
soft log-likelihood ratios for optimizing the feedback mea-
surement and for decoding the received signals. After each
iteration, we estimate the most likely new state D̂(βj+1) to
be tested in the subsequent feedback period using the soft
LLR based on the detection and displacement history. The
final determination of the input signal state corresponds to
the most likely state determined during the last iteration.

A. ITERATIVE RECEIVER FOR 4QAM
As shown in Fig. 3, the jth measurement approach of
Fig. 2 for a coherent 4QAM state is demonstrated, which

FIGURE 3. The schematic of the soft iterative quantum receiver for j th
measurement approach. The diagonal lies at the input represent the
beam splitters, D̂(β) is the displacement operate and the PCP represents
the photon-counting process using the PNRD. The result of detection nj is
send to iterative detection feedback for iterative demapping and
decoding. A final decision d̃ is performed considering the outcomes
obtained on the N different parts.

shows the structure of the beam splitter, displacement opera-
tion, electro-optic modulator, demapper/demodulator and of
the a posteriori probability (APP) decoder block in detail.
We ensure that the a priori probability of the coherent states is
the same, i.e., Pm = 1/4. Each received signal is split into N
parts using (N − 1) beam splitters, so that the signal intensity
is the same in each part. The jth splitting ratio Rj of the signal
is 1

N−j+1 and the corresponding signal is

∣∣ψm,j〉 = ∣∣∣∣ψSig.m√N
〉
, j = 1, . . . ,N , (5)

where m is the 4QAM alphabet index. Let us now define the
ratio R = N/M to describe the number of split signals and
the order of incoming signal. For a large ratio, the number of
measurements related to the state will increase, but the signal
energy of each measurement becomes low. In other words,
we obtain N copies of a weaker state

∣∣∣ψSig.m√
N

〉
of the incoming

signal
∣∣ψm,j〉 without loss of the carried information.

At each part, the displacement operation D̂(β) applied to
the signal is accomplished by a local field

∣∣βm∗,j〉 as
D(β̂)

∣∣ψm,j〉 ∣∣βm∗,j〉 = ∣∣ψm,j − βm∗,j〉 . (6)

It is widely exploited that D(β) is realized by a beam splitter
leaving a transmittance of τ ≈ 1. If j = 1, the local field
obeys

∣∣βm∗,1〉 = ∣∣∣ψSig.1√
N

〉
. If j > 1, the local field

∣∣βm∗,j〉 and
m∗ are decided by the iterative strategy to be introduced.
Considering the overlapping areas between

∣∣ψm,j〉 and∣∣βm∗,j〉, the average intensity of each field is [15]

Im,j = (1− ξ) τ
∥∥ψm,j∥∥2 + ξ∥∥√τψm,j − βm∗,j∥∥2, (7)

where ξ, 0 < ξ ≤ 1 represents the effect of mode mismatch
and τ, 0 < τ ≤ 1 describes the transmittance of the beam
splitter. The contributions [13], [23] showed that the optimal
displacement minimizing the error probability was displacing
the coherent state signal close to the vacuum state |0〉.

The photon counting process (PCP) of Fig. 3 is imple-
mented using the PNRD. Following the displacement opera-
tion, the number of photons nj is detected by the PNRD. The
measurement operator 5̂n of the PNRD based on n-photon
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detection was modelled by Izumi et al. as [12]

5̂n = e−v
n∑
l=0

∞∑
k=n−l

vl

l!
Ck
n−lη

n−l(1− η)k−(n−l) |k〉 〈k|, (8)

where Ck
n−l is the binomial coefficient. If the input signal

state is |ψm〉, the signal state after nulling becomes |γm〉 =∣∣∣ψm−βm∗√
N

〉
. Each split state is measured independently from

each other by PNRD with quantum impairments. The proba-
bility of detecting nj photons is given by [26]

P
(
nj|γm

)
= 〈γm| 5̂n |γm〉 = e−‖γm‖

2

(
‖γm‖

2)nj
nj!

, (9)

where 〈γm| 5̂n |γm〉 represents the inner product of the bar
vector 〈γm|, of the measurement operator 5̂n and of the
ket vector |γm〉.

The a posteriori probability after detecting nj photons in
the jth interval is given by [27]

Ppost_m,j =
Pprior_m,j · Pm,j∑3
i=0 Pprior_i,j · Pi,j

, (10)

where Pprior_m,j represents the a priori probability, and yields

Pprior_m,j = Pprior_x1,j · Pprior_x2,j, (11)

where Pprior_x1,j and Pprior_x2,j represent the a priori proba-
bility of bit x1 and x2, respectively. For the PNRD detector of
Fig.3, the probability Pm,j in (10) is [28]:

Pm,j = e−ν−ηIm,j
(
ν + ηIm,j

)nj
nj!

, (12)

where η describes the quantum efficiency and ν represents
the dark count of the PNRD detector. For an ideal photon
detector, the vacuum state is always determined with no
error, while misdetection may occur in the other state. For
non-ideal quantum efficiency, it is possible for the detector
to miscount the incoming photons, while for non-zero dark
count, the detector may register extra photons even in the
absence of a signal.

For 4QAMmodulation, each two bits x1 and x2 are mapped
to a coherent state signal, as shown in Fig. 1. The a pos-
teriori log-likelihood ratios λpostj (x1) and λ

post
j (x2) of each

information bit would be derived, respectively. For bit x1,
the a posteriori log-likelihood ratios are given by

λ
post
j (x1) = ln

P (Im|x1 = 1)
P (Im|x1 = 0)

+ ln
P (x1 = 1)
P (x1 = 0)

= λej (x1)+ λ
a
j (x1) , (13)

where λej (x1) and λ
a
j (x1) denote the extrinsic log-likelihood

ratio and the a priori log-likelihood ratio in interval j, respec-
tively. According to the Bayesian Rule, the extrinsic log-
likelihood ratio of bit x1 can be rewritten as

λej (x1) = ln
P
(
Im,j|x1 = 1

)
P
(
Im,j|x1 = 0

)
= ln[P

(
Im,j|x1 = 1, x2 = 0

)
P (x2 = 0|x1 = 1)

+P
(
Im,j|x1 = 1, x2 = 1

)
P (x2 = 1|x1 = 1)]

− ln[P
(
Im,j|x1 = 0, x2 = 0

)
P (x2 = 0|x1 = 0)

+P
(
Im,j|x1 = 0, x2 =1

)
P (x2 = 1|x1 = 0)].

(14)

Upon considering the fact that the random variables of the
coded bits x1 and x2 are independent, we have P(x2|x1) =
P(x2), yielding

λej (x1) = ln[P
(
Im,j|x1 = 1, x2 = 0

)
P (x2 = 0)

+P
(
Im,j|x1 = 1, x2 = 1

)
P (x2 = 1)]

− ln[P
(
Im,j|x1 = 0, x2 = 0

)
P (x2 = 0)

+P
(
Im,j|x1 = 0, x2 = 1

)
P (x2 = 1)]

= ln{P
(
Im,j|x1 = 1, x2 = 0

)
+P

(
Im,j|x1 = 1, x2 = 1

)
exp

[
λaj (x2)

]
}

− ln{P
(
Im,j|x1 = 0, x2 = 0

)
+ P

(
Im,j|x1 = 0, x2 = 1

)
exp

[
λaj (x2)

]
}.

(15)

Upon substituting (10) into (13), we arrive at

λej (x1) = ln
exp

(
φ2,j

)
+ exp

[
φ4,j + λ

a
j (x2)

]
exp

(
φ1,j

)
+ exp

[
φ3,j + λ

a
j (x2)

] , (16)

where φm,j = nj ln
(
ν + ηIm,j

)
−
(
ν + ηIm,j

)
. Using the

Jacobian logarithm [29] we arrive at the simple max-log
approximation:

λej (x1) = max
{
φ2,j, φ4,j + λ

a
j (x2)

}
−max

{
φ1,j, φ3,j + λ

a
j (x2)

}
. (17)

In a similar manner, the extrinsic log-likelihood ratio of bit
x2 can be derived as

λej (x2) = max
{
φ3,j, φ4,j + λ

a
j (x1)

}
− max

{
φ1,j, φ2,j + λ

a
j (x1)

}
. (18)

Based on our iterative strategy of Fig. 3, the a priori infor-
mation has to be fed back to the demapper/demodulator. For
the first iterative detection, both the a priori log-likelihood
λaj (x1) and λ

a
j (x2) are set to be zero. The a priori probability

Pprior_m,1 satisfies

Pporir_m,1 = Pporir_x1,1 · Pporir_x2,1, (19)

The a posteriori probability Ppost_m,j can be calculated at
the output of the demapper/demodulator. Upon substituting
(10) into (13), the a posteriori log-likelihood ratio λpostj (x1)
is given by

λ
post
j (x1) = ln

Pprior_m=2,j · Pm=2,j + Pprior_m=4,j · Pm=4,j
Pprior_m=1,j · Pm=1,j + Pprior_m=3,j · Pm=3,j

.

(20)
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In a similar manner, the a posteriori log-likelihood ratio
λ
post
j (x2) is given by

λ
post
j (x2) = ln

Pprior_m=3,j · Pm=3,j + Pprior_m=4,j · Pm=4,j
Pprior_m=1,j · Pm=1,j + Pprior_m=2,j · Pm=2,j

.

(21)

In the APP Decoder block of Fig. 3, the APP decoding
is a standard function [30]. The a priori log-likelihood ratio
λaj (x1) and λ

a
j (x2) can be obtained from the a posteriori log-

likelihood ratio λpostj (x1) and λpostj (x2) according to (13).
By substituting λ

post
j of (20), (21) and λej of (17), (18)

into (13), we arrive at:

λaj (x1) = λ
post
j (x1)− λej (x1) ,

λaj (x2) = λ
post
j (x2)− λej (x2) . (22)

The output sequences λaj (x1) and λ
a
j (x2) are then used for

calculating λej (x1) and λ
e
j (x2) in (17) and (18) for the next

iteration. Then m∗ of the local field
∣∣βm∗,j〉 can be obtained

via the maximum a posteriori (MAP) rule. The m∗ of the
last interval corresponding to λpostN becomes the hard-decision
output d̃ shown in Fig. 3.

B. GENERAL ITERATIVE SCHEME
So far we have concentrated our attention on 4QAM signals,
we emphasize that we can generalize these receivers toM-ary
QAM signals (M > 4), as shown in Fig. 4 and detailed below.
The split state is only partially affected by the receiver’s

quantum impairments and not all the parts are equally badly
affected, hence we can achieve beneficial gains by iteratively
exchanging information among them. In the APP decoder, the
APP decoder of [30] is invoked for determining the a priori
log-likelihood ratio λaj and the information bits d̃j recovered
from the extrinsic log-likelihood ratio λej . For soft signal
detection, the decoder makes a decision based on the number
of photons in the specific slot having the maximum soft
value of the signal. In the iterative feedback block of Fig. 3,
the maximum a posteriori soft detection is invoked [30] and
the soft output (usually the log-likelihood ratio of each bit)
gleaned from the soft demapper/demodulator is fed back to
the APP decoder for improving the error probability

For M -ary QAM modulation, each of the attained K =
log2M bits is mapped to a coherent state signal. The a poste-
riori log-likelihood ratio λpostj of the k th bit would be derived
according to

λ
post
j (xk) = ln

P
(
xk = 1|Im,j

)
P
(
xk = 0|Im,j

)
= ln

P
(
Im,j|xk = 1

)
P
(
Im,j|xk = 0

) + ln
P (xk = 1)
P (xk = 0)

= λej (xk)+ λ
a
j (xk) , (23)

where λej (xk ) and λ
a
j (xk ) represent the extrinsic log-likelihood

ratio and the a priori log-likelihood ratio of the kth bit in
interval j, respectively.

FIGURE 4. The schematic of the soft iterative quantum receiver. The
diagonal lies at the input represent the beam splitters. D̂(β) is the
displacement operate and the PCP represents the photon-counting
process using the PNRD.

Upon considering the fact that the random variables repre-
senting each of the k coded bits are independent, we have

λej (xk) = ln

K−1∑
k ′=0,k ′ 6=k

P
(
Im,j|xk = 1, xk ′

)
P (xk ′)

K−1∑
k ′=0,k ′ 6=k

P
(
Im,j|xk = 0, xk ′

)
P (xk ′)

. (24)

Similar arguments to those of the previous section can be
applied to M -ary QAM. Let

φm,j = nj ln
(
ν + ηIm,j

)
−
(
ν + ηIm,j

)
, m = 1, · · · ,M .

(25)

Then using the Jacobian logarithm, the extrinsic log-
likelihood ratio of each information bit can be expressed in
the form of (17) and (18). Then for M -ary QAM we have

λej (xk) = max
xk=1

{
φk,j + λ

a
k,j

}
−max

xk=0

{
φk,j + λ

a
k,j

}
. (26)

The a posteriori log-likelihood ratio λpostj (xk ) is given by

λ
post
j (xk) = ln

∑
m:xk=1

Pprioir_m,j · Pm,j∑
m:xk=0

Pprioir_m,j · Pm,j
, (27)

where m : xk = 1 and m : xk = 0 represent the index of the
M -ary QAM alphabet when xk = 1 or xk = 0. The a priori
log-likelihood ratio can be formulated as

λaj (xk ) = λ
post
j (xk )− λej (xk ). (28)
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The iterative detection algorithm can be summarized as
Algorithm 1 for the sake of explicit clarity.

Algorithm 1 Iterative Detection Algorithm
1) Initialization:Split the received signal into N parts, let∣∣βm∗,1〉 = ∣∣∣ψSig.0/√N 〉.
2)Main iteration
a) Operate the displacement operator D̂(β) on the received
state

∣∣ψm,j〉 with the local field ∣∣βm∗,j〉 according to (6).
b) Measure the displaced state with measurement operator
5̂n using PNRD according to (8).
c) Calculate Ppost_m,j and λ

post
j according to (10) and (27).

d) Calculate λej according to (26) and update λ
a
j according

to (28).
e) After a number of iterations, calculate the m∗ according
to the MAP rule.
3) Hard decision: After all splite state is detected,
the recovered bit d̃ is obtained subject to the hard decision
in the last part.

In the presence ofN time-intervals and of the PNRD detec-
tor’s imperfections, it is challenging to analytically study the
performance of the proposed quantum receiver. Therefore,
Monte Carlo simulations will be used for analyzing both the
convergence behavior and the bit-error-ratio (BER) perfor-
mance of the iterative receiver.

IV. SIMULATION RESULTS
In this section, we characterize our iterative quantum receiver
and compare its BER performance to that of the recently
proposed non-iterative quantum receivers of [20] and [21].
Explicitly, the non-ideal quantum efficiency and the dark
count of the photon detector, as well as the mode mismatch
between the signal and the local oscillating field will be
compared between our iterative receiver and the receivers
of [20] and [21]. Moreover, we use EXIT charts to study the
convergence behaviour of the iterative receiver [25].

The minimum error probability achieved by the optimum
detection of both PSK and QAM have been given in [31]. The
square root measurement (SRM) achieves the minimum error
probability with the aid equal a priori probability. When the
SRM is adopted, the error probability is represented as

Pe = 1−
1
M2

(
M∑
l=1

√
λl

)2

, (29)

where λl is the eigenvalue of the Gram matrix.

A. ERROR PROBABILITY COMPARISON
Fig. 5 illustrates the BER performance of the iterative
quantum receiver and of the recently proposed non-iterative
quantum receiver of [20] for 4QAM with different ratios of
R = N/M = 1.25 and R = N/M = 2.5 [20], together with
the SQL and the HL. Our simulation results indicate that the
iterative receiver outperforms the conventional non-iterative

FIGURE 5. Error probability of both the iterative receiver and of the
conventional non-iterative receiver for 4QAM.

FIGURE 6. Error probability of both the iterative receiver and of the
conventional non-iterative receiver for 16QAM.

quantum receiver. As the number of intervals N increases,
the BER performance of both the proposed scheme and of
the receiver of [20] improves. However, for a fixed number
of intervals N , the error probability of the iterative receiver
shows a better performance than the receiver of [20] and
approaches the HL more closely.

Observe in Fig. 5 that, even in case of a lower intervals N
(N = 5 for the proposed receiver and N = 10 for the receiver
in [20]), the BER of the proposed receiver exceeds that of the
conventional non-iterative receiver. Explicitly, the proposed
iterative strategy drastically improves the BER performance.

Furthermore, the BER of the iterative receiver and the
receiver of [21] is depicted for 16QAM in Fig. 6. For this
higher-order modulation, the BER performance of quan-
tum receivers is more susceptible to the specific value of
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FIGURE 7. Error probability of the iterative receiver and the conventional non-iterative receiver under different mode mismatch for (a) 4QAM (b) 16QAM.

FIGURE 8. Error probability of the iterative receiver and the conventional non-iterative receiver under different transmittance for
(a) 4QAM (b) 16QAM.

intervals N due to the increased size of the signal alphabet.
The proposed receiver achieves an approximately 1.05dB
gain and approaches the HL for 16QAM with N = 40.
Indeed, the proposed receiver remains superior to the con-
ventional non-iterative receiver [21] even for N = 20. Mean-
while, the results of Fig. 6 suggest thatN may be reducedwith
the aid of our iterative strategy, which achieves a low BER,
because the iterations extract as much information from each
photon’s arrival as possible. This is why our iterative strategy
allows the quantum receiver to have an exceptional BER
performance for M-ary QAM.

B. ROBUSTNESS OF THE RECEIVER
Until now, all components of the channel and the receiver
have been assumed to be ideal. In practice, however,
diverse imperfections degrade the BER [16]. In this section,
we will investigate the robustness of the iterative quantum
receiver against several typical quantum-domain imperfec-
tions. In order to make a fair comparison with the bench-
markers, the same parameters were chosen. We consider
the performance under the conditions of [19] including:
(1) sub-unity mode mismatch ξ between the signal and the
local oscillating fields, (2) sub-unity transmittance τ of the
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FIGURE 9. Error probability of the iterative receiver and the conventional non-iterative receiver under different quantum efficiency for
(a) 4QAM (b) 16QAM.

beam splitter, (3) non-ideal quantum efficiency η, where it
is possible for the detector to miscount incoming photons,
(4) non-zero dark count ν, where the detector may register
photon arrivals even in the absence of a signal. Monte Carlo
simulations of the iterative receivers and of the non-iterative
receivers were performed to compare the impact of these
individual imperfections.

The traces seen in Fig. 7 and Fig. 8 have been adjusted
to account for some typical values of ξ and τ . For example,
ξ = 0.998 represents a minor mode mismatch; ξ = 0.99
and ξ = 0.95 are typical situations achieved in previously
documented experiments [27]. The measured error prob-
ability versus average photon count for the transmittance
of τ = 0.9 and τ = 0.8 is depicted in Fig.8. Due to
the mode mismatch and sub-unity transmittance, the BER
performance of both the iterative receiver and of the non-
iterative receiver [20], [21] deteriorates to some extent. For
the receivers in [20] and [21], the BER performance is seri-
ously degraded even with a minor mode mismatch. Most
significantly, the BER performance of the iterative receiver
remains better than the SQL, while that of the receivers
in [21] is worse than the SQL, when ξ = 0.95. It becomes
evident that the degradation of the iterative receiver is less
severe than that of the receivers of [20] and [21], illustrating
that the deleterious effects of mode mismatch or sub-unity
transmittance are mitigated by our iterative strategy.

In Fig. 9 and Fig. 10, we discuss the BER perfor-
mance under detector imperfections. The typical imperfec-
tions imposed by non-ideal quantum efficiency η and by dark
count ν are investigated. For comparison, the BER perfor-
mance of both the iterative receiver and of the non-iterative
receiver having a quantum efficiency of η = 0.9 and η = 0.6
are plotted in Fig. 9. For higher-order modulation, non-ideal

quantum efficiency will impose a significant performance
degradation on the receiver of [21], since it results in a fail-
ure mode, where the a priori probability becomes incorrect.
The conventional non-iterative receiver of both 4QAM and
16QAM becomes quite susceptible to the quantum efficiency
degradation. Even upon considering a quantum efficiency
η = 0.6, the proposed receiver significantly outperforms
the conventional 16QAM non-iterative receiver, explicitly
illustrating that the errors due to non-ideal quantum efficiency
can be mitigated by our iterative strategy.

The measured BER versus the average number of pho-
tons for a dark count of ν = 10−5 and ν = 10−2 is
depicted in Fig.10. The BER performance of the receivers
in [20] and [21] exhibits a floor, which suggests that the dark
count seriously limits the performance of the non-iterative
quantum receivers, when having relatively higher photon
counts. By contrast, the performance of the iterative quantum
receiver is degraded modestly, which is free from the above-
mentioned BER floor formation. It should be noted that the
dark count has a stronger impact on the BER performance
than the quantum efficiency.

In the case of a quantum receiver relying on the nulling of
the probed states, the dark count will simply add to the photon
count of the optical signal and will lead to deleterious effects.
This results in interference between the amplitude of the local
field

∣∣φm∗,j〉 and the signal
∣∣φSig.m〉. The imperfection of the

detector strongly distorts the signal constellations and results
in an increased BER. However, the performance degradation
remains more moderate for our iterative strategy.

C. EXIT CHART ANALYSIS
The EXIT chart is applied for visualizing the conver-
gence behavior of the proposed iterative block. The iterative
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FIGURE 10. Error probability of the iterative receiver and the conventional non-iterative receiver under different dark count for (a) 4QAM (b) 16QAM.

FIGURE 11. The EXIT chart of the iterative receiver for (a) 4QAM (b) 16QAM.

detection feedback block in the proposed scheme process the
traditional information, which could be analyzed by EXIT
chart [32]. In this section, familiarity with EXIT chart anal-
ysis is assumed [25]. The exchange of extrinsic information
can be visualized by the stair-case-shaped decoding trajectory
seen in Fig. 11 for 4QAM in conjunction with nSig = 5 and
16QAM with nSig = 25. The reason for the selection of
the average signal photon count nSig is that the EXIT chart
analysis characterizes the iterative detection performance,
where a moderate signal energy is selected. In Fig. 11 the blue
curve indicates the mutual information improvement of the

inner detection component, while the red curve indicates that
of the outer receiver component. Each step of the stair-cased
shaped trajectory indicates the mutual information improve-
ment upon an extra iteration. For example, for the 4QAM
scenario seen at the left eight iterations are required for
approaching the 1:1 point, where an a priori information of 1
also results in an a posteriori information of one, which hence
leads to high-confidence decisions associated with a low error
probability. The number of iterations required for 16QAM to
converge is higher than that of 4QAM due to the vulnerable
nature of the higer-order modulation. It is also observed that

VOLUME 6, 2018 10205



C. Wei et al.: Soft Iterative Quantum Receivers Approaching the HL Using Realistic Quantum Devices

after a certain number of iterations, the mutual information
improvements become marginal, illustrating that the iterative
quantum receiver converges for both 4QAM and 16QAM.
Some further properties of the EXIT-chart are, as detailed
in [32]:

(1) The area under the inner decoder’s curve is pro-
portional to the achievable throughput of the
system;

(2) The area between the inner and outer component’s
curves is representative of how close the system is
capable of operating to its capacity. A narrow open
tunnel between them corresponds to near-capacity
operation.

V. CONCLUSIONS
We have improved the state-of-the-art quantum receiver.
Explicitly, an iterative quantum receiver was proposed for
QAM signals. The classical quantum receivers simply use the
Bayesian updating procedure and we improve it using the soft
iterative detection. The BER performance, robustness as well
as mutual information evolution of iterative quantum receiver
were analyzed. The iterative receiver has the potential of
identifying and mitigating the effects of practical quantum-
domain impairments, especially the fidelity degradation due
to dark counts. Hence our iterative receivers are capable of
approaching the Helstrom limit. We also demonstrate that
the iterative receiver is capable of achieving an exceptional
error performance at a reduced number of feedback steps.
Fewer feedback steps will allow us to detect a shorter pulse
width or higher rate signals, which are important for demand-
ing practical applications. In conclusion, our iteration-based
quantum receiver is capable of outperforming the state-of-art
quantum solutions.
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