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ABSTRACT Cooperative hunting of multi-autonomous underwater vehicle (AUV) is an important research
topic. Current studies concentrate on AUVs with the same speed abilities and mostly do not consider their
speed differences. In fact, AUVs in a hunting group are often of different types and possess different
maximum sailing speeds. For inhomogeneous multi-AUV, a novel time competition mechanism is proposed
to construct an efficient dynamic hunting alliance. Hunting teamwith AUVs possessing higher speed abilities
is more suitable for the vast underwater environment. In the pursuing stage, AUV needs to act fast enough
to avoid the escape of evader. To achieve a quick and accurate pursuit, a combined path planning approach
is presented, which combines a Glasius bio-inspired neural network model and a belief function. Simula-
tion experiments demonstrate the feasibility and efficiency of the proposed algorithm in the cooperative
hunting of inhomogeneous multi-AUV under dynamic underwater environment with intelligent evaders and
multi-obstacle.

INDEX TERMS Cooperative hunting, multi-AUV, GBNN, belief function, time competition mechanism.

I. INTRODUCTION
An autonomous underwater vehicle (AUV) is a robot that
has intelligence and can complete tasks in the ocean by itself
without the guidance of operator [1]. It has been widely used
in both civilian areas (deep ocean investigation, maintenance
of underwater devices and so on) and military field [2]–[5].
Since one single AUV has limited capacity, multi-AUV sys-
tem has become amore andmore hot topic.With the coopera-
tion and coordination, themulti-AUV system can improve the
capacity of a single AUV [6]–[8]. Researchers has finished
many studies on multi-AUV system, including underwater
cooperative search [9], [10], mine sweeping [11], [12], for-
mation control [13], dynamic task assignment [14], [15],
cooperative hunting [16]–[18] and so on. These studies on
multi-AUV system are all interesting and worthy of studying,
but cooperative hunting is more comprehensive. The compre-
hensive hunting problem includes three sub tasks: search of
evaders, formation of a dynamic hunting alliance, and path
planning until successful capture [19], [20].

There has been many researchers completing some
remarkable studies on the overall hunting problem.

Korf’s approach [19] is a manually derived greedy strategy as
well as a non-learning algorithm. The method uses a fitness
function that makes each predator attracted by the prey and
repelled from the closest predators. Denzinger et al. [21] pro-
posed an approach combining near neighbor rule and genetic
algorithm. They classify current status with the near neighbor
rule, and then decide the optimal action with the genetic
algorithm. The efficiency of the approach is demonstrated
in the experiment of hunting game since it can guide the
hunters with an optimal path. Nevertheless, it may fail in
complex situations sometimes. Vidal et al. [22] presented two
greedy hunting policies. Both simulation and experimental
results of real pursuit-evasion games are achieved in the
study. In paper [23], contract net protocol was presented to
fulfill the hunting game. It is a distributive algorithm, but
communication among pursuers in the hunting process may
be too heavy.

Most of the researches mentioned above need much nego-
tiation and calculation, which causes delays before the robot
takes its first step to pursue the evader.When the environment
changes it costs much time to reorganize the path too, so they
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are unsuitable for hunting in the dynamic varying environ-
ment. Yamaguchi [24], [25] studied the problem of captur-
ing a target with Hilare-type mobile robots in time-varying
environment, and presented a smooth time-varying feedback
control law to solve the problem. The control law is efficient,
but it may fall in deadlock in some arrangement of obstacles.
Wu et al. [18] and Cao et al. [26] applied artificial potential
field and limit-cycle based method for hunting formation
control to accomplish the cooperative hunting, in addition,
a virtual besieging range is combined into the algorithm, and
it is demonstrated that a rational virtual range with shortest
hunting time always exits. To decide the action (speed and
direction) selected by hunters, Ishiwaka et al. [27] and [28]
Sauter et al. [28] proposed a reinforcement learning (RL)
algorithm in the study of hunting game. RL is applied to
model the behavior of hunters, and hunters are able to learn
the hunting strategy by this method. The simulation result
demonstrates that RL is appropriate for hunting behavior
model in most situations but may fail in some complex envi-
ronments. Song et al. [29] studied on multi-robot cooperative
hunting behavior and put forward a mathematical model to it.
In fact, the output of the model has a steady state, but it
assumes hunting for a target is fulfilled when four robots
detect it so that does not discuss the important pursuit process.

Inspired by the good performance of bio-inspired net-
work in managing many complex systems, Ni et al. [30]
made use of bio-inspired neural network (BNN) for real-
time cooperative hunting in unknown environment. The result
shows the proposed approach can lead the robots to finish
the real-time hunting efficiently, and the situation that some
robots are broken in the hunting process is discussed too.
However, the strategy of the evader to escape from capture is
not discussed. Moreover, BNN utilized in the path planning
of robots, has the shortcomings such as high computational
complexity, long path planning time etc.

All the strategies discussed above are studied on the
ground-hunting problem. There are few researches on the
underwater hunting problem. Hunting in the ocean is different
from the ground hunting since the problem to be solved
is a three-dimensional (3-D) problem so that each AUV
has six degrees of freedom. Nguyen and Hopkin [31] and
Williams [32] modeled the mine hunting of AUV, and
applied the complete coverage approach to fulfill the hunting.
However, the hunted targets are static and have no intel-
ligence. Zhu and Huang [33] studied the multiple AUVs
hunting problem with the BNN model. The distance-based
negotiation method is put forward to allocate hunting task.
Simulation is completed in both 2-D and 3-D environ-
ment. The proposed algorithm can deal with various situa-
tions automatically and catch the target efficiently. However,
sometimes it falls into conflict state. Later Cao et al. [34],
Lv et al. [35], and Zhu et al. [36] proposed a method named
location forecasting to solve the conflict. Hunting AUVs will
check before their action. The algorithm is compared with the
artificial potential field method, and the algorithm can deal
with hunting tasks with less sailing distance than the artificial

potential field method. However, in the studies [33]–[36]
hunting team is formed with negotiation, which may be
irrational sometimes. Underwater environment is a unique
situation, and communication is narrow and prone to error.
It seems that the underwater environment cannot provide the
communication requirement of negotiation too.

Most studies are about hunting problem of homoge-
neous AUVs. So far, there is almost no research on the
hunting problem of inhomogeneous multi-AUV and intel-
ligent evaders. Some researches about task allocation dur-
ing hunting have been completed, but lacks of research on
the task allocation in the inhomogeneous multi-AUV hunt-
ing problem. What is more, many researches do not dis-
cuss on the problem that the evaders have some strategy
to escape. In military applications, the multi-AUV hunting
system often needs to capture invaders with certain intel-
ligence such as microrobot fishes, and their intelligence
will help them to escape. In practical, AUVs in the hunt-
ing team are often of different type and possess distinct
ability such as different sailing speed or different safety
distance, and the evader could have certain intelligence to
escape too.

This study focuses on the problem of inhomogeneous
AUVs hunting for intelligent evaders in dynamic underwater
environment. Firstly, a novel competition method, which is
suitable for task distribution among inhomogeneous AUVs
with different speeds, is applied to distribute hunting tasks.
Hunting AUVs compete for the evaders with their distance
to the evaders and their safety distance as well as velocity.
Dual competition strategy based on estimated hunting time
is put forward. The evader with the least time to a hunting
group will be chosen as an easiest hunted target and should
be captured first. At the same time, a team of AUVs with
the least time to capture the evader is formed into a dynamic
alliance.

After forming the hunting alliance, a hybrid path planning
approach is proposed in order to begin hunting as soon as
possible. The approach combines GBNN and belief function
path planning method. On the one hand, GBNN requires no
prior knowledge and no learning procedures. On the other
hand, belief function can affect the path of AUV locally to
make a more reasonable trajectory. In addition, it is suitable
for both static and dynamically varying environment. This
study is different from many researches that the intelligence
of evader is further discussed too, which makes the hunting
harder and more complex. The proposed task allocation and
path planning approach is computationally stable in the study.
It can cope with the cooperative hunting of multi-AUV for
intelligent evaders efficiently as well as improve hunting
efficiency.

In the rest of this paper, the hunting problem is described
in section II. The escaping strategy of evader is further dis-
cussed in section III. Later, the strategy to tackle with the
cooperative hunting of inhomogeneous AUVs is put forward
in section IV. Simulation studies are presented in section V.
At last, the algorithm is summarized in section VI.
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FIGURE 1. Successful hunting in 2-D environment.

II. PROBLEM STATEMENT
Grid map is used in the study of the cooperative hunting prob-
lem. As shown in Fig. 1(b), the environment is discretized, the
black region stands for obstacle, and the blank region means
a free space. The hunting problem of multi-AUV is described
as follows. There are n hunting AUVs and m evaders in the
environment. In the process of hunting, hunting AUVs move
towards the evader, while the evader changes its direction to
escape. Hunting is achieved after successful capture, when
hunting AUVs round up the evader close enough and evenly
distributes around the evader. The number of hunting AUV in
a 2-D hunting group to encircle an evader is four, and it needs
six hunting AUVs to capture an evader successfully for the
3-D underwater environment. If there is an obstacle around
the evader to help with the capture, the number can be
reduced correspondingly as shown in Fig. 1. As the overall
hunting problem contains three stages and is too compre-
hensive to discuss all the stages in detail in a limited space,
this paper will focus on the formation of hunting alliance
and path planning to surround the evaders. The approach to
search for evaders has been discussed in our earlier stud-
ies [10], [38], [39] and will not discuss in detail in this paper.

In the stage of forming hunting alliance, AUVs need to
be divided into several groups, and the division is ought to
improve the efficiency of hunting such as reducing hunting
time or distance. Therefore, the ability of each AUV has to
be highly considered. The inhomogeneous AUVs may have
different sensing range, thrusters and energy. Among these
abilities, sensing range mainly affects the result of AUVs to
search for evaders. Since this study will not have a detailed
discussion on the searching stage, it concentrates on the
differences of thrusters and energy, which is mainly reflected
in the sailing speed and safety distance. Once hunting alliance
is formed, AUV needs to plan a safe path quickly and as short
as possible to capture the evader. Because the evader also
possesses intelligence, it may run away while being hunted.
If there is any time delay for AUV to plan a path to capture
the evader, it will be difficult in the fulfillment of the hunting
task.

According to the requirements, competition strategy based
on estimated hunting time is proposed. The strategy will give
priority to distribute a hunting AUVs’ team to capture the
easiest hunted evader. If an evader has the least estimated time
to capture, it will be considered as the easiest hunted evader.
Then the second easiest one and so forth. Later, the path

planning algorithm combining GBNN and belief function
method is applied to round up the evader. AUV will take
its hunting step immediately, and can avoid obstacles until
rounding up the evader.

III. EVASION STRATEGY OF EVADER
It is assumed that the evader has a perception range. When
the hunting AUV does not enter the perception range of the
evader, it moves in a random direction. Once the evader
detects hunting AUVs, it will take escaping strategy. Two
different escaping situations will be discussed as follows.

FIGURE 2. Escaping direction of evader.

A. HUNTING CIRCLE HASN’T BEEN FORMED
The first situation is that AUVs haven’t formed a hunting
circle as shown in Fig. 2(a). In this situation, the evader will
turn its direction against hunting AUVs. The target point of
evader is changed as (1).

eit = ei +
∑k

j=1
(ei − wj)/redFact (1)

eit is the target point of the i-th evader, which will make
evader change its direction. ei means current position of this
evader, and k is the number of hunting AUVs within the
detection region of evader. wj is the location of the j-th AUV.
Because values of target point may exceed the size of the
simulation environment, redFact is a changeable coefficient
introduced to keep the target point in the region of the envi-
ronment.

B. HUNTING CIRCLE HAS BEEN FORMED
If the evader has been in the siege, it will take its direction to
the midpoint of two neighbor AUVs with a largest distance
as shown in Fig. 2(b).

For the 3-D situation, hunting circle formed or not is
checked by projection. Locations of AUVs and evader are
projected onto X-Y, X-Z and Y-Z planes. In case that hunting
circle is not formed in one of these planes, 3-D hunting
circle is not formed either. Evader will take similar escaping
strategy in the 3-D case. If hunting circle is not formed,
the evader will run against the AUVs, otherwise, it will take
the midpoint between two neighbor AUVs with the largest
distance as the escaping direction.

IV. PROPOSED ALGORITHM
In the hunting, AUVs should search for evaders first. After
any evader is found, a dynamic hunting alliance will be
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FIGURE 3. Flowchart of hunting process.

formed among AUVs. The AUV, which is not in the dynamic
alliance, will search for other evaders. Hunting AUVs in
the team will plan a path to capture the seen evader by the
combined path planning algorithm. After all the evaders are
seen and captured, the hunting ends. The flow chart is shown
in Fig. 3.

Hunting alliance formed among inhomogeneous multi-
AUV and path planning to round up the evader are two keen
problems of this paper. The influence factors such as different
speed and safety distance of AUVs should be taken into
consideration in the hunting process. Because the evader will
try their best to escape, there are other problems to be solved
including how to avoid run-away of the intelligent evader and
obstacle avoidance.

A. STRATEGY OF INHOMOGENEOUS
AUVs’ DYNAMIC ALLIANCE
n inhomogeneous AUVs are supposed to hunt m evaders.
Positions of evaders and AUVs are expressed as matrixes
E and W respectively, and every row in the matrixes is
the coordinate point of AUV or evader. In the 2-D hunting
problem, zj (j = 1, 2 . . .m) and wiz (i = 1, 2 . . . n) are set to
zero.

E =

 x1 y1 z1
...

...
...

xm ym zm

 (2)

W =

w1x w1y w1z
...

...
...

wnx wny wnz

 (3)

Dwe in (4) is the distance matrix containing distances from
eachAUV to all the evaders.M1 is a three rows andm columns
matrix, and M2 has n rows and three columns. The elements
in matrixes M1 and M2 are all one. ET means a transposed
matrix of E . Symbols W 2

. and (ET)2. stand for dot square of
matrixes W and ET. Therefore, the i-th row vector in Dwe
indicates the distance from the i-th AUV to all the evaders
from no.1 to m.

Dwe :=
√
W 2
. ·M1 +M2 · (ET)2. − 2 ·W · ET (4)

For inhomogeneous AUVs, they have different batteries
and thrusters. These differences are largely in the safety
distance and the speed. Here, the distance that an AUV can
sail very safely with its limited energy is called the safety dis-
tance. In consideration of safety distance, if the total sailing
distance of an AUV to the evader will go beyond the safety
distance, the distance from this AUV to the evader will be set
to be∞.

dwiej =

{
dwiej if dwiej ≤ csafei
∞, otherwise.

(5)

dwiej is the distance from the i-th AUV to the j-th evader,
which is the i-th row and j-th column value of the matrix
Dwe, and csafei is the safety distance of the i-th AUV, i =
1, 2 . . . n, j = 1, 2 . . .m. To acquire the estimated hunting
time, the velocity of each AUV divides the distance from
hunting AUVs to the evaders in (6). Vel is a velocity matrix
contains velocity value of each AUV, and it is compiled with
the same size as Dwe. Each row of the velocity matrix is the
velocity of the i-th AUV.

twe := (Dwe)./Vel (6)

In the strategy, AUVs carry out a competition to determine
the hunting sequence of evaders at first. Then AUVs with
the least estimated hunting time will be distributed into the
team to capture the corresponding evader. While capturing,
the evader tries to run away. This may cause change of AUV
with the least hunting time, and will lead to change the
hunting team. Therefore, the alliance is dynamic and chang-
ing with the environment. The alliance forming algorithm is
summarized in Algorithm 1.

In a word, inhomogeneous AUVs usually have distinct
abilities. The original algorithm only thinks of distances from
AUVs to evaders, so hunting alliance establishedmay be inef-
ficient. The proposed hunting alliance algorithm considers
AUVs’ different speed ability and achieves the hunting with
less energy. Furthermore, in order to avoid any AUV running
out of energy, preventive measure has been taken.

B. COMBINED ALGORITHM FOR PATH
PLANNING WHILE CHASING
After the dynamic hunting alliance formed, path planning to
chase and then encircle the evader is the next step.
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Algorithm 1 Hunting Alliance Forming Algorithm
Input: twe: estimated hunting time, TeamNum: max team

numbers hunting AUVs can form, Num: AUVs’
number needed in a team, 2-D hunting: Num=4,
3-D hunting: Num=6; NumEvader: the number of
evaders

Output: evaderIndex: the evaders’ hunting sequence
(row vector), AUVIndex: AUVs hunting
alliance for each evader (matrix);

(1) Initialize: j=1, evaderIndex = zero vector with Team-
Num elements, AUVIndex = zero matrix
with TeamNum rows and Num columns

(2) While j<=NumEvader and j<=TeamNum
% sort the hunting time
[sortedTime, winners]=Sort(twetwe)
for i=1 to NumEvader
% get the first Num rows of sortedTime
teamSortedTime(:,i)=sortedTime(1:Num,i)

End For
teamTotalTime=sum(teamSortedTime)
[∼,winnerIndex]=sort(teamTotalTime)
% Fetch the index of evader with the least hunting
time evaderIndex (1,j) = winnerIndex (1,1);
% Distribute AUVs to hunt the evader
AUVIndex(j,:) = winners(1: Num, evaderIndex

(1,j));
% prevent winning evader win competition again
twe (:,evaderIndex (1,j)) = colBigValue;

End While

1) GBNN MODEL
Glasius BNN model (GBNN: Glasius Bio-inspired Neural
Network) was published by Glasius et al. [37] in 1995. In the
algorithm, obstacles have only local effect. The activity of
target will propagate to guide the AUV to reach it. Moreover,
the model requires no prior knowledge and no learning proce-
dures, which is suitable for static and dynamic varying envi-
ronment. The GBNN model is established to represent the
underwater working environment. The 2-D neural network
of GBNN is shown in Fig. 4(a) and the 3-D neural network
of GBNN is shown in Fig. 4(b). There is a neuron for each
grid on the map. Neurons connect with each other, and their
receptive field is in a circular region with a radius of R. It is a
discrete-time Hopfield-type neural network model, which is
described as (7).

xi(t + 1) = f (
∑

j∈Si
(wij · xj(t))+ Ii) (7)

wij =

{
e−γ ·dist(pi−pj) if dist(pi − pj) ≤ R
0, otherwise

(8)

Ii =


v, grid i is target
−v, grid i is occupied
0, else

(9)

FIGURE 4. GBNN neural network. (a) 2-D neural network. (b) 3-D neural
network.

f(x) =


1, x ≥ 1
β · x, 0 < x < 1
0, else

(10)

xi(t + 1) in (7) is the neural activity of the i-th grid, and
xj(t) is the neural activity of the j-th grid a time step ago. wij
is symmetric connection weight that can be computed by (8),
and dist(pi − pj) is the Euclidean distance from the neuron
i to j. R is the radius shown in Fig. 4(a). External input Ii
expresses the information about the target and occupied grid
and is given by (9), where v � 1. The grids occupied by
mountain, obstacles, AUVs as well as evaders on the map are
occupied units. f(x) is a piecewise linear transfer function as
expressed in (10), and β < 1.

2) BELIEF FUNCTION METHOD
It takes the direction of the target and the obstacles into con-
sideration while planning path by the belief function method,
and has the advantages of quick response, small calculation
and certain obstacle avoidance ability.

In the belief functionmethod, the occupied unit is indicated
in (12). For an occupied unit, the equationwill make the belief
function value at this unit less than zero. The belief function
value of the j-th unit is defined as (11), where b(j) represents
the overall belief function value of the j-th unit.

b(j) = c · (Nj + Dj)+ Gj (11)

Gj =

{
0, free unit
−1, occupied unit

(12)

Nj = cos(1θ ) (13)

Dj = e−dist(pt−pj)/mw (14)

Nj in (11) is a directional function and is calcuted by (13),
where 1θ is the angle between two vectors from AUV to
the j-th unit and to the target separately. Dj is a distance
function to control AUVs sailing nearer to the target and
represents in (14). dist(pt − pj) is the Euclidean distance
between the location of the target and the j-th grid and mw
is the environment size to keep the dist(pt − pj)/mw in the
region of [0, 1], therefore Dj is in [0.3679, 1].

3) COMBINED ACTIVITY FOR PATH PLANNING
Total activity of each grid unit is described as

yi(t + 1) = xi(t + 1)+ e−(m+t) · b(i) (15)
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Here the neural activity of GBNN is combined with the
belief function value. yi(t + 1) is the combined activity of the
i-th grid, xi(t + 1) and b(i) are the neuron activity of GBNN
and belief function respectively, m is an initial value, and the
time item in the exponential function can make the influence
of belief function value decrease over time. The AUVwill sail
to the grid closed to it with the biggest total neural activity.

Path = Pn|yPn = max{yi, i = 1, 2, . . . , k},

Pp = Pc, Pc = Pn (16)

yi is the total activity of the grids besides current position
of AUV. For the 2-D path planning, k equals eight and equals
twenty-six in the 3-D situation.Pp,Pc andPn are the previous,
current and next position of AUV.

The neural activity propagation of GBNN model works
a bit like wave propagation in a lake. If wave starts in the
middle of the lake, it takes some time to spread to the shore
side. The broader the lake is, the longer the spread will be.
The single GBNN model needs some time to propagate the
neural activity at the target’s grid to the position of AUV. The
combined algorithm applies belief function as a local effect,
and this effect is relatively large when the AUV is far away
from its target because of the small GBNN activity value at
that place. It can eliminate the time delay for the propagation
of GBNN model. As time goes up and AUV goes near to
its target, GBNN will take charge of the AUV. The neural
activity of GBNN at the obstacle unit is equal to zero, and
that of belief function method is less than zero. However,
the neural activity of free unit on the direction to get closer
to the target is higher than zero and increases as the distance
to the target decreases. Therefore, even if the target or the
obstacle is dynamic, the combined approach will ensure the
activity of the obstacle less than that of the free unit. That
is to say, the activity propagates from the target to the AUV
gradually, and has a relatively small value at the obstacle unit.
In conclusion, the AUV, which takes the next step with the
biggest total neural activity, will reach the target with obstacle
avoidance.

V. SIMULATION STUDY
In order to verify the feasibility and effectiveness of the pro-
posed algorithm, simulation experiments are carried out on
the platform Matlab. In this section, experiments will be con-
ducted in the 2-D hunting with the proposed algorithm first,
and then the results will be compared with other algorithms.
At last, a cooperative hunting of inhomogeneous AUVs in
3-D underwater environment is also finished. The computer
to run the simulation program is a computer with Windows
10, Intel(R) Core(TM) i7-6700HQ CPU @ 2.6GHz, and 8 G
memory.
Remark: (1) Although the AUV and evader are thought

as mass points in this paper, the obstacles are enlarged for
one grid unit in size to consider their shape in real situation.
(2) It is supposed that the AUV is able to turn its moving
direction immediately without any delay.

FIGURE 5. Cooperative Hunting of inhomogeneous AUVs with proposed
algorithm at the 30 th step.

A. 2-D SIMULATION DESIGN
In the simulation, eight AUVs will hunt for three evaders.
Evaders are named as Ev1, Ev2, and Ev3, and AUVs are
called as AUV1, AUV2 . . . to AUV8. Hunting environment is
an area with 60×60 grids. Evaders try to run away when the
hunting AUVs enter into its perception range with a diameter
of 10. The evaders’ speed is often less than or equal to the
speed of AUV. As our lab’s AUV configuration, some AUVs
have lower speed that may be the same as evader’s, and some
of them are faster. We set AUV1, AUV3, and AUV5 with a
speed of two and the speed of AUV2, AUV4, and AUV8 is
three. Other AUVs’ speed is the same as the evaders. There-
fore, evaders and some AUVs can move one grid once, but
AUVs with higher speed may move more grids at a time.
Regularly, faster AUV carryingmore batteries can run farther.
The AUVs with a speed of one have a safety distance of 120,
and the AUVs with a speed of two can sail for 180, as well as
the energy of the fastest AUVs can support them for a distance
of 220.

1) HUNTING OF INHOMOGENEOUS AUVs WITH
PROPOSED ALGORITHM
At the initial state, three evaders are randomly generated and
locate at the units (32, 28), (6, 15) and (56, 54), and they go
in a random direction too. AUVs stay on the border of the
map getting ready to capture these evaders. In the experiment,
the parameters are set as β = 0.01, v = 200, γ = 3,
R = 1.8, c = 0.1, m = 10. The hunting process is shown
in the figures of Fig. 5 and Fig. 6. On the figures, the black
regions stand for obstacles, and the hunting step increases by
one for each evader’s movement.

Fig. 5 shows the status of the first thirty steps. Eight AUVs
are divided into two teams. One of the teams comprises
AUV1, AUV2, AUV4, and AUV8 to hunt for Ev2. The other
team contains the rest of AUVs pursuing Ev3. Evaders will
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TABLE 1. Combined activities of Auv4 from Unit (53, 28) to Unit (50, 28).

TABLE 2. Combined activities of Auv1 from Unit (9, 19) to Unit (10, 21).

FIGURE 6. Cooperative Hunting of inhomogeneous AUVs with proposed
algorithm at the final step.

run away while encountering hunting AUVs. AUV4 meets
with an obstacle at the unit (53, 28). Table 1 shows the com-
bined activities of AUV4 near the unit (53, 28). The activities
of obstacle units are listed in the first three columns and are
all less than zero. AUV4 can move three units once. Here it
finds the biggest activity unit at the position (50, 28) within
three units. AUVs can avoid obstacle with the combined

algorithm from this analysis. At the 30-th step, AUV1 is at
the position of (9, 19) and is going to (10, 21) as a next
step. Table 2 explains the path planning of AUV1 at this step.
In the range that AUV1 can reach, the unit (10, 21) possesses
the biggest activity. From the table, it can be found that the
round up site has an activity of one. The units occupied by
other AUVs and evaders are treated as an obstacle and have
an activity value less than or equal to zero, so AUV1 would
not run into these units. With the guidance of neural activity,
AUV1 can get closer to the roundup site gradually to fulfill
the capture of Ev2.

Fig. 6 shows that Ev1, Ev2, and Ev3 are caught at position
(32, 24), (15, 25), and (42, 44). After Ev2 is first captured,
hunting alliance is reorganized. AUV3, AUV4, AUV5, and
AUV6 are distributed to pursuit Ev3 and the rest of AUVs
hunt for Ev1. Then the hunting group catches Ev3. At last,
AUV1, AUV2, AUV4, and AUV8 form an alliance starting
to capture Ev1 until success. The cost of AUVs and escaping
distance of evaders are listed in the second column of Table 3.

2) HUNTING OF INHOMOGENEOUS AUVs BY HUNTING
ALLIANCE FORMED BY DISTANCE-BASED COMPETITION
For the same situation stated above, the dynamic alliance
algorithm based on distance is applied. As shown in Fig. 7,
the AUVs also form dynamic hunting alliance but in
a different way. AUV1, AUV2, AUV7, and AUV8 are going
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TABLE 3. Cost and efficiency comparison of hunting simulation
experiments by different algorithms.

FIGURE 7. Cooperative Hunting of inhomogeneous AUVs with alliance
forming algorithm based on distance competition.

to hunt for Ev2 at first. The other team contains rest of AUVs
pursuing Ev3. Hunting can be completed with distance-based
competition mechanism but costs more steps. The evaders
are captured at the unit (49, 18), (12, 36), and (51, 39)
respectively. Ev3 is firstly captured by AUV3, AUV4, AUV5,
and AUV7. Then AUV1, AUV2, and AUV8 catch Ev2 with
the help of obstacle. At last, AUV1, AUV2, AUV3, and
AUV4 fulfill the hunting of Ev1. Since the hunting alliance
formed only depend on distance, some AUVs in a hunting
team have lower ability that makes the evader escape a longer
distance. The cost of AUVs and escaping distance of evaders
are listed in the third column of Table 3 for comparison.

3) HUNTING OF INHOMOGENEOUS AUVs
BY SINGLE GBNN MODEL
The efficiency of the combined path planning algorithm will
be compared with the single GBNN model in this section.

FIGURE 8. Cooperative Hunting of inhomogeneous AUVs with single
GBNN model.

The result of hunting with single GBNNmodel but construct-
ing alliance based on the same time competition mechanism
proposed in this study is shown in Fig. 8. The AUVs initially
form the same dynamic hunting alliance as the hunting with
the proposed algorithm. Because the evaders try to escape in
the hunting, the round up sites are always changing. GBNN
model needs some time for the activity at the original round
up site to cut down and may mislead the AUV to make some
useless steps. What is more, GBNN model may cause the
AUV delay for some steps when the AUV is far away from
its target. This is the time for the propagation of neuron activ-
ity, and AUV4 explains this problem. It delays some steps
before the first step to chase Ev2. Therefore, Ev2 escapes
for a long distance and then is distributed to other AUVs.
Later it is caught by AUV1, AUV2, AUV5, and AUV8 at
the unit (31, 35). After that, the hunting group including
AUV2, AUV4, AUV6, and AUV8 captures Ev3 at the unit
(38, 22). At last, AUV2, AUV3, AUV4, and AUV8 fulfill the
hunting of Ev1 at the unit (46, 20). The total hunting step
is 242, and single GBNN model takes more steps than other
experiments stated above. The cost of AUVs and escaping
distance of evaders are listed in the fourth column of table
3 for comparison too.

4) DISCUSSION
Simulation results of comparison experiments above are
listed in table 3. Sailing distance of each AUV in the hunting
process and their average distance are recorded as a cost
comparison, and the escaping distance of evaders is listed for
an efficiency comparison. As shown in table 3, the proposed
algorithm can help the AUVs to capture the evaders with
less cost and higher efficiency. It takes an average distance
of 57.10 for the AUVs to catch all the evader successfully.
However, that of hunting alliance algorithm based on dis-
tance competition and single GBNN model is 71.78 and
80.34 respectively. Reasons can be summarized as follows.
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FIGURE 9. 3-D underwater hunting with proposed algorithm at the final (50-th) step, view(37.5, 30).

Firstly, AUVs with different ability should form sev-
eral groups to chase the evaders in the hunting of evaders
with inhomogeneous AUVs. Dynamic hunting alliance con-
structed with the algorithm proposed in the study can make
the best use of each AUVs, which will shorten the hunting
time. The proposed algorithm forms the hunting alliance
with the consideration of AUVs’ capacity. This can make
every AUVs in a hunting team has almost equal ability.
However, distance competition mechanism neglects the abil-
ity of AUVs, so that there may be AUVs of great difference in
ability in a hunting team. Like the bucket effect, the ability of
a team is restricted by the AUVwith minimum ability. In con-
clusion, the time competition mechanism is more suitable for
forming the hunting alliance among inhomogeneous AUVs.

Secondly, hunting should be as fast as possible. Combined
with belief function, GBNN model can put all the AUVs
in the hunting groups set about pursuing immediately after
finding the evaders. The proposed algorithm can hunt all
the dynamic evaders with a high efficiency and avoid some
useless steps. It is superior to the single GBNN model in the
solution of hunting problem. Belief function affects locally
to bring a clear goal to AUVs while they are far away from
targets. As hunting goes on, GBNN will plan the path for
AUV to ensure success of the capture. At the obstacle unit,
neural activity of GBNN is equal to zero and that of belief
function algorithm is less than zero. Therefore, AUV can
avoid obstacle on the way to the target.

From the comparison, the algorithm presented in this paper
is superior to that based on distance competition mecha-
nism and single GBNN model both in hunting cost and in
efficiency.

B. HUNTING IN THE 3-D UNDERWATER ENVIRONMENT
Cooperative hunting of inhomogeneous AUVs in the under-
water three-dimensional environment is introduced in this
section. In fact, underwater environment is a vast 3-D envi-
ronment. There are obstacles in the vast region. At the bot-
tom of the environment, it has rolling mountains too. The
environment is assumed as a cuboid with a length and width
from -60 to 60, and a height between −16 and 60. At the
bottom of the environment, there are simulated mountains.
The deepest of this underwater environment is the valley of
the mountain at the height of about −15. Howbeit the peak
of the mountain is at the height of 20. The black blocks
represents the obstacles.

1) UNDERWATER HUNTING OF INHOMOGENEOUS
AUVs WITH PROPOSED ALGORITHM
There is an AUV in every corner of the environment.
An evader locates at (20, 20, 30) at the initial state. The type
of evader and AUV is the same as experiments in the 2-D
situation. AUV needs to sail longer to catch an evader in the
3-D hunting, so the consideration of the safety distance is
more important. Fig. 9 shows the result of this experiment
at the view (37.5, 30). View (az, el) means the azimuth and
elevation angles of the viewer are az and el degree.
Hunting is distributed to no. 1, 2, 3, 4, 5, and 8 AUVs by

the time competition mechanism. The evader tries hard to run
away. AUV8 avoids collision with obstacle, and AUV1 and
AUV4 avoid collision with the sea mountain. AUV1 sails
a distance of 139.76 to catch the evader, and the distance
of AUV2, AUV3, AUV4, AUV5, and AUV8 is 136.66,
100.24, 119.71, 140.92 and 126.34 respectively. The evader
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FIGURE 10. 3-D underwater hunting by distance-based competition mechanism at the 76-th step, view(80, 30).

is besieged in a globe with six AUVs at (15, −30, 1) at last
with escaping distance of 64.91.

2) UNDERWATER HUNTING OF INHOMOGENEOUS AUVs
BY HUNTING ALLIANCE FORMED ON THE BASIS OF
DISTANCE COMPETITION
For the same 3-D situation stated above, hunting experiment
is carried out by the distance competition mechanism. AUVs
form the hunting team in a different way. As it is shown
in Fig. 10, AUV7 replaces AUV2 in the hunting alliance.
However, AUV7 moves slowest in the group and must try
hard to catch up with the evader because its speed is just equal
to that of evader’s. Moreover, the safety distance of AUV7 is
only 120. Hunting will fail if AUV7 runs out of energy in the
pursuing. Fig. 10 shows this situation that AUV7 runs out of
energy because the distance it sailed exceeds its safety dis-
tance. Therefore, because the original algorithm only consid-
ers the distance, it is unsuitable for hunting of inhomogeneous
AUVs in underwater 3-D environment.

In the 3-D situation, original hunting alliance forming
algorithm may construct an invalid hunting group. It may
distribute the hunting task to an AUV with relatively low
capacity. A team with an AUV of lower capacity behaves
worse than in the 2-D situation. Because of the vast environ-
ment, the evader can run away more easily. Hunting group
is unable to form a round up globe if one of the AUVs
cannot catch up with the evader. Without the consideration
of the safety distance of AUV, hunting may be failed too. The
proposed algorithm distributes the task to a team of AUVs
with better ability, and they can fulfill the task efficiently.

VI. CONCLUSION
In this paper, cooperative hunting task of inhomogeneous
multi-AUV is studied. A time competition mechanism is
proposed to construct dynamic hunting alliance. Then GBNN
and belief function method are combined for a highly effi-
cient path planning. The feasibility and effectiveness of the
proposed algorithm are verified by simulation. The algorithm
proposed is compared with original distance competition
algorithm and single GBNN model. The results show that
the proposed algorithm is more efficient. The single GBNN
model works badly in such a fast dynamic environment as
hunting, and it takes more distance to finish the hunting task.
The distance-based hunting alliance algorithm is not good at
the hunting alliance formation of inhomogeneous AUVs too.
The proposed algorithm can reduce the hunting steps with
less AUVs’ total distance and evaders’ escaping distance.
At last, it is demonstrated that the algorithm can also fulfill the
hunting in the 3-D underwater environment where the evader
can run away more easily.
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