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ABSTRACT In this paper, a new class of false data injection attacks (FDIAs) on contingency analysis (CA)
through state estimation (SE) is proposed, and the economic impact of the proposed attacks on real-time
power market operations is quantified. Compared with the existing FDIAs, where no contingency analysis
is considered for attack targets, we present a new attack strategy with which the adversary stealthily
drops or adds contingency pairs of transmission line flows from or to a normal contingency list by
misleading the CA process through injecting false data into SE. The manipulated contingency pairs are
then embedded as security constraints into operating constraints of security-constrained economic dispatch.
As a result, the proposed attacks lead to the miscalculation of locational marginal price (LMP) in real-time
power markets. The capability and economic impact of the proposed attack, such as a list of manipulated
contingency line pairs, attack effort, and LMP deviation from normal price, are illustrated in the IEEE 14-bus
system.

INDEX TERMS False data injection attack, contingency analysis, state estimation, security constrained
economic dispatch.

I. INTRODUCTION
For reliable power grid operations, system operators focus
on maintaining power grid physical security that is the abil-
ity of power grids to withstand sudden disturbances such
as natural disasters [1]. However, as emerging smart grid
technologies rely more on information and communication
technology (ICT), power grids are more vulnerable to cyber
attacks through ICT systems. Recently, the 2015 Ukraine
blackout [2] was the first cyber attack against electric power
systems by compromising ICT networks and components,
leading to blackouts in three Ukrainian regions. Therefore,
enhancing cybersecurity is also increasingly critical in man-
aging power grid operations more reliably and securely [3].
This study investigates the impact of cyber attacks on physical
security and cybersecurity of smart grid.
In power system operations, on-line physical security

assessment can be conducted with the following three
major functions: (1) state estimation (SE); (2) contingency
analysis (CA); and (3) security-constrained optimal power

flow (SCOPF). The goal of SE is to process data (e.g., power
injection/flow, bus voltage magnitude, and on/off status of
circuit breaker) from a supervisory control and data acqui-
sition (SCADA) system, to calculate the best estimate of
the power system’s state, and to construct real-time network
models based on the estimate [4]. The constructed real-time
network models are then used by CA module, identifying
overloads due to potential contingencies such as genera-
tor or transmission line failure. In general, CA is conducted
based on DC or AC power flow method and consists of static
CA and dynamic CA, corresponding to: (a) line overflow
and bus overvoltage; and (b) voltage stability. In this paper,
static CA using DC power flow analysis is considered since
static CA is more tightly coupled with SE than dynamic CA.
Finally, CA calculates a list of line or generator contingencies,
namely contingency list with which the SCOPFmodule redis-
patches optimal power of generators for preventing potential
contingency violations [5]. Due to computation complex-
ity in real-time power market operations, a linearized line
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flow-based security-constrained economic dispatch (SCED)
is conducted, which is a simplified formulation of SCOPF
based on DC assumptions [6]. In this paper, we consider
the proposed attack problem in the procedure of on-line
power system security assessment as shown in Fig. 1. This
figure illustrates the relationship among SCADA telemetry,
SE, CA in cyber layer, and SCED in market layer, along
with the following information flow (solid black line): normal
SCADA data⇒ SE⇒ CA⇒ SCED.

FIGURE 1. Illustration of the relationship among SCADA, SE, CA, and
SCED.

It should be noted that the performance of the physical
security process above highly depends on the accuracy of
SE results that are calculated based on measurements from
many SCADA sensors (e.g., remote terminal unit (RTU)).
Therefore, compromising sensors by injecting malicious data
into SE measurements could have catastrophic impact on
CA and SCED solutions sequentially. This type of cyber
data attack against SE is known as a false data injection
attack (FDIA). This paper contributes to the following two
aspects: (1) the proposal for a new class of FDIA strategies
with which the adversary manipulates normal contingency
list from CA through the malfunction of the SE process;
and (2) economic impact analysis of SCED subject to the
proposed attacks, as shown in Fig. 1 (dotted red line).

Recently, much research has focused on the development
of FDIA strategies and the quantification of their impact on
physical and economic grid operations. This ranges from the
formulation of the attack against DC state estimator [7] (a pio-
neering work on FDIA problem in power grid) and AC state
estimator [8]–[10] with impact analysis of attacks, network
topology attack through the manipulation of circuit breaker’s
on/off status data [11]–[16], blind FDIA attack without the
knowledge of network topology using the principal compo-
nent analysis [17], imperfect false data injection based on
forecasting-aided method [18], attack automatic generation
control (AGC) attack [19], and economic assessment of the
attack on virtual transactions [20] and real-time power market
operations [21]. More recently, it has been justified that these

previous studies above are theoretical examinations no longer
and actual FDIA attacks would become feasible in real power
grids [22].

While many studies have addressed the feasibility of
FDIAs and evaluated the vulnerability of power grids to such
attacks, various methods for detecting and identifying FDIA
have been proposed to mitigate detrimental impact of FDIA
on power grid operations. In [23], the least-budget depend-
ing method against FDI attack was presented wherein the
selection of securely protected sensors was solved by a mixed
integer nonlinear programming (MINLP) problem based on
Bender’s decomposition. Using cluster algorithm, vulnerable
buses and sensitive SCADA measurements to FDIA were
classified and identified, leading to effective FDIA detec-
tion [24]. A new framework to detect FDIAs against DC
microgrids was proposed in [25]. In [26], short-term state
forecasting-aided method was presented where the consis-
tency between the forecasted measurements and the received
measurements are checked to identify false data in critical
measurements. A sequential detection problem of FDIAs was
addressed and a sequential detector based on the general-
ized likelihood ratio was proposed to quickly detect FDIAs
in [27]. More recently, machine learning technique was used
to easily detect FDIA for classifying measurements into non-
attack events (e.g., natural contingency and operator’s control
action) and attack events by using: temporal characteristics of
FDIA using Conditional Deep Belief Network (CDBN) [28],
semisupervised online learning method [29], and non-nested
generalized exemplars (NNGE) through pre-processing of the
state extraction method (STEM) [30]. A concise review of
various FDIA strategies and defending methods in smart grid
is summarized in [31] and [32].

Although extensive research has been conducted on the
subject of FDIA problems, to the best of our knowledge,
no study has proposed FDIAs on CA and quantified the eco-
nomic impact of such attacks on real-time market operations.
Recently, the method of FDIA on static security analysis
and its impact on market operations were studied in [33].
However, no detailed algorithm of CA was considered in the
attack method, and the impact analysis of real-time electricity
prices subject to such attack was excluded.

In this paper, a new class of optimization-based FDIAs is
presented considering static CA, and the economic impact
of such attacks on real-time LMP is assessed. The main
contributions of this paper are two-fold:
1) We propose two types of FDIAs on CA. The adversary

stealthily drops or adds contingency pairs of transmis-
sion line flows from or to a normal contingency list
by misleading the CA process through injecting false
data into SE while being undetected by bad data detec-
tion (BDD) embedded in the state estimator. Wemodel a
least-effort attack as a mixed integer nonlinear program-
ming (MINLP)-based optimization problem. The goal of
the formulated optimization problem is to minimize the
number of compromised analog and digital sensors to
manipulate targeted contingency pairs successfully.
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2) We evaluate the performance of the proposed attacks in
terms of: i) the targeted dropped or added contingency
pairs; ii) the manipulated analog and digital measure-
ments; and iii) attack effort (i.e., a maximum number
of compromised sensors). In addition, we investigate
the impact of the manipulated contingency list due to
attacks on real-time LMP that is calculated by SCED.
Various case studies including the quantification of the
attack performance and its economic impact on LMP are
illustrated in the IEEE 14-bus system.

This paper is organized as follows. Section II provides the
brief overview of SE, CA, and real-time SCED. The pro-
posed optimization-based attack strategies are formulated in
Section III. Case studies of the proposed attacks are presented
in the IEEE 14-bus system in Section IV. Finally, conclusions
and future studies are discussed in Section V.

II. BACKGROUND
A. STATE ESTIMATION (SE)
Assuming that Nb is the number of buses, Nl is the number
of lines, and Nm is the number of measurements, we consider
the linearized DC state estimation model:

z = H(c)x+ e, (1)

where z is theNm×1 analogmeasurement vector that consists
in real power injection and flow measurements, x is the
(Nb−1)×1 state vector that consists in the bus voltage phase
angles excluding a slack bus, and e is the Nm×1 independent
identically distributed (i.i.d.) Gaussian measurement error
vector with zero mean and diagonal covariance matrix R.
H(c) is the Nm× (Nb− 1) Jacobian matrix that illustrates the
relationship between z and x with the system topology. The
system topology is determined by the Nl × 1 binary digital
measurement vector c ∈ {0, 1}Nl : 0 and 1 represent the open
and closed status of the corresponding line, respectively. For
a simple notation, H(c) is denoted by H.

The SE problem is to find the optimal estimate of x to
minimize the weighted least square of measurement error:

minimize J (x) = rTR−1r (2)

s.t. r = z−Hx, (3)

where r is the estimated residual vector. If the Jacobian
matrix H is full rank (i.e., the system is observable),
the unique weighted least squares estimate of x is given by

x̂(z) = (HTR−1H)−1HTR−1z. (4)

During the state estimation process, the bad data detection
is conducted using the Chi-squares test based on the estimated
objective function J (x̂). Since J (x̂) follows a Chi-square dis-
tribution with Nm − (Nb − 1) degrees of freedom, bad data
will be suspected if J (x̂) ≥ η[(Nm−(Nb−1)),p] where p is the
detection confidence probability.

B. CONTINGENCY ANALYSIS (CA)
CA is an application to enable power systems to operate
defensively in case of unplanned and/or unscheduled fail-
ure events such as transmission line outage and generator
failure. In general, CA consists of two main components:
(1) contingency selection [34]–[36]; and (2) contingency
evaluation [37], [38]. The goal of contingency selection is
to reduce the computation burden of subsequent contin-
gency evaluation process by making a short list of all the
contingencies, namely mon-con pairs (a pair of monitored
line/generator and their corresponding contingency). Based
on the short contingency list from contingency selection,
contingency evaluation is to check operating violations of all
lines and generating units for each contingency and to finally
construct a contingency list, a subset of mon-con pairs [6].
In particular, the contingency list to transmission line flows
can be quickly calculated using the following equation (5)
based on DC power flow analysis method:

F̃u,k = F̂u +ϒ[u, k]F̂k , (u, k) ∈MC (5)

where

ϒ[u, k] = 8u[i, j]/(1−8k [i, j]), (6)

8k [i, j] = S[k, i]− S[k, j]. (7)

In (5), MC represents the set of mon-con pairs (u, k)
from contingency selection. F̂u and F̂k imply estimated power
flows at lines u and k prior to line outage. We note that
those power flow values are delivered from the state esti-
mator. F̃u,k is power flow at line u when line k outage
occurs. ϒ[u, k] is the (u, k)th element of the Nl × Nl line
outage distribution factor (LODF) matrix ϒ that illustrates
the sensitivity of line u overload to line k outage. In (6),
the LODF matrix ϒ is calculated using the Nb × Nb power
transfer distribution factor (PTDF) matrix 8 (e.g., provision
of the sensitivity of line u or line k flow to real power
transactions between buses i and j). The PTDF 8k [i, j] for
line k between a power injection at bus i and a power with-
draw at bus j is computed using the generation shift factors
(GSFs) (S[k, i], S[k, j]) in (7). S[k, i] is the (k, i)th element of
the Nl ×Nb GSF matrix S that illustrate the sensitivity of line
flow to injected power. Here, the GSF matrix is constructed
with S = [0BAB−1R ] where 0 is theNl×1 vector with all ones,
B is the Nl×Nl diagonal matrix with each line’s susceptance,
A is the Nl × (Nb − 1) line-to-bus incidence matrix, and BR
is the (Nb − 1) × (Nb − 1) reduced bus-to-bus susceptance
matrix except the slack bus.

In sum, Fig. 2 illustrates the procedure of the CA. It is
noted that the CA process initiates with the solution of state
estimator. In this figure, (5) is used to conduct contingency
evaluation where F̃u,k is compared with corresponding max-
imum or minimum capacity limit of line flow, consequently
constructing the contingency table with contingency pairs for
line overloads. Those contingency pairs are then embedded as
inequality constraints into the system operating constraints of
SCED, which is illustrated in the next subsection.

VOLUME 6, 2018 8843



J.-W. Kang et al.: FDIAs on CA: Attack Strategies and Impact Assessment

FIGURE 2. Flowchart of the procedure of contingency analysis based on
DC power flow analysis method.

C. REAL-TIME SECURITY-CONSTRAINED ECONOMIC
DISPATCH (SCED)
In real-time markets, SCED is formulated as follows [6]:
∀i = 1, . . . ,Nb, ∀l = 1, . . . ,Nl ,

min
Pgi

Nb∑
i=1

Ci(Pgi ) (8)

s.t. λ :
Nb∑
i=1

Pgi =
Nb∑
i=1

Ldi (9)

τ : Pmin
gi ≤ Pgi ≤ P

max
gi (10)

µ : Fmin
l ≤ Sl(Pg − Ld ) ≤ Fmax

l (11)

µs : F
s,min
u ≤ 0u(Pg − Ld ) ≤ F s,max

u . (12)

In this formulation, the objective function is to minimize the
total generation costs in (8). (9) is the system-wide energy
balance equation. (10) is the physical capacity constraints of
each generator. (11) is the network flow constraints without
considering line outage where Sl represents the lth row of
the GSF matrix S. (12) is the security constraints that are
the results of contingency evaluation as mentioned in the
previous subsection. In (12), 0u is the uth row of the matrix 0
with 0u = Su + ϒ[u, k]Sk . The elements in the matrix 0
are called as the compensated generation shift sensitivities,
providing the sensitivity of line uwith respect to change in net
injection at any bus when line k outage occurs. It is noted that
the constraints (12) are defined as the security constraints,
which are the result of the contingency pairs from CA.

According to the definition of the nodal price, and
assuming that bus 1 is the slack bus, locational marginal
price (LMP) for each bus n (i = 2, . . . ,N ) is given by

LMP = λ1−
[
S
0

]T ([
µmax

µmax
s

]
−

[
µmin

µmin
s

])
, (13)

where λ,µmax,µmin,µmax
s and µmin

s are the Lagrangian
multipliers of equality and inequality constraints in the

SCED formula. λ is the LMP for the slack bus 1. {µmax,µmin
}

and {µmax
s ,µmin

s } correspond to congestion prices when line
flows are binding at network flow constraints and security
constraints, respectively.

III. ATTACK FORMULATION
A. ATTACK MODEL AND ASSUMPTIONS
In the proposed attack, the adversary is required to have the
following capabilities:
(R1) The adversary has the knowledge of system topology

including the status of circuit breakers and each line’s
parameter/limits.

(R2) The adversary can compromise SCADA sensors by
observing and manipulating measurements.

(R3) Given manipulated measurements, the adversary can
conduct SE and BDD to calculate desired line flow
estimate while being undetected by BDD process.

(R4) Prior to the attack, the adversary can conduct CA
to obtain the contingency list. The targeted contin-
gency pairs are dropped or added to the attack-free
contingency LIST. To this end, using the manipu-
lated line flow estimate in (R3) the adversary must be
able to calculate new line flow estimates considering
contingencies.

In [22], the authors have justified that the aforementioned
assumptions are reasonable and FDIAs can be feasible by:
(i) using off-line or on-line measurements to estimate the sys-
tem topology (R1); (ii) injecting malicious data into sensors
through an insecure SCADA communication protocol (R2);
and (iii) understanding architecture and algorithms of power
system applications such as SE, CA, andBDD from textbooks
and research publications (R3), (R4).

In this study, we consider the additive attack measurement
model:

za = H(c+ β)x+ e+ α, (14)

where α and β are the attack vectors for analog and
digital measurements, leading to corrupted measurement
vector za. Using the attack measurement model (14), the pro-
posed attack strategies are illustrated in the following two
subsections.

B. ATTACK STRATEGY I
We assume that any line l can belong to one of the three
types of lines {u, k, t}: line u is the monitored line, line t
is the targeted line, and line k is the untargeted line. The
superscript a of variable, vector, andmatrix indicates that they
are changed by the attack vector. CP and CP represent the set
of contingency and non-contingency pairs, respectively.

The goal of attack strategy I is to drop targeted contingency
pairs (u, t) ∈ CP from an attack-free contingency table with
minimum attack effort, while keeping untargeted contingency
pairs (u, k) belonging to a set of non-contingency pairs ∈ CP
as well as bypassing the BDD module.

To this end, the adversary computes malicious injected
analog and discrete attack measurement vectors (α, β) by
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FIGURE 3. Procedure of the proposed attack among SCADA, SE, CA, and SCED.

minimizing attack effort (15) while satisfying feasible attack
constraints (16)–(24) in the following optimization problem:

min
α,β

(||α||0 + ||β||0) (15)

s.t. za = z+ α (16)
ca = c+ β (17)
(Aa)T = Diag(ca)(Af )T (18)
J (̂xa) ≤ η (19)
F̂al = Bl(Aa)T x̂a, l ∈ {u, k, t} (20)
F̃au,k = F̂au +ϒ

a[u, k]F̂ak , (u, k) ∈ CP (21)
F̃au,t = F̂au +ϒ

a[u, t]F̂at , (u, t) ∈ CP (22)
|F̃au,k | ≤ F

max
u , (u, k) ∈ CP (23)

|F̃au,t | ≤ F
max
u . (u, t) ∈ CP (24)

The objective function (15) for the attack optimization
problem above is defined as the attack effort that consists
in the two l0-norms of the attack vectors (α, β), corre-
sponding to a maximum number of compromised analog
sensors for power injection/flow measurements and dig-
ital sensors for status of open/closed lines, respectively.
Constraints (16) and (17) represent the attack measurement
equations associated with analog and discrete measurement
manipulation, respectively. Constraint (18) illustrates the
relationship between the fully connected line-to-bus inci-
dence matrix (Af )T and the attack matrix (Aa)T due to
manipulated digital measurements ca. Undetectability of the
attack can be ensured by escaping the BDD module in con-
straint (19). Constraint (20) is the equation for power flow F̂al
at line l, manipulated by the adversary through malicious
change of analog and digital measurements. Using the LODF
matrix ϒa modified by the adversary, flows on line u subject
to line k outage ∈ CP and line t outage ∈ CP are computed
in (21) and (22), respectively. While non-contingency pairs
before the attack remain secure line pairs after the attack
in (23), constraint (24) guarantees the drop of targeted con-
tingency pairs (u, t) from the contingency table, consequently
misleading the CA module to select them as insecure line
pairs.

C. ATTACK STRATEGY II
In attack strategy II, the adversary computes the attack
measurement vectors (α, β) in the following optimization
problem:

min
α,β

Eqn. (15) (25)

Eqn. (16)− (20) (26)

−Fmax
≤ F̂a ≤ Fmax (27)

F̃au,k = F̂au +ϒ
a[u, k]F̂ak , (u, k) ∈ CP (28)

F̃au,t = F̂au +ϒ
a[u, t]F̂at , (u, t) ∈ CP (29)

|F̃au,k | ≥ F
max
u , (u, k) ∈ CP (30)

|F̃au,t | ≥ F
max
u . (u, t) ∈ CP (31)

Compared to attack strategy I where the adversary reduces
the size of contingency table, attack strategy II focuses on
increasing the number of contingency pairs by adding tar-
geted non-contingency pairs to the contingency table. The
objective function (15) and constraints (16)-(20) for mea-
surement manipulation, calculation of estimated line flows,
and undetectable condition in the attack I formulation are
added to the attack II formulation. When there is no con-
tingency at all, overloading of all lines due to the attack
can be escaped in (27) where F̂a = [F̂a1 , F̂

a
2 , . . . , F̂

a
Nl ]

T and
Fmax

= [Fmax
1 ,Fmax

2 , . . . ,Fmax
Nl ]T . Constraints (28) and (29)

represent the flow on line uwhen outage occurs at untargeted
line k and targeted line t , belonging to sets of contingency
pairs and non-contingency pairs, respectively. The list of
contingency pairs including untargeted lines before the attack
can remain insecure pairs after the attack in (30). Conversely,
constraint (31) ensures that targeted non-contingency pairs
before the attack are changed to contingency pairs with
increasing size of the contingency table.

Finally, Fig. 3 illustrates the procedure of the proposed
attacks I and II among SCADA, SE, CA, and SCED along
with corresponding to subsections.
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FIGURE 4. Modified IEEE 14-bus test system.

TABLE 1. Generator parameters in the IEEE 14-bus system.

IV. NUMERICAL EXAMPLE
In this section, we investigate the performance of the pro-
posed attack and evaluate the economic impact of such
attack on real-time LMP in IEEE 14-bus system, shown
in Fig. 4. For the illustration of line-adding topology data
attack, the IEEE 14-bus system is slightly modified with
additional lines 21 and 22. System data for the modified
IEEE 14-bus system are taken from MATPOWER 4.0 IEEE
14-bus test case file and provided in Appendix. For all
lines, capacity limits of all power flows are set to 200 MW.
We assume that all measurements have been complete; real
power injection Pmi and flow measurement Fml are assigned
to each bus i and the one end of each line l. We assume
that all the real power flow and injection measurements are
corrupted by additive Gaussian noises with equal variances
σ 2
= 0.0001. The measurement redundancy (i.e., the ratio of

the number of measurements to the number of state variables)
is 36/13. For BDD, the threshold η of the Chi-squares test
with a 95% confidence level is set to 35.17. Numerical testing
is performed with the optimization toolbox in MATLAB
R2015b (IntelCore i5 CPU clocking at 3.50 GHz, with 4 GB
of RAM). Table 1 shows the generator parameters in the IEEE
14-bus system where ai and bi are linear and quadratic cost
coefficients for generator i.
The test scenarios for the proposed attack I and attack II are

categorized into two groups, corresponding to three different
cases in each group, as follows:

(G1) Cases 1, 2, and 3 (Attack I)
(G2) Cases 4, 5, and 6 (Attack II)

Case 1 and Case 4 are base cases in each group where the
attack becomes more severe due to an increasing number of
manipulated contingency pairs from Case 1 to Case 3 in (G1)

TABLE 2. A list of contingency pairs without attack.

and from Case 4 to Case 6 in (G2). Table 2 shows a list of
normal contingency pairs (u, k) ∈ CP , which are calculated
according to the CA procedure in Fig. 2 in subsection II-B.
In our simulation, those contingency pairs are fed to the
SCED module of which lines 5 and 13 associated with CP1
and CP4 are binding at their flow limits. Along with the
results from Table 2, the aforementioned line binding status
provides a performance benchmark to compare the perfor-
mance of the proposed attacks.

A. PERFORMANCE AND ECONOMIC IMPACT OF ATTACK I
In this subsection, Cases 1, 2, and 3 correspond to the
attack I method with which the adversary stealthily drops
targeted contingency pairs from the normal contingency list
in Table 2. Table 3 summarizes the performance of attack I
for the three cases. The second row of Table 3 provides
targeted contingency pairs to be dropped from the contin-
gency table. The manipulated analog and digital SCADA
measurements that yield incorrect SE solution are shown in
the third row of Table 3. The fourth and fifth rows reveal
abnormal contingency pairs and binding condition due to
malfunction of CA and SCED, respectively. The last row of
Table 3 reveals the attack effort that is a maximum number
of compromised sensors. We can observe from this table
that as the number of compromised sensors increases for
dropping more contingency pairs from Case 1 to Case 3, CA
yields a decreasing number of contingency pairs, leading to
a decreasing number of binding flow constraints in SCED.
This observation implies that through the drop of more con-
tingency pairs the adversary could mislead system operators
into believing the current system operating conditions are
more secure physically and economically even though they
are actually insecure.

Fig. 5 shows the comparison of the LMPs between without
attack and with attack in Cases 1, 2, and 3. In case of without
attack, we observe that LMPs at buses that are connected to
lines of binding contingency pairs reveal a relatively larger
price gap with each other. For example, in the two binding
contingency pairs, CP1 and CP4, buses 1, 2, and 5 are con-
nected to the ends of lines 2 and 5 belonging to CP1, and
buses 6, 12, and 13 to the ends of lines 12 and 13 belonging
to CP4. We can observe from Fig. 5 that LMPs at buses 5,
12, and 13 (power import region) become maximum whereas
LMPs at buses 1, 2, and 6 (power export region) become min-
imum. This observation holds true in Cases 1, 2, and 3 as well.
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TABLE 3. Performance of attack I for cases 1,2, and 3.

TABLE 4. Performance of attack II for cases 4, 5, and 6.

FIGURE 5. LMP of SCED without and with attack I (Cases 1, 2, and 3).

In Case 1, buses 4, 7, and 9, and buses 2, 5 are connected to
the end of lines belonging to the binding CP2 and CP6, and
to the end of line belonging to network flow F5. As expected,
bus 7 at power import region and bus 2 at power export region
have maximum and minimum values of LMP, respectively.
Another observation is that Case 1 attack results in almost
uniform LMPs at buses 6, 12, and 13 compared to the LMPs
without attack. This result derives from the fact that bind-
ing CP4 corresponding to lines 12 and 13 is dropped from
normal contingency list by the adversary and hence there is
no network flow congestion at lines 12 and 13. In addition,
buses 1 and 12 show the largest price gap between with and
without attack. It is noted that those buses are connected to the
ends of line 21, which is added by the adversary while being
undetected by BDD.We can conjecture from this observation
that network topology change has a significantly detrimental
impact on the calculation of LMP.

In Case 2, the adversary drops more contingency pairs
than in Case 1, consequently leading to only a binding flow
constraint at Fmax

5 . As a result, LMPs at buses 7 and 8 in

Case 2 become less and uniform than in Case 1. This is
because those buses are connected to the ends of lines belong-
ing to dropped CP2 and CP6. Conversely, the highest and the
lowest price are obtained at buses 5 and 2, corresponding to
binding flow constraint at Fmax

5 .
Finally, in Case 3 the adversary drops all contingency pairs,

and all security and network flow constraints become unbind-
ing in SCED. Due to no line congestion, prices in Fig. 5
denote uniform LMPs for all buses. It should be noted that
Case 3 includes line-deleting attack. Unlike expectation that
line-deleting attack increases the list of contingency pairs by
making system operating condition become more insecure,
our simulation result shows that the coordinated topology
data attack through deletion and addition of lines decreases
the list of contingency pairs, subsequently leading to less
binding constraints at SCED.

B. PERFORMANCE AND ECONOMIC IMPACT OF ATTACK II
In this subsection, the performance of attack II is assessed
in Cases 4, 5, and 6 where the adversary stealthily
adds the targeted contingency pairs to the normal contin-
gency list in Table 2. Table 4 shows the performance of
attack II for these three cases. The targeted contingency pairs
(CP8 ∼ CP15) that are added to the normal contingency list
are shown in Table 5.

We observe from Table 4 that the number of contingency
pairs (the fourth row) from CA and the number of the bind-
ing flow constraints (the fifth row) from SCED increase
as long as attack effort (the sixth row) increases with an
increasing number of the manipulated data (the third row)
to enlarge the contingency table (the second row). Different
from attack I including line-adding attack, all three cases in
attack II include line-deleting attack where line 7 is removed
after the attack. We can conclude from the results in Table 4
that line-deleting attack causes CA to calculate a more num-
ber of contingency pairs, consequently resulting in more
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TABLE 5. Candidate contingency list for attack II.

FIGURE 6. LMP of SCED without and with attack II (Cases 4, 5, and 6).

binding flow constraints in SCED. Therefore, the adversary
using the attack II strategy could mislead system operators
to make a wrong decision that the current system operating
condition appears to becomes more insecure physically and
economically.

Fig. 6 shows the comparison of the LMPs between with-
out attack and with attack in Cases 4, 5, and 6. Com-
pared to the results in Fig. 5 for attack I, it is observed
from Fig. 6 that attack II yields more fluctuating prices
at all buses. This observation results from the fact that
the increase of the number of contingency pairs due to
the malfunction of CA leads to the increase of the num-
ber of the binding flow constraints in SCED, consequently
resulting in a larger gap between LMPs. Like the result
from attack I, bus with maximum or minimum LMP due
to attack II is in the ends of binding contingency pairs. For
Cases 4, 5, and 6, pair of buses with the maximum and
minimum LMP is summarized as follows: {bus 12 ∈ CP4,
bus 1 ∈ CP1} in Case 4, {bus 12 ∈ CP4, bus 3 ∈ CP11} in
Case 5 , and {bus 14 ∈ CP13, bus 3 ∈ CP11} in Case 6.

Fig. 7 compares the average of LMP differences at all buses
between with and without attack and the attack efforts for
all six cases. We first observe from this figure that attack I
(Cases 1, 2, and 3) and attack II (Cases 4, 5, and 6) distort
prices more significantly as the adversary compromises more
sensors. Another observation is that as the attack effort in
each attack strategy increases, attack I leads to negative LMP
deviation from LMP without attack, whereas attack II to
a positive LMP deviation. This observation is due to the

FIGURE 7. Average LMP deviation and attack effort for attack I
(Cases 1, 2, and 3) and attack II (Cases 4, 5, and 6).

fact that the adversary using the attack I strategy reduces
the number of contingency pairs from CA and binding flow
constraints of SCED, consequently causing the network flow
become less congested with lower as well as less fluctuating
LMPs on average than without attack. Conversely, attack II
causes network flow to become more congested and yields
higher as well as more fluctuating LMPs on average than
without attack.

TABLE 6. Comparison of attack performance between with and without
constraints (32), (33).

On the other hand, the proposed attacks I and II in sub-
sections III-B and III-C could manipulate not only targeted
contingency pairs but also additional undesirable contingency
pairs. For example, Case 1 and Case 4 attacks aim to drop
CP1 and add CP8 from and to a contingency list, respectively.
However, the results from Tables 3 and 4 show that CP4 in
addition to CP1 is dropped in Case 1, and CP9 and CP10 in
addition to CP8 are added. To guarantee that only targeted
contingency pairs are manipulated, the following attack con-
straints can be added to the proposed optimization formula-
tion for attacks I and II:

Attack I : |F̃au,ex | ≥ Fmax
u , (u, ex) ∈ CP, ex 6= t (32)

Attack II : |F̃au,ex | ≤ Fmax
u . (u, ex) ∈ CP, ex 6= t (33)

where the subscripts ex and ex represent the indices of untar-
geted lines in the contingency list and the non-contingency
list, respectively. Table 6 shows the impact of two
constraints (32) and (33) on the performance of the pro-
posed attacks when CP3 and CP13 are dropped and added
by the attacker, respectively. It is noted that the last column
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FIGURE 8. Comparison of LMP between the proposed attack and the
proposed attack with: (a) constraint (32) for CP3 drop and
(b) constraint (33) for CP13 addition.

of Table 6 indicates contingency pairs that are untar-
geted, however additionally dropped or added by the attack.
We can observe from this table that the attack method
with (32) or (33) requires more attack effort while the
attacker manipulates only targeted contingency pair success-
fully. Figs. 8 show the comparison of the LMPs between the
proposed attack and the proposed attack with constraints (32)
and (33).We can observe from these figures that an increasing
number of contingency pairs due to attack leads to higher
LMPs with more fluctuating prices at all buses. This obser-
vation is also verified in Fig. 5 and Fig. 6. Therefore, we con-
clude that more (less) contingency pairs due to the attack has
more (less) detrimental impact on the prices.

Finally, the meaningful observations from simulation stud-
ies of the proposed attack I and II can be summarized as
follows.
1) In attack I and II, the adversary could stealthily dis-

tort the list of normal contingency pairs more severely
at the cost of more manipulated sensor measurements.
In general, the adversary using the strategy of attack I
(attack II) executes the line-adding (deleting) attack to
drop (add) targeted contingency pairs from (to) the nor-
mal contingency list. In addition to a simple topology

data attack, a coordinated attack that consists in line-
adding and line-deleting attacks can be conducted to
aggravate the result of CA more as shown in Case 3.

2) Given tight coupling between CA and SCED, themanip-
ulated contingency list due to the proposed attacks leads
to an incorrect calculation of LMP from SCED. A sig-
nificant distortion of LMP is observed at buses that
are connected to the end of changed security constraint
lines due to manipulated contingency pairs and the
attacked topology line. Furthermore, attack I (attack II)
decreases (increases) the average of LMPs for all the
buses with less (more) fluctuating LMPs. Therefore,
attack I and II could provide consumers and generation
companies with additional profit, respectively.

V. CONCLUSIONS
In this paper, we have proposed novel false data injection
attacks on contingency analysis in real-time power system
operations. We have formulated an undetectable least-effort
attack as an optimization problem where the adversary could
manipulate a number of contingency pairs obtained from con-
tingency analysis by distorting the state estimation solution
through injecting malicious data into SCADAmeasurements.
Furthermore, we have assessed the economic impact of the
proposed attacks on electricity prices that are calculated by
security constrained economic dispatch in real-time power
markets. This is the first study to characterize cyber data
attacks against contingency analysis and investigate the vul-
nerability of real-time electricity prices to such attacks.

In future studies, a broader range of cyber data attack
methods will be developed in large-scale realistic power sys-
tems considering more practical applications in energy man-
agement system, such as AC state estimation and dynamic
contingency analysis. Another interesting future study is to
present a profitable attack strategy with which the adversary
makes a financial gain through the malfunction of contin-
gency analysis.

APPENDIX
DATA FOR IEEE 14-BUS TEST SYSTEM
Simulation data for the test system are provided
in Tables 7 and 8.

TABLE 7. Line data.
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TABLE 8. Data for generator and load without attack.
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