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ABSTRACT Multi-user cooperative transmission is an attractive architecture for underwater acoustic sensor
networks (UASNs). Cooperative transmission depends on careful allocations of resources such as relay
selection, but traditional relay selection requires precise measurements of channel state information, which
is infeasible for multi-user cooperative transmission due to the unique features and hardware restrictions of
UASNs. In this paper, wemodel multi-user relay selection under a multiuser multi-armed bandit (MU-MAB)
framework, whereby users are not provided any prior knowledge about underwater acoustic channel
conditions.We first exploit a novelMU-MAB algorithm, DSMU-MAB, for relay selection, assuming that the
reward distributions are initially unknown but remain constant. Second, we consider an evolving environment
in which the reward distributions undergo changes in time, and DSMU-rMAB, a derivative of DSMU-MAB,
is proposed, which can be robust to abrupt changes in underwater communication environments. The
proposed algorithms not only help sources find the suitable relays to achieve a high quality transmission and
avoid collisions among users but also reduce themass of information exchanged among users.We established
the effectiveness of our proposed algorithms using theoretical and numerical analyses.

INDEX TERMS Multi-user multi-armed bandit (MU-MAB), stable matching, distributed relay selection,
UASNs.

I. INTRODUCTION
In recent years, Underwater Acoustic Sensor Net-
works (UASNs) have attracted growing interest, due to their
use in on-going support applications for mineral exploitation,
environmental monitoring, disaster prevention, military
surveillance and safety systems [1]–[3]. To implement spa-
tial diversity and overcome the effects of fading, coopera-
tive transmission has been introduced into UASNs [4]–[6],
in which the data collected by sensors will be relayed by
wireless acoustic nodes to cooperatively fulfil tasks. With the
increase in the number of sensors deployed underwater over
the years, multiple source nodes jointly using multiple relay
nodes have become more common in order to improve coop-
erative transmission utilization. Relay selection in multi-user
UASNs is a problem that should not be neglected; however,
it is a unique challenge to enable multiple source nodes to
select and share a common set of relays in an efficient and fair
way.

In conventional radio frequency (RF) or UASN single-
source scenarios, most relay selection architectures in the
current literature are designed based on full instantaneous
CSI [7] or statistical CSI [8], [9] feedback to achieve adaptive
decision-making. In fact, CSI-based relay selection does not
perform well in UASNs, especially in multi-user scenarios,
for the following reasons.

1) Doosti-Aref and Ebrahimzadeh [7], considered relay
selection with perfect channel state information (CSI)
at the source. However, due to the harsh underwa-
ter environments and propagation delays (five orders
of magnitude higher than in RF terrestrial channels),
the CSI at the transmitter was actually imperfect.

2) In some of the literature, Wei and Kim [8] and Luo
et al. [9] have considered relay selection based on prior
statistical CSI. However, in consideration of highly
dynamic changes in shallow seabeds or transient acous-
tic channel access to other artificial acoustic systems,
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a relay selection policy based on prior statistical CSI
may not be robust to abrupt changes in communication
conditions.

3) In multi-user scenarios, along with the increasing num-
ber of source nodes, CSI information feedback will
increase, which yields excessive overhead and compu-
tational costs.

In this paper, we present a novel multi-armed ban-
dit (MAB) decision-making learning framework to solve the
relay selection problem without knowledge of the channel
at the source. MAB has been widely applied in website
optimization [10]–[12] and optimal control strategies for
robots [13], [14]. Recently, MAB has been widely used to
address wireless communications and networking decision-
making problems [15]–[17]. In a stochastic MAB problem,
given a set of arms (actions), an arm is played (selected)
at each trial and receives a reward drawn from the reward
generating process of that arm. A stochastic reward with
an unknown mean is associated with each arm, and upon
pulling a single arm, the player receives an instantaneous
reward. The player decides which arm to pull in a sequence of
trials to maximize its accumulated reward over the long run.
Every MAB model is a class of sequential decision-making
problems under strictly limited prior information and feed-
back [16], and by employing this learning framework, we can
perform relay selection based on instantaneous rewards
rather than feeding knowledge regarding CSI back to the
source.

In fact, multi-user relay selection problems are not simple
superpositions of single-source relay selections; in a mul-
tiuser scenario, a relay selection scheme is needed to deter-
mine how relays are assigned [18] in order tomaximizewhole
network performance. An effective allocation mechanism is
an indispensable part of multi-user relay selection, the aim of
which is to reduce collisions among users that occur when
more than one source node user accesses the same relay
simultaneously. In addition, in consideration of the reliability
of data transmission and energy constraints (nodes equipped
with batteries cannot be recharged), distributed algorithms
are more applicable to UASNs, which are robust to tran-
sient losses of connectivity and limited information exchange.
Therefore, we present two new algorithms based on MAB to
further improve the performance of multi-user relay selection
for UASNs.

1) We modified the current MAB framework using stable
matching theory and a back-off timer and present a
distributed multi-user multi-armed bandit (MU-MAB)
relay selection algorithm, DSMU-MAB. Stable match-
ing theory is a well-known, Nobel-prize winning
framework that was introduced in a paper by Gale and
Shapley [19]. Under this kind of one-to-one selection
scheme, multisource access collisions can be avoided.
Moreover, a back-off timer was designed to reduce
information exchange among users.

2) In consideration of highly dynamic changes in shal-
low seabeds or transient acoustic channel access from

other artificial acoustic systems such as UASNs and
sonar users or natural acoustic systems such as marine
mammals [10], a distributed stable matchingmulti-user
robustMAB algorithm, DSMU-rMAB, is proposed to
overcome abrupt changes in communication conditions
under a non-stationary MAB setting where the reward
distributions undergo changes in time.

Specifically, we provide the following contributions in this
work.

• To the best of our knowledge, we present herein the first
analysis of a relay selection problem in a more practical
scenario with multiple sources and multiple relays for
UASNs. In addition, we present a learning framework
to learn multi-user relay selection as a MAB problem
without any prior knowledge regarding the nature of the
environment (i.e., instantaneous full CSI or knowledge
of channel statistics).

• To reduce the number of computations and solve the
conflict problem in a distributed way, we present a
novel MU-MAB algorithm, DSMU-MAB, by employ-
ing stable matching theory and a back-off timer to
realize stable relay selection in which collisions are
eliminated to ensure efficient communication and to
avoid masses of information exchange. We also present
DSMU-rMAB, a derivative of DSMU-MAB, to over-
come abrupt changes in communication environments,
which has not been mentioned in other current, related
works on MU-MAB.

• We present the regret upper bound of DSMU-MAB
and DSMU-rMAB. Our simulation results show that
our design employing small amounts of information
exchange can achieve comparable performance to that of
existing MU-MAB algorithms, and DSMU-rMAB can
be robust to abrupt changes in underwater communica-
tion environments.

The rest of this paper is organized as follows. Section II
presents the background on MAB theory along with related
work on MU-MAB. Section III introduces the system model.
Section IV describes in detail how we map the our prob-
lem into the learning framework and derive DSMU-MAB
algorithm for relay selection. In Section V, we consider an
evolving environment where the reward distributions undergo
changes in time, DSMU-rMAB, a derivative of DSMU-MAB
is proposed. In Section VI, we present the simulation results
analysis to validate the performance of our DSMU-MAB and
DSMU-rMAB algorithm. At last, we summarize the paper in
Section VII.

II. RELATED WORK
MAB is a fundamental reinforcement learning framework
for learning unknown parameters and has been widely used
in wireless communications and networking. Zhao and Gai
utilized MAB to formulate an opportunistic spectrum access
problem [20]–[23] in cognitive radio scenarios. Maghsudi
applied MAB to model efficient resource allocation in
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[24] and [25]. Nikfar and Vinck [26], applied MAB to model
efficient relay selection for cooperative power line commu-
nication. Shankar and Chitre [27] and Jayasuriya [28], first
applied MAB to tune underwater physical link parameters.
Furthermore, in [29], we first presented single-user relay
selection based on MAB for underwater communication
networks.

Several results from the MAB problem will be used and
generalized to study our problem. Currently, much of the
existing literature, including [20], [23], and [30], has studied
the MU-MAB problem. Because there are multiple users in
the systems, it is necessary to find allocation schemes to
avoid collisions among users. Reference [30] presented the
HungarianMU-MABpolicy for the problem of learning com-
binatorial matchings of users to resources. Reference [23]
presented a novel policy, matching learning with polynomial
storage (MLPS), that uses only polynomial storage and com-
putation time at each decision period. A key subroutine of the
MLPS policy involves solving a combinatorial optimization
problem pertaining to weighted matchings with polynomial
complexity at each step. Gai and Krishnamachari [23], [30],
considered a combinatorial bandit framework, and the pro-
posed schemes required a centralized coordinator, a large
amount of information exchange and coordination among
the users and mass information exchanges regarding the
measured throughput on each user, which also led to large
communication overheads. In [20], a distributed fair access
scheme (DLF) was proposed to take into account colli-
sions among users. Although that scheme can effectively
avoid collisions among users, those distributed MU-MAB
algorithms paid more attention to multiuser resource allo-
cation in symmetric cases, such that each user obtains
the same reward on a given arm. Obviously, due to geo-
graphic dispersion or underwater obstacles such as fish
schools [9], users always obtain different rewards on a
given relay, and asymmetrical cases are more common
in multiuser UASN relay selection. Huang et al. [31], pre-
sented an OLGS algorithm and applied stable matching
theory to achieve a distributed adaptive distributed chan-
nel allocation in an asymmetrical opportunistic spectrum
access system based on empirical evidence of efficiency but
without theoretical analysis. Moreover, no one has consid-
ered non-stationary settings where the reward distributions
undergo changes in time in the MU-MAB problem presented
above.

In our work, we neither appoint a coordinator nor limit our
scheme to symmetrical cases. To overcome the drawbacks of
the allocations described above, we present a DSMU-MAB
algorithm based on stable matching and design back-off
timers to reduce information exchange. The MU-MAB algo-
rithm can be used in symmetrical cases and asymmetrical
cases in a distributed way. In addition, DSMU-rMAB is
presented to against abrupt changes in underwater commu-
nication environments. Detailed theoretical regret analyses
of DSMU-MAB and DSMU-rMAB are presented in our
work.

FIGURE 1. Cooperative transmission system model.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this paper, an UASNs cooperative transmission scenario
is proposed,1 as shown in Fig. 1. We consider a slotted
UASN wherein each source node can access only one relay
in each transmission slot. The system model consists of
M source nodes equipped with acoustic modem, K ≥ M
mobile autonomous underwater vehicles (AUVs) and a base
station (BS) at the surface. The time is slotted, and we denote
n as the total number of time slots t such that 1 ≤ t ≤ n is
any arbitrary time slot. At time t , each source node can select
a relay only based on its own observation histories under a
decentralized policy and transmit its data to the BS assisted
by the relay. If user m ∈ {1, . . . ,M} at time t selects relay
k ∈ {1, . . . ,K }, assuming no other conflicting users select
that relay it gets an instantaneous reward Xm,k (t).2 Otherwise,
if multiple users are selecting the same relay, then we assume
that, due to collisions, none of the conflicting users derive any
benefit. We assume that Xm,k (t) follows some unknown i.i.d.
process over time, with the only restriction that its distribution
has a finite support. Without loss of generality, we normalize
Xm,k (t) ∈ [0, 1]. The mean of random variable Xm,k (t) is
θm,k = En[Xm,k (t)], which is unknown to the users and
distinct from others. We denote the set of all these means as
2 = {θm,k , 1 ≤ m ≤ M , 1 ≤ k ≤ K }. In addition, the users
need not to obtain CSI and any priori knowledge of the matrix
of mean values, they only have to estimate and predict relay
availability by exploring and learning. We denote kk∗ as a set
of M largest expected rewards for user-relay pairs.

The performance of a relay selection is evaluated by its
regret value, which is defined as the difference between the
expected reward that could be obtained by a genie that can

1Our scheme do not only used in this kind of vertical underwater acoustic
links, for example it also can used for cooperative transmission among AUVs
in horizontal links.

2The selection of reward metrics is dependent on the specific system
implementation and based on the desired objective, for UASNs, we can
denote throughput, delay, energy consumption, packet error ratio as the
reward metrics.

VOLUME 6, 2018 7841



X. Li et al.: Relay Selection for UASNs: MU-MAB Formulation

pick the optimal arm at each time, and that obtained by
the given policy π . We then can obtain the mathematical
expression for the stationary regret after n time slots:

Rπ
1 (2; n) = n

∑
(m,k)∈kk∗

θm,k − Eπ [
n∑
t=1

Sπ (t)(t)] (1)

Sπ (t)(t) is the sum of the actual reward obtained by all users
at time under policy π (t), which could be expressed as:

Sπ (t)(t) =
K∑
k=1

M∑
m=1

Xm,k (t)× Im,k (t), (2)

In formula (2), Im,k (t) reflects the collision between source
nodes in slot t , when source node m is the only one to select
relay k , then Im,k (t) = 1, otherwise Im,k (t) = 0.
We then consider a non-stationary case, where the reward

distributions undergo changes in time; in other words, θm,k
may change over time. The regret defined in (1) is no longer
appropriate for the time-invariant case. The mathematical
expression for this non-stationary regret under policy π is:

Rπ
2 (2(t); n) =

n∑
t=1

∑
(m,k)∈kk∗(t)

θm,k (t)− Eπ [
n∑
t=1

Sπ (t)(t)]

(3)

Table 1 presents a detailed list of the notation used throughout
the paper.

IV. DSMU-MAB: DISTRIBUTED STABLE MATCHING
MULTI-USER MAB FOR RELAY SELECTION
In this section, we consider the case whereby no prior
reward distribution knowledge is provided throughout the
relay selection process, but the distributions are assumed
to remain constant during all games. The multi-user relay
selection algorithm DSMU-MAB is proposed; the algorithm
has a self-learning ability that can be implemented well in
complex underwater environments and is based on amodified
current MAB framework with stable matching theory and a
back-off timer.

A. FORMULATION OF MU-MAB
For relay selection in UASNs, rather than relying on the avail-
ability of full, instantaneous CSI, we need to predict channel
quality using a learning algorithm. The learning mechanism
aims to exploit all gathered information to evaluate the most
promising relays. We now consider a stationary formulation
of theMABwhereby the reward distributions are fixed. In this
section, we suggest a simple learning mechanism referred
to as UCB, which borrows from the MAB in [32] and its
extended form [23]. To provide an optimistic evaluation of
the relay’s quality, the UCB algorithm associates an index
called the UCB index to each user-relay pair. The computed
index for each user-relay pair is then used as an estimate
for the corresponding reward expectations and to select the
user-relay pair with the highest index. Our work is influenced
by the formulation in [23], wherein each arm corresponds

TABLE 1. Notation.

to a matching of users to relays. The key idea behind this
algorithm is to store and use observations for each user-relay
pair rather than for each arm as a whole [23]. We provide the
combinatorial UCB algorithm in terms of types of feedbacks
in combinatorial bandits [33]; our work belongs to the semi-
bandit type, in which the user observes only the outcomes of
selected relays in one round. In each round, an arm is selected,
and the outcomes of its related reward of user-relay pairs are
observed, which aids the selection of arms in future rounds.

At each time t , after a user-relay pair (m, k) ∈ kk(t) is
selected, we obtain the observation of Xm,k (t) for all (m, k) ∈
kk(t) (kk(t) is a set (super arm) that contains M user-relay
pairs at time t). (θ̂m,k )M×K and (nm,k )M×K are then updated
as follows:θ̂m,k (t) =

θ̂m,k (t − 1)nm,k + Xm,k (t)
nm,k (t − 1)+ 1

nm,k (t) = nm,k (t − 1)+ 1
(4)

Our proposed scheme of selecting a set containingM user-
relay pairs that maximizes the expected reward is expressed
as Algorithm 1.

We use twoM by K matrices to store the information. One
is (θ̂m,k )M×K , and the other is (nm,k )M×K . Both are calculated
by formula (4) after we select a user-relay pair at each time
slot. In the above algorithm, line 4 ensures that there will be
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Algorithm 1 DSMU-MAB
1: // INITIALIZATION
2: for t = 1→ K do
3: for m = 1→ M do
4: Select relay k such that k = ((m+ t)modK )+ 1;
5: θ̂m,k (t) = Xm,k (t);
6: nm,k (t) = 1;
7: end for
8: end for
9: // MAIN LOOP
10: while 1 do
11: t = K + 1 do
12: Run algorithm 2 to get a set containsM user-relay pairs

that maximizes∑
(p,q)∈kk(t)

θ̂p,q(t)+

√
2 ln t
np,q(t)

(5)

13: Update (θ̂m,k )M×K , (nm,k )M×K accordingly.
14: end while

no collisions among users. Our scheme selects M user-relay
pairs with the maximum value b(kk) at each time slot after
the initialization period, when each user-relay pair is chosen
once.

B. STABLE MATCHING SCHEME
We will denote the UCB index of user m when using relay
k by bm,k and define the UCB index matrix as (Bm,k )M×K .
At any given time the M × K user-relay pairs UCB index
values are almost surely all different. To this end we need
some definitions:
Definition 1: A matching between users and relays is a

one-to-one3 function kk : [M ] −→ [K ] where [M ] =
{1, . . . ,M}.
We define the total UCB index of a matching kk by

b(kk) :=
M∑
m=1

bm,kkm(t) (6)

Indeed, there has been a recent surge in papers con-
cerning possible applications of centralized optimization to
solve assignment problems. Centralized optimization is a
new mathematical tool for optimizing assignments in many
emerging wireless systems. However, centralized optimiza-
tions often require global network information and cen-
tralized control, which thus yield significant overhead and
computational complexity. Complexity can rapidly increase
when dealing with combinatorial, integer programming prob-
lems [34]. The optimal centralized relay allocation problem
is now formalized as follows:

kkopt = argmax{b(kk)|kk : [M ]
1−to−1
−−−−→ [K ]}. (7)

3We adopt the ‘‘one-to-one matching’’ theory in [34], and in the relay
selection setting, it means that source node m can be matched to at most one
member of the opposite relay set [K]={1,. . . ,K}.

The Hungarian centralized optimization scheme can pro-
vide optimal solutions, and its algorithmic implementations
have matured over the past few years [35]. Optimizing relay
allocations for underwater cooperative transmission using
centralized optimization can result increased overhead due
to information exchange and centralized computation. Here,
we are interested in efficient distributed schemes that are
suitable to UASNs.
To overcome the limitations of the Hungarian central-

ized optimization allocation described in the references cited
above, we analyzed a distributed allocation scheme based on
stable matching theory in an efficient and computationally
inexpensive way. The relay allocation problem can be posed
as a stable matching problem between relays and users. The
main goal of matching is to optimally match relays and users,
given their individual and learned information. Each source
node user builds a ranking of the relays using a preference
relation. Note that in this case, a preference can simply be
defined in terms of a UCB index that predicts the higher
throughput achieved by a certain user-relay matching. Now
we can call a matching stable when no user-relay pairs prefer
each other in comparison to their current matching. Hence,
we obtain that in our case, stability is defined as follows:
Definition 2 [36]: A matching S : [M ] −→ [K ] is stable

if for every m ∈ [M ] and k ∈ [K ] satisfying S(m) 6= k if
bm,S(m) < bm,k then there exists some user m′ ∈ [M ] such
that S(m′) = k and bm′,k > bm,k .
The advantages of stable matching theory for relay alloca-

tion are as follows. (i) Because stable matching theory always
specifies a stable one-to-one matching for any preference
function, it can avoid multi-user contention under this inter-
ference model. (ii) Stable matching theory predicts unique
stable matching when the entries of the preference matrix are
all different. In [36], stable matching theory is used to obtain
the only stable result proven stable. (iii) Stable matching the-
ory allows each player (i.e., source node and relay) to define
its individual utilities depending on its local information.
We show that in our setting there is no significant overhead
and that the computational complexity of the algorithm is
greatly reduced.
To obtain a low-level information exchange implementa-

tion for the relay allocation, we would need to use a back-
off timer, as shown in Fig. 2. We consider that all users
choose the same back-off function, which is a monotonically
decreasing function of their user-relay pair UCB index. At the
beginning of each time slot after the initialization period,
users calculate and set the back-off timer. Each user in the
network calculates UCB index bm,k and maps it to a back-
off time τm,k based on a predetermined common decreasing
function f (bm,k ). Fig. 3 shows an example of such a back-
off function. The first back-off that expires belongs to the
user- relay pair that has the highest value in the matrix B.
Source node m is to be allocated relay k . At each allocat-
ing period, source node m broadcasts an allocated message
with format 〈index_m, index_k〉. This is equivalent to
deleting a row and a column from matrix B, as implemented
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FIGURE 2. Flowchart of back-off timer.

FIGURE 3. Example of a function that maps better UCB index to shorter
time.

in Algorithm 2. The timer’s value is adjusted according to
the user-relay pair of the UCB index, and the user-relay pair
of the larger UCB index is expected to end early. To clearly
reflect that proposed scheme, we present the distributed relay
allocation algorithm described above as Algorithm 2.
Theorem 1: The expected regret of DSMU-MAB is at most

[
8MKlnn
(1min)2

+M2K (1+
π2

3
)]1max (8)

Proof: Denote Ct,ni,j =
√

(L+1) ln t
ni,j

. We introduce Ti,j(n)
as a counter after the initialization period. It is updated in the
following way:

At each time slot after the initialization period, when non-
optimal set kk(t) is selected at time t, there must be at least
one user-relay pair (i, j) ∈ kk(t), such that (i, j) /∈ kk∗(t). If
there is only one such pair, Ti,j(n) is increased by 1. If there
are multiple such pairs, we arbitrarily pick one, say (p, q), and
increment Tp,q by 1.

Each time when a non-optimal set is picked, exactly one
element in (Ti,j(n))M×K is incremented by 1. This implies
that the total number that we have played the non-optimal
sets is equal to the summation of all counters in (Ti,j(n))M×K .

Algorithm 2 Stable Matching Subroutine

1: Input: M , K , (θ̂m,k )M×K , (nm,k )M×K
2: Output: kk , consisting of the M engaged user-relay pair
3: Calculate UCB index
4: Get the value of (Bm,k )M×K
5: (B̃m,k )M×K = (Bm,k )M×K
6: for t = 1→ M do
7: Get the maximum in the matrix (B̃m,k )M×K
8: // Assume that τp,q is the shortest time (bp,q is the max-

imum value in (B̃m,k )M×K , p ∈ [1,M ], q ∈ [1,K ])
9: update (B̃m,k )M×K ;
10: ∀1 ≤ i ≤ M , set B̃i,q = 0;
11: ∀1 ≤ j ≤ K , set B̃p,j = 0;
12: end for
13: Terminate: A stable matching between users and relays

Therefore, we have:

∑
kk:θkk<θkk∗

E[Tkk (n)] =
M∑
i=1

K∑
j=1

E[Ti,j(n)] (9)

Denote by Ii,j(n) the indicator function which defined to be
1 when the Ti,j(n) is added by one at time n, and 0 when it is
false. Let l be an arbitrary positive integer. Then:

Ti,j(n) =
n∑

t=K+1

{Ii,j(t)}

≤ l +
n∑

t=K+1

{Ii,j(t),Ti,j(t − 1) ≥ l} (10)

When Ii,j(t) = 1, there exists a user-relay pair (i, j) /∈ kk∗(t)
such that a non-optimal set is picked. We denote this set as
kk(t) since at each time that Ii,j(t) = 1. Then,

Ti,j(n) ≤ l +
n∑

t=K+1

{
ˆθkk∗(t−1)(t − 1)+ Ct−1,nkk∗(t−1)(t−1)

≤
ˆθkk(t−1)(t − 1)+ Ct−1,nkk(t−1)(t−1),Ti,j(t − 1) ≥ l}

(11)

Note that ˆθkk∗(t−1)(t − 1)+ Ct−1,nkk∗(t−1)(t−1) ≤
ˆθkk(t−1)(t −

1)+Ct−1,nkk(t−1)(t−1), for jε[1,K ], at least one of the following
must hold:

θ̂kk
∗

1,j (t)+ Ct,nkk∗1,j (t)
≤ θ̂kk1,j(t)+ Ct,nkk1,j(t)

,

θ̂kk
∗

2,j (t)+ Ct,nkk∗2,j (t)
≤ θ̂kk2,j(t)+ Ct,nkk2,j(t)

,

...

θ̂kk
∗

M ,j(t)+ Ct,nkk∗M ,j(t)
≤ θ̂kkM ,j(t)+ Ct,nkkM ,j(t).

Note that Ti,j(t) ≥ l implies,

ni,j(t) ≥ Ti,j(t) ≥ l. (12)
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This means:

Ti,j(n) ≤ l +M
n∑

t=K+1

{θ̂kk
∗

i,j (t)+ Ct,nkk∗i,j (t)

≤ θ̂kki,j (t)+ Ct,nkki,j (t),Ti,j(t − 1) ≥ l}

≤ l +M
n∑

t=K

{ min
0<nkk

∗

i,j <t
θ̂kk
∗

i,j (t)+ Ct,nkk∗i,j (t)

≤ max
l<nkki,j<t

θ̂kki,j (t)+ Ct,nkki,j (t)}

≤ l +M
n∑
t=1

[
t−1∑

nkk
∗

i,j =1

t−1∑
nkki,j=l

θ̂kk
∗

i,j (t)+ Ct,nkk∗i,j (t)

≤ θ̂kki,j (t)+ Ct,nkki,j (t)] (13)

Now observe that θ̂kk
∗

i,j (t) + Ct,nkk∗i,j (t) ≤ θ̂kki,j (t) + Ct,nkki,j (t)
implies that at least one of the following must be true:

θ̂kk
∗

i,j (t) ≤ θkk
∗

i,j (t)− Ct,nkk∗i,j (t) (14)

θ̂kki,j (t) ≤ θ
kk
i,j (t)− Ct,nkki,j (t) (15)

θ̂kk
∗

i,j (t) ≤ θkki,j (t)+ 2Ct,nkki,j (t) (16)

We bound the probability of events (14) and (15) using
Chernoff-Hoeffding bound),

P{θ̂kk
∗

i,j (t) ≤ θkk
∗

i,j (t)− Ct,nkk∗i,j (t)} ≤ e
−4 (17)

P{θ̂kki,j (t) ≤ θ
kk
i,j (t)− Ct,nkki,j (t)} ≤ e

−4 (18)

For l ≥ d 8lnn
(1kk

i,j (t))
2 e, (16) is false. In fact

θ̂kk
∗

i,j (t)− θkki,j (t)− 2Ct,nkki,j (t)

= θ̂kk
∗

i,j (t)− 2

√
2 ln t

nkki,j (t)

≥ θ̂kk
∗

i,j (t)− θkki,j (t)− 2

√
2(1kk

i,j (t))
2lnt

8lnn
= θ̂kk

∗

i,j (t)− θkki,j (t)−1
kk
i,j (t) = 0 (19)

If we let l = d 8lnn
(1kk

i,j (t))
2 e, then (16) is false for all kk(t).

Therefore,

E[Ti,j(n)] ≤
8lnn

(1i,j
min)

2
+M

∞∑
t=1

t−1∑
nkk
∗

i,j =1

t−1∑
nkk(t)i,j =l

2t−4

≤
8lnn

(1i,j
min)

2
+M (1+

π2

3
) (20)

So under our scheme,

Rπ
1 (θ; n) = n

∑
(m,k)∈kk∗

θm,k − Eπ [
n∑
t=1

Sπ (t)(t)]

= nθkk∗ − Eπ [
n∑
t=1

Sπ (t)(t)]

=

∑
kk:θkk<θkk∗

1kkE[Tkk (n)]

≤ 1max

∑
kk:θkk<θkk∗

E[Tkk (n)]

= 1max

M∑
i=1

K∑
j=1

E[Ti,j(n)]

≤ [
M∑
i=1

K∑
j=1

8lnn

(1i,j
min)

2
+M2K (1+

π2

3
)]1max

≤ [
8MKlnn
(1min)2

+M2K (1+
π2

3
)]1max (21)

V. DSMU-rMAB: DISTRIBUTED STABLE MATCHING
MULTI-USER ROBUST MAB FOR RELAY SELECTION
Temporal changes in reward distribution structure are intrin-
sic characteristics of problems in many application domains.
Reward distribution structures under communication con-
ditions uncertainty often involve trade-offs between learn-
ing about users’ sensitivities to communication condition
variations and earning short-term revenues. In this section,
we focus on a MU-MAB formulation that allows for a
broad range of temporal uncertainties in rewards due to the
varying demands of the environment. A distributed stable
matching multi-user robust MAB algorithm, DSMU-rMAB,
is proposed to overcome abrupt changes in communication
conditions under non-stationary MAB settings where the
unknown reward distributions undergo changes in time and
eliminates collisions among users through a one-to-one user-
relaymatching policy. In the presence of uncertainty, an agent
that faces a sequence of decisions needs to judiciously use
information collected from past observations when trying to
optimize future actions. Knowing that undetected changes
will lead to severe inaccuracies in estimation, the agent needs
to discount the weight of older demand observations while
estimating the demand curve in evolving environments.

The fundamental problem of multiple users contending
for relay selection over multiple relays in UASNs has been
formulated as a DSMU-rMABproblem. The goal is to design
distributed online learning policies that incur minimal regret.
The DSMU-rMAB problem we consider has the following
key features. (a) For the purpose of considering dynamic
environmental changes, the problem of relay selection can
be modeled as non-stationary bandit problems where the
distributions of rewards change abruptly at unknown time
instants. Discounted-UCB(D-UCB), which was proposed
in [37], is adequately successful when used to model evolv-
ing environments where the reward distributions undergo
changes in time, but there have been no analyses of multi-user
situations. We based the relay selection scheme on D-UCB
and considered a set-up where there are multi-source nodes.
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(b) To solve the competition among source node users of
UASNs, we apply the stable matching theorem to allocate
relays that effectively avoid multi-user collisions.

To estimate the instantaneous expected reward, the D-UCB
scheme averages past rewards with a discount factor giving
more weight to recent observations. In particular, D-UCB is a
variant of theUCBpolicies that relies on a discount factor γ ∈
(0, 1). This scheme constructs a index bm,k (t) = n̄m,k (t) +
Cm,k (t) for the instantaneous expected reward, where the dis-
counted exploration bonus is Cm,k (t) = 2

√
ξ lnnt (γ )/n̄m,k (t),

with nt (γ ) =
M∑
m=1

K∑
k=1

n̄m,k (t), for an appropriate parameter

ξ . At each time t , after an user-relay pair (m, k) ∈ kk(t) is
played, then (θ̂ ′(m, k))M×K and (n̄m,k )M×K are update as fol-
lows: where the discounted empirical average and discounted
number of times are given by

θ̂ ′m,k (t) =
1

n̄m,k (t)
Xm,k (s)

t∑
s=1

γ t−sI{(m,k)∈kk(s)}

n̄m,k (t) =
t∑

s=1

γ t−sI{(m,k)∈kk(s)}

(22)

Our proposed policy, which we refer to as a distributed
stable matching multi-user robust MAB algorithm, is shown
in Algorithm 3. We propose the subroutine presented in
Algorithm 2 to solve the relevant distributed stable matching
problem.

Algorithm 3 DSMU-rMAB
1: // INITIALIZATION
2: for t = 1→ K do
3: for m = 1→ M do
4: Select relay k such that k = ((m+ t)modK )+ 1;
5: θ̂ ′m,k (t) = Xm,k (t);
6: n̄m,k (t) = 1;
7: end for
8: end for
9: // MAIN LOOP
10: while 1 do
11: t = K + 1 do
12: Run algorithm 2 to get a set containsM user-relay pairs

that maximizes∑
(p,q)∈kk(t)

θ̂ ′p,q(t)+ 2
√
ξ lnnt (γ )/n̄p,q(t) (23)

13: Update (θ̂ ′m,k )M×K , (n̄m,k )M×K accordingly.
14: end while

Now we provide the analysis of the upper-bound on the
regret of DSMU-rMAB. Let ϒn denote the number of break-
points (we consider abruptly changing environments: the
distributions of rewards remain constant during periods and
change at unknown time slots) before time n. We denote by
Eγ and Pγ the expectation and probability distribution under
the our scheme DSMU-rMAB using the discount factor γ .

Theorem 2: The regret of DSMU-rMAB is

M2K (1+Mdn(1− γ )eA(γ )γ−
1

1−γ +MϒnD(γ )

+ 2M (τ − K + d
ln 1

1−γ

ln(1+ η)
e
n(1− γ )

1− γ
1

1−γ

)) (24)

Proof: We introduce Ti,j(n) as a counter after the initial-
ization period. It is updated in the following way:

At each time slot after the initialization period, when non-
optimal set kk(t) is played at time t, there must be at least one
user-relay pair (i, j) ∈ kk(t), such that (i, j) /∈ kk∗(t). If there
is only one such pair, Ti,j(n) is increased by 1. If there are
multiple such pairs, we arbitrarily pick one, say (p, q), and
increment Tp,q by 1.

Each time when a non-optimal set is picked, exactly one
element in (Ti,j(n))M×K is incremented by 1. This implies
that the total number that we have played the non-optimal
sets is equal to the summation of all counters in (Ti,j(n))M×K .
Therefore, we have:∑

kk:θkk<θkk∗

Eγ [Tkk (n)] =
M∑
i=1

K∑
j=1

Eγ [Ti,j(n)] (25)

The number of times a user-relay pair (i, j) that contain in
a suboptimal arm is played is:

Ti,j(n) = 1+
n∑

t=K+1

{
ˆ̄
θ ′kk∗(t−1)(t − 1)+ Ct−1,n̄kk∗ (t−1)

≤
ˆ̄
θ ′kk(t−1)(t − 1)+ Ct−1,n̄kk (t−1), n̄

kk
i,j < A(γ )}

+

n∑
t=K+1

{
ˆ̄
θ ′kk∗(t−1)(t − 1)+ Ct−1,n̄kk∗ (t−1)

≤
ˆ̄
θ ′kk(t−1)(t − 1)+ Ct−1,n̄kk (t−1), n̄

kk
i,j ≥ A(γ )} (26)

where A(γ ) = 16ξ lnnn(γ )/(1
i,j
min)

2. Note that ˆ̄θ ′kk∗(t−1)(t −

1) + Ct−1,n̄kk∗ (t−1) ≤
ˆ̄θ ′kk(t−1)(t − 1) + Ct−1,n̄kk (t−1), for

jε[1,K ], at least one of the following must hold:

θ̂ ′
kk∗

1,j (t)+ Ct,n̄kk∗1,j (t)
≤ θ̂ ′

kk
1,j(t)+ Ct,n̄kk1,j(t)

,

θ̂ ′
kk∗

2,j (t)+ Ct,n̄kk∗2,j (t)
≤ θ̂ ′

kk
2,j(t)+ Ct,n̄kk2,j(t)

,

...

θ̂ ′
kk∗

M ,j(t)+ Ct,n̄kk∗M ,j(t)
≤ θ̂ ′

kk
M ,j(t)+ Ct,n̄kkM ,j(t).

Formula (26) can be written:

Ti,j(n) ≤ 1+M
n∑

t=K+1

{θ̂ ′
kk∗

i,j (t)+ Ct,n̄kk∗i,j (t)

≤ θ̂ ′
kk
i,j (t)+ Ct,n̄kki,j (t), n̄

kk
i,j < A(γ )}

+M
n∑

t=K+1

{θ̂ ′
kk∗

i,j (t)+ Ct,n̄kk∗i,j (t)

≤ θ̂ ′
kk
i,j (t)+ Ct,n̄kki,j (t), n̄

kk
i,j ≥ A(γ )} (27)

7846 VOLUME 6, 2018



X. Li et al.: Relay Selection for UASNs: MU-MAB Formulation

Theorem 3: [37] Let i ∈ {1, . . . ,M}, j ∈ {1, . . . ,K }; for
any positive integer τ , when γ = 1, let n̄kki,j (t − τ : t) =

t∑
t−τ+1

I{(i,j)∈kk(t)}. Then for any positive a,

n∑
t=K+1

I
{(i,j)∈kk(t),n̄kki,j (t−τ :t)<a}

≤ dn/τea. (28)

Thus, for any τ ≥ 1, γ ∈ (0, 1) and A > 0,
n∑

t=K+1
I
{(i,j)∈kk(t),n̄kki,j (t)<A}

≤ dn/τeAγ−τ .

Using Theorem 3, we upper-bound the first sum in the

RHS of (27) as
n∑

t=K+1
{θ̂ ′

kk∗

i,j (t) + Ct,n̄kk∗i,j (t) ≤ θ̂ ′
kk
i,j (t) +

Ct,n̄kki,j (t), n̄kki,j (t) < A(γ )} ≤ dn(1− γ )eA(γ )γ−
1

1−γ .

For a number of rounds D(γ ) which depends on γ follow-
ing a breakpoint, the estimates of the expected rewards can
be poor for D(γ ) = ln((1−γ )ξ lnnK (γ )/ln(γ ) rounds, where

nK (γ ) =
M∑
i=1

K∑
j=1

n̄kki,j (K ). We denote by T (γ ) the set of all

indices t ∈ {K+1, . . . ., n}, if it does not follow too soon after
a state transition such that for all integers s ∈ [t − D(γ ), t],
for all user-relay pairs (i, j), θkki,j (s) = θ

kk
i,j (t). This leads to the

following bound:

n∑
t=K+1

{θ̂ ′
kk∗

i,j (t)+ Ct,n̄kk∗i,j (t) ≤ θ̂
′
kk
i,j (t)+ Ct,n̄kki,j (t),

n̄kki,j (t) ≥ A(γ )}

≤ ϒnD(γ )+
∑

t∈T (γ )

{θ̂ ′
kk∗

i,j (t)+ Ct,n̄kk∗i,j (t) ≤ θ̂
′
kk
i,j (t)

+Ct,n̄kki,j (t), n̄
kk
i,j (t) ≥ A(γ )} (29)

Then we can obtain:

Ti,j(n) ≤ 1+Mdn(1− γ )eA(γ )γ−
1

1−γ +MϒnD(γ )

+M
∑

t∈T (γ )

{θ̂ ′
kk∗

i,j (t)+ Ct,n̄kk∗i,j (t) ≤ θ̂
′
kk
i,j (t)

+Ct,n̄kki,j (t), n̄
kk
i,j (t) ≥ A(γ )} (30)

Now observe that equation θ̂ ′
kk∗

i,j (t) + Ct,n̄kk∗i,j (t) ≤ θ̂ ′
kk
i,j (t) +

Ct,n̄kki,j (t) implies that at least one of the following must hold

θkk
∗

i,j (t)− θkki,j (t) ≤ 2Ct,n̄kki,j (t) (31)

θ̂ ′
kk
i,j (t) ≥ θ

kk
i,j (t)+ Ct,n̄kki,j (t) (32)

θ̂ ′
kk∗

i,j (t) ≤ θ
kk∗
i,j (t)− Ct,n̄kk∗i,j (t) (33)

Note for the choice of A(γ ) given above, we have Ct,n̄kki,j (t) ≤

2
√
(ξ lnnt (γ ))/A(γ ) ≤ 1

i,j
min/2 which implies θkk

∗

i,j′ (t) −
θkki,j (t)− 2Ct,n̄kki,j (t) ≥ 0, then (31) is false.

Instead of using a Chernoff-Hoeffding bound, we bound
the probability of events (32) and (33) using a novel tailored-
made control on a self-normalized mean of the rewards with a
random number of summands, which is stated in Theorem 4.
Theorem 4 [37]: For all integers t and all δ, η > 0,

P(
St (γ )− Lt (γ )√

Nt (γ 2)
> δ) ≤ d

lnnt (γ )
ln(1+ η)

eexp(−2δ2(1−
η2

16
)).

(34)
We show that for t ∈ T (γ ), that is at least D(λ) rounds
after a breakpoint, the expected rewards of all arms are
well estimated with high probability. The idea is the fol-
lowing: we upper-bound the probability of (32) and (33)
by separately considering the fluctuations of θ̂ ′

kk
i,j (t) around

Lkki,j (t)/n̄
kk
i,j (t), and the ‘bias’ Lkki,j (t)/n̄

kk
i,j (t) − θ

kk
i,j (t), where

Lkki,j (t) =
t∑

s=1
γ t−sI{(i,j)∈kk(t)}θkki,j (s).

Note that Lkki,j (t)/n̄
kk
i,j (t), as a convex combination of ele-

ments θkki,j (s). Hence, |L
kk
i,j (t)/n̄

kk
i,j (t) − θ

kk
i,j (s)| ≤ 1. For t ∈

T (γ ),

|Lkki,j (t)− nt (γ )θ
kk
i,j (t)|

= |

t−D(γ )∑
s=1

γ t−s(θkki,j (s)− θ
kk
i,j (t))I{(i,j)∈kk(t)}|

≤

t−D(γ )∑
s=1

γ t−s|θkki,j (s)− θ
kk
i,j (t)|

≤ γD(γ )n̄kki,j (t − D(γ )). (35)

Note that n̄kki,j (t − D(γ )) ≤ (1 − γ )−1,

we get that |Lkki,j (t)/n̄
kk
i,j (t)−θ

kk
i,j (s)| ≤ γ

D(γ )((1−γ )nt (γ ))−1.

Altogether, |
Lkki,j (t)

n̄kki,j (t)
−θkki,j (t)| ≤ (1∧ γD(γ )

(1−γ )nt (γ )
). The elementary

inequality 1 ∧ x ≤
√
x. Hence, we obtain for t ∈ T (γ ):

|
Lkki,j (t)

n̄kki,j (t)
− θkki,j (t)| ≤

√
γD(γ )

(1− γ )nt (γ )

≤

√
ξ lnnK (γ )

n̄kki,j (t)
≤

1
2
Ct,n̄kki,j (t). (36)

Note that for t ∈ T (γ ):

Pγ (θ̂ ′
kk
i,j (t) ≥ θ

kk
i,j (t)+ Ct,n̄kki,j (t))

≤ Pγ (θ̂ ′
kk
i,j (t) ≥ θ

kk
i,j (t)+

√
ξ lnnK (γ )

N kk
i,j (t)

+ |
Lkki,j (t)

n̄kki,j (t)
− θkki,j (t)|)

≤ Pγ (θ̂ ′
kk
i,j (t)−

Lkki,j (t)

n̄kki,j (t)
>

√
ξ lnnK (γ )

n̄kki,j (t)
). (37)

We denote by Skki,j (t) the discounted total reward obtainedwith
user-relay pair (i, j). We bound the probability of events (37)
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using Theorem 4 and the fact that n̄kki,j (t) ≥ n̄′
kk
i,j (t), where

n̄′
kk
i,j (t) =

t∑
s=1

γ 2(t−s)I{(i,j)∈kk(s)}, we can get:

Pγ (θ̂ ′
kk
i,j (t) ≥ θ

kk
i,j (t)+ Ct,n̄kki,j (t))

≤ Pγ (
Skki,j (t)− L

kk
i,j (t)√

n̄′
kk
i,j (t)

>

√√√√ξNt (γ, kki,j)lnnt (γ )

n̄′
kk
i,j (t)

)

≤ Pγ (
Skki,j (t)− L

kk
i,j (t)√

n̄′
kk
i,j (t)

≥
√
ξ lnnt (γ ))

≤ d
lnnt (γ )
ln(1+ η)

ent (γ )−2ξ (1−
η2
16 ) (38)

Therefore,

Eγ [Ti,j(n)] ≤ 1+Mdn(1− γ )eA(γ )γ−1/(1−γ ) +MD(γ )ϒn

+ 2M
∑

t∈T (γ )

d
lnnt (γ )
ln(1+ η)

ent (γ )−2ξ (1−
η2
16 ). (39)

Whenϒn 6= 0, γ < 1. As ξ > 0.5, we take η = 4
√
1− 1/2ξ ,

for that choice, with τ = 1
1−γ ,∑

t∈T (γ )

d
lnnt (γ )
ln(1+ η)

ent (γ )−2ξ (1−
η2
16 )

≤ τ − K +
n∑
t=τ

d
lnnτ (γ )
ln(1+ η)

enτ (γ )−1

≤ τ − K + d
lnnτ (γ )
ln(1+ η)

e
n

nτ (γ )

≤ τ − K + d
ln 1

1−γ

ln(1+ η)
e
n(1− γ )

1− γ
1

1−γ

(40)

So under our scheme,

Rπ
2 (2(t); n)

=

n∑
t=1

∑
(m,k)∈kk∗(t)

θm,k (t)− Eπ [
n∑
t=1

Sπ (t)(t)]

=

n∑
t=1

θkk∗(t) − Eπ [
n∑
t=1

Sπ (t)(t)]

≤ M
∑

kk:θkk<θkk∗

Eγ [Tkk (n)]

= M
M∑
i=1

K∑
j=1

Eγ [Ti,j(n)]

≤ M2K (1+Mdn(1− γ )eA(γ )γ−
1

1−γ +MϒnD(γ )

+ 2M (τ − K + d
ln 1

1−γ

ln(1+ η)
e
n(1− γ )

1− γ
1

1−γ

)) (41)

VI. PERFORMANCE EVALUATION
A. OVERHEAD ANALYSIS OF RELAY SELECTION IN
MU-MAB FRAMEWORK
In the MU-MAB framework, we need the average of all
the observed rewards of relay k by user m and number of
times that relay k is selected by user m to calculate the UCB
index for each user-relay pair (m, k). Although each node has
to carry out frequent computations for the UCB index, like
other machine learning algorithms [38], the computations of
the decision-making parameters are simple and their delays
and power consumptions are much smaller than for acoustic
communications. Hence, the computational overhead of the
UCB index is ignored.

In centralizedMU-MAB algorithms [23], [30], the tuple of
〈index_m, index_k, Value_bm,k (t)〉 of m is referred
to as a QUEST message, where index_m represents the
sender’s (i.e., source node) ID, index_k represents the
relay’s ID, and Value_bm,k (t) represents the UCB index at
t of the user-relay pair. At each time t , each source node user
sends its K QUEST messages to the coordinator. The coordi-
nator can then be in charge of announcing the non-conflicting
relays to be used by each user for each decision period after
running the Hungarian allocation algorithm. Finally, the coor-
dinator needs to broadcast an ALLOCATION message with
format 〈index_m, index_k〉. Hence, the overhead of
the centralized MU-MAB algorithm arises from two places:
the QUEST message and the ALLOCATION message. The
message complexity of centralized MU-MAB algorithms is
O(M × K + M ). In contrast to these centralized MU-MAB
algorithms, our DSMU-MAB and DSMU-rMAB algorithms
are fully distributed. It is obvious that the nodes are com-
pletely dependent on local information to make decisions
and do not need the entirety of network topology informa-
tion. Obviously, in the implementation of the algorithm, each
node only needs to broadcast a MATCHING message with
format 〈index_m, index_k〉. The message complexity
of DSMU-MAB is O(M ), which is the same as that for
DSMU-rMAB.

B. SIMULATION AND ANALYSIS OF DSMU-MAB
1) METHODOLNY AND SIMULATION SETUP
In this experiment, we consider source nodes willing to
exploit relay nodes with unknown expected reward patterns
2 = (θm,k )M×K and evaluate the nodes’ transmission perfor-
mances depending on network throughput, and then denote
θm,k as the expected reward of relay k observed by user m.
To simplify the process, we assume that follows a Gaussian
distribution with parameter θm,k .4 We verified the feasibility
of that distribution usingWatermark version 1.0 dataset [39],
it contains mass of time-varying acoustics channels data,
which were measured in Norwegian waters in the frequency
band 10 to 18 kHz.

4This Gaussian distribution assumption is only used for performance
evaluation, and there is no prior reward distribution knowledge provided to
DSMU-MAB during relay selection.
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FIGURE 4. Normalized regret R(n)
ln(n) vs. n time slots.

2) COMPARISONS OF DSMU-MAB AND DLF IN A
SYMMETRICAL CASE
In this section, we first compare the performance of
DSMU-MAB with the distributed MU-MAB algorithm DLF,
which was only designed for symmetrical cases. In Fig. 4,
we compare the normalized regrets R(n)

ln(n) of our scheme and
the DLF access scheme, which were determined by varying
the number of users and relays to verify the performance
of DSMU-MAB detailed earlier. We show the simulations
of three sets of data, (i) we have M = 3 users, K = 6
relays, with 2m,1:K = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4),m =
1, 2, 3; (ii) we have M = 3 users, K = 9 relays, with
2m,1:K = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1),m =

1, 2, 3; (iii) we have M = 6 users, K = 9 relays, with
2m,1:K = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1),m =

1, 2, 3, . . . , 6. It can be easily determined that the regret
is uniformly logarithmic with time slot. As expected, our
scheme can yield the least regret, because it can completely
eliminate conflicts.

The advantage of DLF is that it enables fairness access
for all users with same prioritizations in a symmetrical case.
Thus, we also present a comparison of fairness. As shown
in Fig. 5, we provide a bar chart for each user’s cumulative
normalized network throughput running on DSMU-MAB
and DLF. We found that fairness among different users
was reflected in both the DSMU-MAB and DLF schemes.
Although in DSMU-MAB, we need not change rank of prior-
ity access for each user like DLF, the users could also compete
fairly well for the best relay because of the inherent fairness
of our scheme.

3) PERFORMANCE EVALUATION OF DSMU-MAB IN AN
ASYMMETRICAL CASE
As mentioned before, asymmetrical cases are more common
in multi-user UASNs relay selection. We therefore pay more
attention to performance evaluation of DSMU-MAB in an
asymmetrical case. In fact, in asymmetrical cases, some users
also experience the same reward process on a given relay,
and we call them symmetrical users. For simplicity, in this
section, the number of symmetrical users is S, the number of

FIGURE 5. Different user networks’ throughput.

TABLE 2. Performance comparison of several algorithms
(M = 3, S = 2, G = 1, K = 9).

groups of symmetrical users is G. Obviously, when M = S,
G = 1, and the case is symmetrical, and when S = 0,
G = 0, and the case is completely asymmetrical. Unlike
other distributed MU-MAB algorithms, our scheme remains
effective for asymmetric cases.

We compared DSMU-MABwith four different relay selec-
tion schemes for the case of M = 3, S = 2,G = 1,K = 9,
namely, (i) a random scheme, wherein a relay is randomly
selected from the K available at each slot with equal prob-
ability, (ii) a greedy allocation scheme in which users learn
unknown channel parameters but select the relay providing
the highest UCB index of selfishness, (iii) the MLPS scheme
presented in [23] and (iv) the Hungarian centralized MU-
MAB scheme presented in [30]. We consider a reward matrix
2 defined as:

2 =

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.7 0.6 0.5 0.8 0.3 0.2 0.9 0.1 0.4

.
As shown in Fig. 6, we provide a bar chart regarding the
cumulative normalized network throughputs for the five
schemes. The performance of our distributed scheme was
close to that of the Hungarian centralized MU-MAB, better
than that of MLPS, and had significant performance advan-
tages over the random and greedy allocation schemes. In our
configuration, we also define an optimal scheme as represent-
ing the ideal case, wherein instantaneous full CSI correspond-
ing to all the user-relay pairs is available for matching the
optimal user-relay pairs. In this scheme, it is assumed that the
mean rewards for all the user-relay pairs are known a priori,
and a genie always selects the optimal relay. The value of
the optimal scheme can be used as the upper bound of the
total cumulative normalized network throughput of each user.
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TABLE 3. Hungarian MU-MAB(M = 3, S = 2, G = 1, K = 9).

TABLE 4. Greedy allocation(M = 3, S = 2, G = 1, K = 9).

TABLE 5. MLPS(M = 3, S = 2, G = 1, K = 9).

FIGURE 6. Total network throughput under five schemes
(M = 3, S = 2, G = 1, K = 9).

Table II lists the performance ratios of the different schemes
to that of the optimal scheme based on experimental simu-
lation. We showed that the rate achieved by DSMU-MAB
was approximately 99.41%of the optimal rate. The difference
between the Hungarian MU-MAB rate and our rate was at
most 0.03%. In addition, the total cumulative normalized
network throughput increased 54%over that of the random
scheme.

The numbers of times that each relay was selected by
each source node are shown in table III-table VII, and they
clearly reflect that DSMU-MAB can significantly increase
the best relay utilization rate. As expected, the greedy allo-
cation scheme produced the worst performance because two
symmetric users can select the best relay at the same time,
as shown in table IV. That scheme cannot avoid communica-
tion conflicts among multiple symmetric users. In contrast to
the greedy allocation scheme, our scheme confirms its ability
to reduce the impact of collisions. The data for the random
allocation scheme, whereby source node users select an arbi-
trary relay with equal probability, are shown in table VII and
clearly reflect that the scheme can significantly increase relay
utilization rate with low throughput.

In the above setting, our DSMU-MAB algorithm
showed good performance that was similar to that of the

FIGURE 7. DSMU-MAB vs. Hungarian MU-MAB algorithm performance.

Hungarian MU-MAB. To validate the applicability of
DSMU-MAB, we also conducted simulations for other
scenarios. First, we evaluated the cumulative regrets of
DSMU-MAB and Hungarian MU-MAB and defined d =

regret{DSMU-MAB}
regret{Hungarian MU-MAB} to measure the performance gap

between the two algorithms, as shown in table VIII. In six rep-
resentative cases, our DSMU-MAB distributed algorithm had
cumulative regrets similar to those of Hungarian MU-MAB.
We then tested the average reward per user at each slot t , and
scatter plots of the rewards for six cases are shown in Fig. 7.
For most of the total n = 105 slots, the users had a similar
average rewards at each slot for DSMU-MAB and Hungarian
MU-MAB.

The simulation results above demonstrate that our
DSMU-MAB distributed algorithm can achieve good per-
formance in symmetrical and asymmetrical cases. For the
symmetrical case, DSMU-MAB had a lower regret than that
of existing distributed algorithm DLF and achieved fairness
access on a par with DLF. Unlike DLF, DSMU-MAB can also
be applied to asymmetrical cases and achieved performances
in many cases similar to the centralized HungarianMU-MAB
in all above tests with a low level of overhead. In par-
ticular, although no prior CSI knowledge was provided to
DSMU-MAB during relay selection, the algorithm achieved
above 99% of the total rate of the optimal allocation, in which
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TABLE 6. DSMU-MAB(M = 3, S = 2, G = 1, K = 9).

TABLE 7. Random scheme(M = 3, S = 2, G = 1, K = 9).

TABLE 8. Regret comparison between DSMU-MAB and Hungarian MU-MAB(K = 9, n = 105).

instantaneous and full CSI corresponding to all the user-relay
pairs was available.

C. SIMULATION AND ANALYSIS OF DSMU-rMAB IN
CHANGING ENVIRONMENTS
We present simulation results for our proposed the
DSMU-rMAB in changing environments. We assumed that
the reward of relay k observed by userm at slot t also follows
a Gaussian distribution, but the parameter (θm,k )M×K suffers
a change during the relay selection. We mainly considered
‘‘bursty’’ and ‘‘smooth’’ changes in (θm,k )M×K to simulate
the high dynamic changes in a shallow seabed or transient
acoustic channel access from other artificial acoustic or nat-
ural acoustic systems.

In the first example, we consider ‘‘bursty’’ changes to
simulate dynamic changes caused by wind speed changes and
ship noise in a shallow seabed or by the sudden arrival of
moving objects such as marine mammals and fish schools.
We have M = 3 users, K = 5 relays, and S = 3,G =
0, the time horizon is set to n = 104. We consider the
two breakpoint(t = 2000 and t = 5000), for t < 2000,
the expected rewards distribution matrix 2 is defined as:

2 =

0.9 0.8 0.7 0.6 0.5
0.6 0.5 0.8 0.9 0.7
0.5 0.7 0.9 0.8 0.6

, for 2000 ≤ t < 5000,

2 =

0.5 0.7 0.8 0.9 0.6
0.9 0.8 0.7 0.5 0.6
0.7 0.5 0.6 0.8 0.9

 , for t ≥ 5000,

2 =

0.8 0.9 0.5 0.7 0.6
0.5 0.6 0.8 0.7 0.9
0.7 0.8 0.9 0.6 0.5

.
We represent the evolution of cumulated regret in Fig. 8.

As seen in Fig. 8, DSMU-MAB performed with lower regret
than DSMU-rMAB before t = 2000, however, the regret
for DSMU-MAB converged with difficulty after the first
breakpoint until the end of that trial. In contrast, the regret for
DSMU-rMAB converged to a stable level although suffering
two breakpoints, indicating that DSMU-rMAB can quickly
concentrate their pulls on the optimal combination and is
robust to bursty changes.

FIGURE 8. Normalized regret R(n) vs. n time slots.

FIGURE 9. Normalized regret R(n) vs. n time slots.

In the second example, we considered a ‘‘smooth’’ changes
to simulate dynamic changes in a communication envi-
ronment caused by spectral occupancy by other artificial
acoustic systems. We tested the behaviors of DSMU-rMAB
and DSMU-MAB by investigating their performances in
a smoothly varying environment. That environment was
made of K = 5 arms, and it was assumed that some
elements of the reward matrix θ suffered a time-varying
sinusoidal disturbance σ (t) = sin(6π t/n). The best
arm changed cyclically, and the transitions were smooth.
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We consider an expected reward matrix θ defined as:2(t) =[
0.6 0.7+0.2σ (t) 0.5+0.4σ (t) 0.4 0.9

0.8+0.1σ (t) 0.5+0.1σ (t) 0.3 0.9 0.6
0.6+0.2σ (t) 0.6 0.9 0.5 0.3+σ (t)

]
.

The evolutions of the cumulative regrets under the two
policies are shown in Fig. 9; in this continuously evolv-
ing environment, the DSMU-MAB algorithms accumulated
larger regrets, the convergences of which were difficult.
However, DSMU-rMAB was robust to the continuous time-
varying disturbance, and the regret converged at a stable level.

These modest and yet representative examples suggest
that DSMU-rMAB can be successfully adapted to cope with
changing environments and achieve better performance than
DSMU-MAB, whether bursty or smoothly changing.

VII. CONCLUSIONS
In this paper, we studied the problem of multi-user
relay allocations for UASNs and proposed for the first
time a MU-MAB algorithm to efficiently solve the relay
selection problem in a distributed manner without any
knowledge regarding the nature of communication envi-
ronments. Through theoretical analysis, we established that
DSMU-MAB can achieve simple, distributed and efficient
solutions without collisions among users and reduces the
mass of information exchanged among users. At the same
time, DSMU-rMAB, a derivative of DSMU-MAB, was pro-
posed that can be robust to substantial changes in underwater
communication environments. Numerical analysis showed
that DSMU-MAB can be applied with decent performance
to symmetrical and asymmetrical cases that can closely
approach the optimal solution, and, moreover, DSMU-rMAB
can be successfully robust to abrupt changes in environment.
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