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ABSTRACT Limited-angle computed tomography (CT) is common in industrial applications, where incom-
plete projection data can cause artifacts. For objects made from homogeneous materials, we propose a joint
reconstruction and segmentation method that performs joint image reconstruction and segmentation directly
on the projection data. We describe an alternating minimization algorithm to solve the resulting optimization
problem, and we modify the primal-dual hybrid gradient algorithm for the non-convex piecewise constant
Mumford-Shah model, which is a popular approximation model in biomedical image segmentation. The
effectiveness of the proposed approach is validated by simulation and by application to actual micro-CT
data sets.

INDEX TERMS Limited-angle, Mumford-Shah, PCMS, discrete tomography, prior knowledge.

I. INTRODUCTION
X-ray computed tomography (CT) has been widely used
in many fields, from medical imaging to industrial non-
destructive testing (NDT). To acquire complete projection
data, the scanning trajectory should cover at least a π plus fan
angle range for fan-beam CT scan and a π range for parallel-
beam CT scan [1], [2]. If the object is scanned with only a
limited angle, the projection data are incomplete. Limited-
angle CT reconstruction is an ill-posed inverse problem [3].
Classical reconstruction methods, such as the conventional
filtered backprojection (FBP) algorithm and the algebraic
reconstruction method (ARM) [4]–[7], have well-known
performance constraints in limited-angle situations because
these methods have difficulty reducing streak (or wedge)
artifacts [8]. To stabilize the reconstruction, additional prior
knowledge of the reconstructed object, such as smoothness
and sparsity, are integrated into the reconstruction procedure
as regularized terms. Among these regularized terms, total
variation (TV) [9] is one of the most popular regularizations.
Encouraged by theories of compressed sensing [10]–[12],
most TV-based models [13]–[16] are based on penalizing the
l1 norm of the image gradient. In [13], Sidky et al. developed
an algorithm via alternately performing TVminimization and
projection onto convex sets (POCS). Recently, algorithms

based on the l0 norm [17]–[19] have been developed for
the limited-angle problem. Wei Yu et al. [18] used variable
splitting and the alternating direction method to solve the
unconstrained optimization problem with the l0 norm of the
image gradient. Other regularization-based methods include
the wavelet transform [20], [21] and the data-driven sparsity-
based method [22].

The prior knowledge that the reconstructed images con-
sist of a set of gray values only can be considered in the
reconstruction, if the scanned object is composed of differ-
ent homogeneous materials. To reconstruct a discrete-valued
image from a small number of tomographic projections, dis-
crete tomography (DT) [23] was developed. It was origi-
nally concerned with binary images only. Later, the research
field expanded to include non-binary andmultivalued images.
Some studies onDT have already been successfully applied to
other imaging fields, such as electron tomography (ET) [24],
CT [25], and magnetic resonance imaging (MRI) [26].

In the last few decades, several DT algorithms have been
proposed for CT applications. Batenburg and Sijbers [27]
developed a heuristic algorithm, the discrete algebraic recon-
struction technique (DART), which uses the ARM iteratively
to update part of fixed pixels determined by the segmentation
result, and requires prior information on the gray values for
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thresholding. A series of algorithms based on DART were
then developed, including projection distance minimization
DART (PDM-DART) [28], which can estimate the gray level
parameters adaptively; soft DART (SDART) [29], which
includes a soft constraint in the subsequent reconstruction
step; and modified DART (MDART) [30], which takes the
region of homogeneous material as the research object. The
above DART-based methods perform reconstruction and seg-
mentation successively, whereby the reconstruction uses the
discrete-valued segmentation to update the image. Because
the projection data are used only in the reconstruction step,
even a small fluctuation (or error) in the reconstruction or
segmentation may significantly influence the result.

In recent years, methods based on joint (or simultaneous)
reconstruction and segmentation have been shown to be par-
ticularly suitable for DT. The reconstruction and segmenta-
tion are essentially performed directly on the projection data.
For instance, the total variation regularized discrete algebraic
reconstruction technique (TVR-DART) [31] minimizes an
energy functional, consisting of a data-fitting term and Huber
norm, on the gradient of the discrete-valued approximation
using the soft segmentation function. Other joint reconstruc-
tion approaches rely predominantly on the piecewise constant
Mumford-Shah (PCMS) model (or Potts model [32]), which
results in a piecewise constant approximation of the image.
The Potts model has been used to solve multi-phase image
segmentation, or multi-phase labeling problems. In [19],
Storath et al. developed a general discretization scheme for
the length terms in the Potts model by minimizing an energy
functional consisting of the l0 norm of the image gradient and
the fidelity term. Lauze et al. [33] proposed a method based
on the Bayesian rationale and PCMS for limited field-of-view
shadowed tomographic data, adopting a discrete squared-
gradient magnitude to solve the problem easily. However,
there are few DT methods that focus on the limited-angle
scenario, and their results tend to be dissatisfying.

Therefore, in this paper, we propose a joint reconstruction
and segmentation method (JRSM) for limited-angle recon-
struction. In JRSM, the PCMS model is used for discrete-
valued segmentation. The algorithm used to solve the PCMS
model achieves a favorable balance between the accuracy of
the segmentation and computational efficiency. An important
advantage of our method is that it lends naturally to the
concept of joint reconstruction and CS-based reconstruction.

The rest of this paper is organized as follows. In section
II, the concepts of limited-angle CT and DT are introduced;
convex relaxation for the PCMSmodel is formally stated; and
the algorithm is presented. The proposed method is validated
by simulation as well as by application to actual datasets in
sections III and IV, respectively. Conclusions and discussion
are given at the end of the paper.

II. METHODS
In this section, we present the JRSM framework for limited-
angle image reconstruction in fan-beam CT scans. First, we
formulate the problem of interest. Then, we introduce the

FIGURE 1. Scanning geometry of fan-beam CT scan.

PCMS model. Finally, an iterative algorithm is proposed to
minimize the PCMS model.

A. PROBLEM STATEMENT
This work focuses on the fan-beam X-ray CT that is widely
used in the NDT of industrial devices. As shown in Fig. 1,
assuming the object is stationary, the X-ray source moves
along a circular trajectory with the linear detector array.
The X-ray is attenuated by the object and collected by
the detector. Mathematically, the projection data f (θ, s)
are obtained from the cone-beam transform of the density
function u,

f (θ, s) =
∫

Ex∈l(θ,s)

u(Ex)dEx,

where u(Ex) is the linear attenuation coefficient at point Ex,
and l(θ, s) represents the line from the X-ray source to the
detector element s at the angle θ . The above formula can
be viewed as the projection model of the fan-beam CT
scan. The task of CT is to recover u(Ex) from the projection
data f . To meet the requirement of an exact reconstruc-
tion [34], the range of angle θ should be not less than π
plus the fan angle ϑ . Otherwise, the scan is called limited-
angle, and the projection data are incomplete. A discrete
version of the projection model can be implemented as a
two-dimensional system matrix, which is notated as A in this
article.

We assume the scanned object contains homogeneous
materials. Therefore, the reconstruction problem is to find a
discrete labeling C = {c1, c2, · · · , cK } for an image u by
solving the following problem:

Au = f , s.t. u ∈ CN ,

where N is the number of pixels in the discrete image u, and
CN
= C × C × · · · × C .
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B. CONVEX RELAXATION FOR PCMS
The fact that the image u takes values in a small set of gray
values implies a favorable probability that the gray values of
u should be constant in some areas, or in other words, u is
piecewise constant.

Image segmentation is one of the foundational problems in
computer vision. Image segmentation is the task of finding
appropriate image partitions to form a set of nonoverlapping
regions the union of which is the entire image [35]. There
are three main approaches to this problem: boundary-based
methods (or edge-based methods), region-based methods,
and hybrid methods [36]. A celebrated region-based image
segmentation model was introduced by Mumford and Shah
in 1989 [37]. The Mumford-Shah model consists of the min-
imization of an energy functional given by

min
I ,SI

∫
�

(u− I )2dx + λ
∫

�\SI

|∇u|2dx + γ |SI |, (1)

where u is the real-valued image function on the domain
� ⊂ R2; SI is a discontinuity set in �; and γ and λ are the
tuning parameters. This model aims to approximate the input
image u in terms of a piecewise smooth function I : � ⊂ R2,
such that I varies smoothly in each partition and exhibits
sharp variations across partition boundaries.

The PCMSmodel is a variant of the Mumford-Shah model
that sets the weighting parameter λ for the middle term in (1)
to +∞. The approximation I is forced to become smoother
and smoother outside of SI with increasing λ. In the limit λ→
+∞, I is restricted to be piecewise constant, and we obtain
the piecewise constant approximation of u. The PCMSmodel
can be written as the following optimization problem:

min
�i,ci

K∑
i=1

γ |∂�i| +

∫
�i

(u− ci)2,

s.t.
K⋃
i=1

�i = �, �s

⋂
�t = ∅, ∀s 6= t, (2)

where |∂�i| denotes the perimeter of �i. Here, ci ∈ R is the
mean value of the image in the region �i, and the parameter
γ is used to balance the data-fitting term and the length term.
That is, the PCMSmodel finds a disjointed partition of� such
that u equals a constant ci in �i. To solve the above model,
the labeling function vi is introduced into (2), and the length
term is reformulated as

K∑
i=1

γ |∂�i| =

K∑
i=1

γ

∫
�

|∇vi|,

where vi for i = 1, · · · ,K is defined as

vi(x) =

{
1 if x ∈ �i,

0 otherwise.

This allows us to rewrite (2) as

min
�i,ci

K∑
i=1

γ

∫
�

|∇vi| +
∫
�i

vi (u− ci)2 ,

s.t. vi ∈ {0, 1} ,
K∑
i=1

vi = 1;

⋃K

i=1
�i = �, �s

⋂
�t = ∅, ∀s 6= t.

Finally, the discrete version of the PCMS model is reformu-
lated as

min
vi,ci

γ

K∑
i=1

|∇vi| +
K∑
i=1

〈vi, (u− ci)2〉,

s.t. vi ∈ {0, 1} ,
K∑
i=1

vi = 1. (3)

However, the cost function is non-smooth and non-convex
because of the binary constraint on vi. Referring to the
approach proposed for solving the Potts model in [38]–[40],
a convex relaxation is achieved by relaxing vi ∈ [0, 1], and
the model can then be solved by alternating the minimization
of the variables vi and ci, where ci can be directly solved by
computing

ci =
uT vi
eT vi

, e = (1, · · · , 1)T , (4)

Let

F(∇v) = γ
K∑
i=1

|∇vi|, gi = (u− ci)2,

< v, g > =
K∑
i=1

〈vi, gi〉 (5)

where v = {v1, v2, · · · , vK } and g = {g1, g2, · · · , gK }. The
relaxation model can be written as

min
v∈S

F (∇v)+ < v, g > +δS (v) , (6)

where S is defined as

S = {v : � 7→ R2
|vi (x) > 0, for 1 ≤ i ≤ K ;

K∑
i=1

vi (x) = 1,∀x ∈ �},

and δS is the indicator function of convex set S, i.e.,

δS(v) =

{
0 if v ∈ S,
∞ otherwise.

Let G(v) =< v, g > +δS(v); then, the primal-dual formula-
tion of (6) is given by

min
v∈S

max
p
< ∇v, p > +G (v)− F∗ (p) , (7)

where p = {p1, p2, · · · , pK }, and each pi corresponds to a
dual variable of vi. Based on the fact that the conjugate of the
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norm function is the indicator function of the (unit) dual-norm
ball, we can derive the conjugate function F∗ (p) as

F∗ (p) = δCγ (p) ,

where Cγ is defined as

Cγ :=

{
p : � 7→ R2

|‖p‖∞ ≤ γ, pn|∂� = 0
}
.

The algorithm for solving (7) by the modified primal-dual
hybrid gradient (PDHG) [40], [41] is

pk+1 =
∏
Cγ

(
pk + τ

(
∇ v̄k

))
vk+1 =

∏
S

(
v− τ ′

(
g+∇∗pk+1

))
,

v̄k+1 = 2vk+1 − vk ,

(8)

where5 is the projection operator onto a convex set. Here, we
have omitted details of the derivation, and interested readers
can refer to [38], [39], and [42] for more further information.
The projection 5

Cγ

in (8) can be rewritten as:

∏
Cγ

x =
∏
C1

x
γ
.

There are multiple ways to discretize the TV term (see [40]
for the isotropic case and [43] for the anisotropic case). As for
5
S
, projection onto a simplex is achieved by the algorithm

presented in [44]. The result vk may not be binary because of
the convex relaxation. Thus, a truncation procedure that takes
the first maximum as 1 and the rest as 0 should be executed
after the algorithm converges. The aforementioned procedure
for solving (3) is summarized in Algorithm 1.

Algorithm 1 Multi-Phase Segmentation Method
Input: Image u, number of classes K , parameter γ .
Output: Segmentation v, c of u

1: Initialization: Use the K-mean algorithm to
produce c0 from u. Compute g by (5). Choose τ > 0,
τ ′ > 0, N1 > 0.

2: for k ← 0, N1 do
3: Compute vk using (8).
4: Compute ck using (4).
5: end for
6: Binarize vN1 .

C. PROPOSED JOINT RECONSTRUCTION AND
SEGMENTATION METHOD (JRSM)
Considered the inconsistencies between the measurements
and the desired data conditions caused by the measurement
errors, scatter, and noise, the limited-angle problem can be
modeled by following the discrete linear system

f = Au+ η

This is an underdetermined system of linear equations, which
means that limited-angle image reconstruction is an ill-posed

linear inverse problem [45], [46]. In 1944, the Levenberg-
Marquardt (LM)method, also called the damped least squares
(DLS) method, was introduced as the following minimization
problem to modify the eigenvalues of the matrix from the
normal equation:

min
u
‖Au− f ‖22 + κ‖u‖

2
2,

where the first term is an l2 data-fidelity term used to penal-
ize the differences between the measurements and the ideal
estimate, and the second term is a regularization term that
enforces a small image norm. The regularization parameter
κ weights the data-fidelity term and the regularization term.
Since Tikhonov and Arsenin first proposed the concept [47],
introducing regularization to the energy functional has been a
common practice to overcome the ill-posed characteristic of
inverse problems.

In this paper, we propose the following JRSM by combin-
ing (3) with TV-based regularization for CT imaging:

min
vi,ci,u

γ

K∑
i=1

|∇vi| +
K∑
i=1

〈vi, (u− ci)2〉 + ν‖∇u‖1

+
µ

2
‖Au− f ‖22,

s.t. vi ∈ {0, 1} ,
K∑
i=1

vi = 1, (9)

where γ , ν, and µ are tuning parameters. Now, we briefly
describe how (9) can be solved. First, (9) can be split into
two sub-problems and solved in an alternating fashion:

uk+1 = argmin
u

K∑
i=1

〈vi, (u− ci)2〉 +
µ

2
‖Au− f ‖22

+ ν‖∇u‖1, (10)(
vk+1i , ck+1i

)
= argmin

vi,ci
γ

K∑
i=1

|∇vi| +
K∑
i=1

〈vi,
(
uk+1 − ci

)2
〉,

s.t. vi ∈ {0, 1} ,
K∑
i=1

vi = 1. (11)

The subproblem (10) can be efficiently solved by the Split
Bregman algorithm [48] or the alternating direction method
of multipliers (ADMM) [49]–[51] as follows:

uk+1 =
(
µATA+ 2I − ρ1

)−1 (ρ∇∗ (αk − bk)
+ µAT f + 2

K∑
i=1

vi · ci),

αk+1 = T ν/ρ

(
∇uk+1 + bk

)
,

bk+1 = bk + σ
(
∇uk+1 − αk+1

)
,

(12)

Here, Tν/ρ is the soft-thresholding operator [52]–[54]:

Tν/ρ(s) =
{
1−

ν

ρ|s|

}
+
s.
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TABLE 1. Reconstruction parameters for TVR-DART and JRSM on the noise-free projections.

Algorithm 2 JRSM for Limited-Angle CT
Input: Sinogram f , system matrix A, number of classes K ,
weighting parameters γ , ν, µ.
Output: Reconstruction u and segmentation v, c of u

1: Initialization: Set u0 > 0, i = 0, and choose
N2 > 0, ε > 0, ρ > 0, σ > 0.

2: repeat
3: Solve for ci, vi from ui by Algorithm 1.
4: Solve for ui+1 from vi, ci and ui

5: for l ← 0, N2 do
6: Update u(i+1)(l) by (12).
7: end for
8: i← i+ 1
9: until. ‖ui+1 − ui‖22 < ε

The subproblem (11) is the same as (3), which can be effi-
ciently solved by Algorithm 1.

Algorithm 2 is presented for the proposed JRSM. Either the

segmentation result
K∑
i=1

vi · ci or ui can be taken as the output

of the algorithm.

III. NUMERICAL EVALUATION
Here, we present a series of simulations to test the per-
formance of the proposed JRSM. All the simulations were
implemented in MATLAB on a laptop with 1.8 GHz Intel
Xeon E5-2603 CPU processors. As shown in the first row of
Fig. 2, the simulations were based on a set of three images
(Sponge, Bone, and FORBILD head phantom), with sizes
of 128 × 128 pixels. The Sponge image was binary and
represented a cross-section of collagen sponges [55]. The
Bone image we simulated had three gray levels and repre-
sented a cross-section of cancellous bone. The FORBILD
head phantom [56], which contains four gray levels, is widely
used by researchers working on two-dimensional (2D) image
reconstruction. The simulated geometrical scanning param-
eters were as follows: the source-detector distance (SDD)
was 1536 mm, the source-to-object (SOD) distance was 512
mm, the pixel size of the object was 1 mm, and there were
300 detector elements with sizes of 2 mm.

The peak signal-to-noise ratio (PSNR) defined as (13),
the relative mean error (RME) given in formula (14), and
the structural similarity (SSIM) defined in [57] were used to
measure the quality of the reconstructed images:

PSNR := −10 log10
‖u− ũ‖22
255n

, (13)

RME :=
‖u− ũ‖2
‖ũ‖2

, (14)

where ũ is the original designed phantom, and u is the recon-
structed image. The relative mean accuracy (RMC) is defined
as

RMC := 1−
‖u− ũ‖2
‖ũ‖2

, (15)

in this paper.

A. NOISE-FREE PROJECTION DATA
We first conducted simulations to evaluate the reconstruction
performance of the proposedmethod on noise-free radon pro-
jection data, which contained 90 angles equally distributed
across 90◦ of angular scanning. Fig. 2 shows the reference
images (first row) and results of the simultaneous itera-
tive reconstruction technique (SIRT) [7], TVR-DART, and
the proposed algorithm. SIRT is an algebraic reconstruction
method used to solve linear systems and proven to converge
to a solution of the weighted least squares problem associated
with the linear system [58]. The reconstruction parameters
for TVR-DART and JRSM are listed in Table 1. The dif-
ferences relative to the phantoms are shown in Fig. 3. The
streak artifacts in the SIRT results were the severest and
mainly appeared on the edges along the missing X-rays.
The streak artifacts were suppressed by both the TVR-DART
and the JRSM. However, the JRSM performed better than
the TVR-DART, especially in the region near the edge of
the images. In the JRSM results, both the structure and the
consistency of the gray values were reconstructed well.

In addition to the graphical comparisons, performance
metrics for all of the above reconstructions are reported
in Table 2. The JRSM generally outperformed SIRT and
TVR-DART, except that the SSIM used in the JRSM on the
binary Sponge image was slightly smaller than that of the
TVR-DART.

This subsection compared the reconstruction quality based
on noiseless projection data. In the next subsection, we will
verify the robustness of the JRSMwith noisy projection data.

B. PROJECTION DATA WITH NOISE
The simulation of the noisy projection followed the method
presented in [59]. Poisson noise was considered in our exper-
iments. First, the projection data were generated by taking
the exponentials of the negative values of the normalized
noise-free sinogram, which was obtained by dividing the
noise-free sinogram by its maximum value fm. The noise-
free sinogram was then perturbed with Poisson-distributed
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FIGURE 2. Original test images of (a) Sponge, (b) Bone, and (c) FORBILD head used in the simulation
experiments for the reconstruction using SIRT (d-f), TVR-DART (g-i), and JRSM (j-l). The left, middle, and
right columns show the display windows [0, 1], [0, 2], and [0, 3], respectively.

TABLE 2. Evaluations of the results reconstructed from noise-free projections by different algorithms.

noise assuming a maximum number of photon counts I0, for
the detectors bins. In these simulations, I0 was given three
values, 1×104, 5×104, and 1×105, to study the algorithms’

performances at different noise levels (1× 105 is commonly
used in medical studies on low-dose reconstruction [60]).
The three levels were classified as high, medium, and low

VOLUME 6, 2018 7785
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FIGURE 3. Differences between the reconstructed results from SIRT, TVR-DART, and JRSM in Fig. 2, and the
corresponding original phantom image. The left, middle, and right columns show the display windows
[−0.1, 0.1], [−0.6, 0.6], and [−0.6, 0.6], respectively.

noise, respectively. Finally, the noisy sinogram was obtained
by multiplying the original sinogram maximum value fm by
the negative logarithm transform of the noisy projection data.

Fig. 4 shows the JRSM’s reconstructed results from the
noisy projection data. For Sponge, the reconstruction was
nearly perfect, evenwith high-level noise. ForBone andFOR-
BILD, the results were influenced by noise; however, most
details were well-preserved. All of the results improved with
decreased noise levels. It is also supported by PSNRs, RMEs,
and SSIMs as shown in Table 3. In addition, Fig. 5 demon-
strates the convergence of the RMEs in the reconstructions
of all three phantoms with all three different noise levels:
the algorithm converged after approximately 20 iterations in
all cases.

The JRSM’s reconstruction parameters γ , µ, and ν are
listed in Table 4. The robustness of the parameters wasmainly
due to the simplicity of the image phantoms, as well as the
fact that the PCMS model is robust to noise and the seg-
mentation result does not vary too much with slight changes
of γ . In addition, choosing an appropriate value based on
the segmentation performance is helpful before doing the

reconstruction. As for the data-fidelity parameter µ and the
TV parameter ν, improving the ratio of ν is a reasonable
expectation in cases of increased noise levels.

Hence, these simulations of noisy projection data demon-
strated that the proposed algorithm produces high-quality
results, favorable robustness, and fast convergence in the
reconstruction of noisy projection data from limited-angle CT
scans.

C. NUMBER OF PROJECTIONS AND ROTATION ANGLE
In the previous series of simulations, 90 projections were
taken, uniformly distributed across the range of 90◦. This
subsection presents simulations in which the number of pro-
jections and the rotation angle were altered to further test the
JRSM performance. Only the FORBILD head phantom was
used in these experiments.

Fig. 6a shows the RMC, SSIM, and PSNR values with
respect to the number of projections in the angle range of
90◦ (from 0◦ to 90◦), varying from 10 to 90. As expected,
the higher the projection number, the larger the RMC values.
Along with the increased number of projections, the RMC

7786 VOLUME 6, 2018



Z. Wei et al.: Joint Reconstruction and Segmentation Method for Limited-Angle X-Ray Tomography

TABLE 3. Evaluations of the reconstruction results of phantoms using projections with different levels of poisson noise.

TABLE 4. JRSM reconstruction parameters for projections with different levels of poisson noise.

FIGURE 4. Reconstructed results from JRSM for noisy projection data with varying noise levels: 1 × 104

photon count (top row), 5 × 104 (middle row) and 1 × 105 (bottom row). The left, middle, and right
columns show the display windows [0, 1], [0, 2], and [0, 3], respectively.

curve changed from ragged to flat. This result indicates that
the JRSM requires a minimum number of projections to
maintain the reconstruction quality, such as 30 projections in
this case. Furthermore, the tendencies of the SSIM and PSNR
curves were basically consistent with the RMC curve.

Fig. 6b shows the RMC, SSIM, and PSNR values
with respect to the projection angle range, varying from
45◦ to 180◦. Here, the angular sampling was uniform
with intervals of 1◦. Therefore, the number of projec-
tions increased linearly with the angular range. The curves
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FIGURE 5. The RMEs with respect to the iteration numbers with three noise levels: (a) 1 × 104, (b) 5 × 104 and (c) 1 × 105 photon counts.

FIGURE 6. (a) RMC, SSIM, and PSNR with respect to the number of projections in the 90◦ angle range. (b) RMC, SSIM, and PSNR with respect to
the projection angle range varying from 45◦ to 180◦.

in Fig. 6b present similar behavior as the ones in Fig. 6a.
The JRSM worked well when the rotation angle was larger
than 90◦.
As demonstrated by Fig. 6, the JRSM exhibits favorable

performance as long as the number of projections and the
rotation angle reach a minimum limit.

IV. EXPERIMENTAL VERIFICATION
To further evaluate the proposed algorithm under practical
conditions, we applied the algorithm to two real experimental
datasets, which were acquired by micro-CT scans consisting
of a 1024 × 768 pixel detector with pixel sizes of 194 µm
and an X-ray tube with a maximum voltage of 225 kV. In the
following experiments, only the data from the central row of
the detector were extracted to form a fan-beam CT image.
The SIRT’s reconstructed results from completed projection
data were used as the ground truth of the scanning objects.

A. PCB DATA
The first specimen was cut from a piece of printed circuit
board (PCB). There were metal rings immediately adjacent
to holes filled with air in the board. The specimen was

scanned with X-rays with a maximum energy of 140 keV.
Data from 360 evenly spaced projections covering [0◦, 360◦)
were collected. The ground truth in this experiment is shown
in Fig. 7a. The interior of the metal rings is filled with
air. However, because of beam hardening and scatter, their
values were not zeroes. Fig. 7b and Fig. 7c show the recon-
structions from the TVR-DART and JRSM using the first
150 projections in the range of [0◦, 150◦). Compared to
TVR-DART, the JRSM reconstruction was smoother, and
the wedge artifacts were suppressed. The difference between
Fig. 7a and Fig. 7c is shown in Fig. 7d, where we can see that
the proposed algorithm reconstructed most of the phantom
details except its boundaries.

B. PHANTOM DATA
The phantom was composed of four quarter cylinders with
holes of the same size. As shown in Fig. 7e, an iron wire
was put into the hole in the upper-left region, and the hole
in the lower-right region was filled with an aluminum rod.
The other two holes were filled with air. Apart from the air,
the phantom contained two other materials: the aluminum
used in the two quarters with empty holes, and plexiglass
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FIGURE 7. Top row: Experimental results with PCB specimen. Bottom row: Experimental results with phantom. Left column: Ground truth
reconstructed from completed projection data using SIRT. 2nd and 3rd columns: Reconstructed results from TVR-DART and JRSM over a rotation
angle of 150◦. Right column: Differences between JRSM results and the corresponding ground truth. The display windows of the first row were set to
[0, 7], except (d) is set to [−2, 2]; the display windows of the second row were set to [0, 5], except (h) is set to [−2, 2].

in the rest. The ground truth contained some artifacts near
the iron wire because of beam hardening and scatter. Data
from 720 projections from 0◦ to 360◦ with 0.5◦ increments
were collected, and a series of the first 300 projections were
taken as the limited-angle reconstruction dataset. FromFig. 7f
and Fig. 7g, the upper-left of the image was difficult to
reconstruct because of beam hardening and scatter. Compared
to the result from TVR-DART shown in Fig. 7f, the JRSM
performed better, especially near the iron wire. From the
difference between the JRSM and the ground truth images
shown in Fig. 7e, the JRSM exhibited favorable performance
except near the iron wire.

V. CONCLUSIONS
In this paper, we proposed a joint reconstruction and segmen-
tation model, JRSM, for limited-angle CT scans, which can
be applied to imaging objects made from homogeneous mate-
rials. We developed and implemented an alternating mini-
mization algorithm for the proposed JRSM. The algorithm
alternately solves two subproblems. One of the subproblem
is a convexified piecewise Mumford-Shah model, which is
solved using a modified PDHG algorithm. The other sub-
problem is a standard convex image restoration model that is
solved efficiently using the split Bregman/ADMMalgorithm.
Compared to existing methods that alternately perform seg-
mentation and update the reconstruction image, the proposed
JRSM method jointly performs image reconstruction and
segmentation directly on the projection data. The reconstruc-
tion coupled with segmentation is more robust and efficient

than alternating methods. Numerical simulations with three
phantoms were conducted using noiseless projection data
and projection data corrupted by three different levels of
Poisson noise. Simulations were also conducted with differ-
ent numbers of projections and different rotation angles to
demonstrate the performance of the proposed method. Two
real experimental datasets acquired by micro-CT scans were
further used to demonstrate the superiority of the proposed
method in practical scenarios. All results showed that the pro-
posed method is effective in limited-angle image reconstruc-
tion. However, the current implementation of the proposed
algorithm is time-consuming. It taken about 60 minutes to
get Fig. 7c. Our future work will focus on speeding the JRSM
reconstruction process.
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