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ABSTRACT In this paper, we study a new class of single-iteration scheduling algorithms for input-
queued switches based on a new arbitration idea called highest rank first (HRF). We first demonstrate the
effectiveness of HRF by a simple algorithm named Basic-HRF. In Basic-HRF, virtual output queues (VOQs)
at an input port are ranked according to their queue sizes. The rank of a VOQ, coded by log(N+1) bits, where
N is the switch size, is sent to the corresponding output as a request. Unlike all existing iterative algorithms,
the winner is selected based on the ranks of the requests/grants. We show that the rank-based arbitration
outperforms the widely adopted queue-based arbitration. To improve the performance under heavy load and
maximize the match size, Basic-HRF is integrated with an embedded round-robin scheduler. The resulting
HRF algorithm is shown to beat almost all existing single-iteration algorithms. But, the complexity of HRF
is high due to the use of multi-bit requests. A novel request encoding/decoding mechanism is then designed
to reduce the request size to a single bit while keeping the original performance of HRF. A unique feature of
the resulting coded HRF (CHRF) algorithm is that the single-bit request indicates an increase or decrease
of a VOQ rank, rather than an empty VOQ or not. We show that the CHRF is the most efficient single-bit-
single-iteration algorithm.

INDEX TERMS High-speed networks, scheduling algorithm, switches.

I. INTRODUCTION
In cloud computing architectures [1]–[3], services and data
reside in shared data centers, and are accessed by users over
the Internet. Huge amount of IP traffic will be transported
between users and data centers, and among hundreds of thou-
sands of servers within each data center. Besides IP traffic,
most data centers have storage area networks for carrying data
between servers and disk arrays. Some data centers also have
high-performance computing interconnects for low-latency
inter-process communications. There are many kinds of data
center networks [4]–[8]. Among them, switches are always
the core devices for data transmission. To meet the needs
of high-speed and low-latency switching in these data center
networks, it is highly desirable to have a unified switch fabric
for different types of traffic. Therefore, the next generation
switch/router design becomes more urgent than ever.

As compared to output-queued switch, input-queued swi-
tch [9], [10] is more suitable for high-speed implementation

because of its reduced requirement for memory bandwidth –
at most one packet is sent/received by an input/output port in
each time slot. For input-queued switches, iterative schedul-
ing algorithms are widely accepted due to the use of massive
parallel processing [11], [12]. In general, each iteration of
an iterative scheduling algorithm consists of three phases,
request, grant and accept. In the request phase, each input
sends a matching request to each output. In the grant phase,
each output selects one request to grant. And in the final
accept phase, each input selects one grant to accept, and
notifies the selected output. The matched inputs and out-
puts will not participate in the subsequent iterations. In each
iteration, both the grant and accept messages are single-bit
(for notification). But the request messages can be either
single- or multi-bit, according to the information that each
input needs to transmit.

For N × N switches, an iterative scheduling algorithm
can be executed up to N iterations in order to guarantee a
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maximal match size. Although each more iteration aids in the
match size, the scheduling overhead is also increased. The
scheduling time is proportional to the number of itera-
tions. In high-speed switches, scheduling algorithms with
multiple iterations are almost unachievable. For example,
on a 100Gbps line carrying 64-byte packets, one time slot
is about 5ns. It means that the scheduling time should be
much less than 5ns, as most time should be assigned to data
transmission. Such an extremely small time slot puts a huge
pressure on the design of scheduling algorithms. To minimize
the scheduling time, as in [13] and [14], we are devoted to
designing a single-iteration algorithm. In a single-iteration
algorithm, there is no need to send accept messages in the
accept phase. Thus, there are only two times of communica-
tion between any pair of input and output in each time slot.

Besides the number of iterations, the scheduling time is
also related to the transmission delay between inputs and
outputs. In a multi-bit algorithm, a request consists of mul-
tiple bits, and it must be serialized via a device called SerDes
(serializer/deserializer) before transmission. A SerDes con-
sists of a transmitter and a receiver. The transmitter at an
input converts parallel data to serial form for transmission and
the receiver at an output converts serial data back to parallel
form for processing. The transmission delay between an input
and an output mainly depends on the speed of the SerDes.
The state-of-the-art technology allows a SerDes to operate
at 25Gbps. Efforts are made to raise it to 100Gbps based
on a multi-lane approach of running four 25Gbps SerDes in
parallel [15]. Even though the speed will be higher, it cannot
catch up the requirement of high-speed switches, as the time
slot is becoming shorter and shorter (e.g., 5ns or less). There-
fore, we consider to design a single-bit algorithm, which
eliminates the need of SerDes and minimize the transmission
delay between inputs and outputs.

The resulting scheduling algorithms are called single-bit-
single-iteration algorithms. Such a class of algorithms incurs
minimum scheduling overhead and is very suitable for future
high-speed switch implementation.

However, the existing single-iteration algorithms [13], [14]
are not ideal in performance. So we propose a new class
of single-iteration scheduling algorithms for input-queued
switches based on the notion of Highest Rank First (HRF).
In essence, we rank all Virtual Output Queues (VOQs) at
each input according to their queue sizes, where rank 1 is
given to the longest VOQ. Arbitrations are based on VOQ
ranks and highest rank first. Different from the queue-based
arbitration [13], [16], the rank-based arbitration will select
a shorter VOQ as the winner if its rank is higher than
a longer VOQ. This solves the synchronizing problem of
queue-based solutions where all outputs tend to grant the
same ‘‘busy’’ input [17]. We first design a basic algorithm
named Basic-HRF. In Basic-HRF, each request message
has log(N + 1) bits for carrying the full rank information
from 0 to N , where N is the switch size and rank 0 is
reserved for empty VOQs. Basic-HRF is used to demonstrate
the effectiveness of rank-based arbitration over queue-based

arbitration. To enhance the performance under heavy load,
Basic-HRF is integrated with an embedded round-robin
scheduler. The idea is to put more efforts on maximizing the
match size under heavy load. We show that the refined Basic-
HRF algorithm, or HRF in short, outperforms almost all exist-
ing single-iteration algorithms. However, HRF is a multi-bit
(i.e., log(N + 1) bits) algorithm. Aiming at cutting down the
request size to a single bit, a novel request encoding/decoding
mechanism is then designed. We call the resulting algorithm
Coded Highest Rank First (CHRF). Unlike all existing iter-
ative algorithms, a single-bit request in CHRF is used to
indicate an increase or decrease of a VOQ rank, rather than
a VOQ is empty or not. As we will see, CHRF outperforms
all other single-bit-single-iteration algorithms and even most
multi-bit-single-iteration algorithms. The time complexities
of rank-based algorithms are also pretty low, e.g., O(logN )
for HRF and O(1) for CHRF.
The rest of the paper is organized as follows. In the next

section, we provide the related work and qualitatively com-
pare the rank-based algorithmswith other iterative scheduling
algorithms in the literature. In Section III, we introduce the
Basic-HRF and HRF algorithms. In Section IV, the encoding/
decoding mechanism is detailed and the resulting CHRF
algorithm is presented. In Section V, we quantitatively com-
pare our algorithms with existing single-iteration scheduling
algorithms by simulations. In Section VI, we construct an
analytical model for delay performance of HRF under low
traffic load. Finally, we conclude the paper in Section VII.

II. RELATED WORK
In the past twenty years, various iterative scheduling
algorithms have been designed. They differ mainly in the
information sent in the request phase, and the arbitration
mechanisms adopted in the grant and accept phases. Usually
a subtle change in the design can result in a big difference
in performance. To the best of our knowledge, only a few
iterative scheduling algorithms [17] have been adopted by the
industry.

PIM [18] is one of the earliest iterative scheduling algo-
rithms. It is a single-bit algorithm. In the request phase, each
input sends a ‘‘1’’ (i.e., 1-request) to each backlogged output
and a ‘‘0’’ (i.e., 0-request) to each empty output. The subse-
quent arbitrations at output (for selecting a 1-request to grant)
and input (for selecting a grant to accept) are based on random
selection. In [17], it was shown that random selection is inef-
fective in desynchronizing the winners selected by different
outputs/inputs. As a result, the match size obtained by PIM is
limited. Aiming at desynchronizing the winners, iSLIP [17]
uses a local round-robin (RR) pointer/arbiter at each output/
input and the highest scheduling priority is given to the
request/grant currently pointed to by the RR pointer. An out-
put advances its RR pointer only if its grant is accepted – this
ensures that different RR pointers will shift to different inputs
especially when the load is high.

Unlike iSLIP, DRR [11] and its variants [12] only allow
each input to send at most one 1-request. And the 1-request is
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sent to the output that is pointed to by the local RR pointer
if the corresponding VOQ is backlogged. Otherwise, the
1-request will be sent to the next nonempty VOQ. The grant
phase is the same as that of iSLIP, i.e., the 1-request from
the input pointed to by the local RR pointer has the highest
priority. When an output grants an input, the output knows
for sure that its grant will be accepted because the input
has only sent one 1-request. Accordingly, no arbitration at
input is needed because each input will receive at most one
grant. So the 3-phase iteration in iSLIP becomes 2-phase
in DRR. It was found that with a single iteration, both
iSLIP-1 and DRR-1 give comparable performance. With
x iterations (1 < x < N ), the performance of iSLIP-x is
noticeably better than DRR-x because iSLIP allows multiple
1-requests to be sent by each input in the request phase.

Another interesting effort in enhancing the performance
of iSLIP is SRR [13]. SRR is a single-bit-single-iteration
algorithm. Like DRR [11], SRR only allows each input to
send at most one 1-request in the request phase. Unlike DRR
(or iSLIP), no local RR pointer is maintained at individual
input/output ports. Instead, like our HRF algorithm, a global
RR scheduler is maintained among all inputs and outputs by
assigning each input i a distinct preferred output j in each
time slot. In the request phase, if VOQ(i,j) is backlogged,
input i sends a 1-request to output j; otherwise, input i sends
a 1-request to its longest VOQ. In the grant phase, an out-
put grants the 1-request from its preferred input. If there is
no 1-request from its preferred input, the output randomly
selects a 1-request to grant. Due to the better desynchro-
nization ability, SRR outperforms iSLIP-1 when the traffic
is uniform and heavy. But its performance under nonuni-
form traffic is generally poor. In Section V, we further
show that its performance under hotspot input traffic pattern
(as shown in FIGURE 8) is the worst among all algorithms
simulated.

There are some other single-bit scheduling algorithms. For
example, pDRR [12] generalizes DRR to support multiple
priorities. With LQD [19], each input sends one request
probabilistically based on the VOQ length. For the algo-
rithm in [20], an input sends requests to a subset of the
outputs whose corresponding VOQs are backlogged. Finally,
SRRR [21] adopts a 4-phase iteration, where the extra/first
phase is for an output to inform an input if the input is
pointed to by the RR pointer at this output. But the complexity
involved is rather significant.

On the other hand, it is generally believed that with multi-
bit requests, the performance of iterative scheduling algo-
rithms can be enhanced (at the cost of extra communication
and processing overheads). Notably, the requests sent by
iLQF [16] carry the VOQ size, and the requests sent by
iOCF [16] carry the ‘‘age’’ of the Head-of-Line (HoL) packet.
If an output/input receives more than one request/grant,
iLQF prefers the longest VOQ and iOCF likes the VOQ
with the oldest HoL packet. iLQF and iOCF are compa-
rable in both performance and implementation complexity.
In Section III-A, we will show that rank-based arbitration is

not only more effective than the queue-based arbitration, but
also simpler to implement.
π -RGA [14] is a multi-bit-single-iteration algorithm. The

multi-bit request is used to indicate the last time when the
VOQ transforms from empty to nonempty. The key idea of
π -RGA is to reuse the matches established in the previous
slots. The VOQs that are backlogged earlier and the one
matched in the previous slot are given higher scheduling
priority. π -RGA gives the best performance under bursty
traffic when the input load is very high (e.g., >0.7 in
FIGURE 6). But the algorithm is too complicated for high-
speed implementation, and its performance under other traffic
patterns is generally poor.

References [22] and [23] provide the preliminary thinking
of highest rank first. The solutions presented by these papers
obtain the best performance among the compared solutions.
However, they are far from a mature scheduling algorithm
for practical switches. The solution in [22] does not consider
the effects of empty queues. In this paper, we will point
out that the outputs should avoid to grant any empty queues
(by using the special rank 0) and the requests of preferred
inputs must be sent explicitly. We use a single-bit request
to indicate an increase or decrease of a VOQ rank, rather
than the actual rank of a VOQ as in [22]. Compared with
the solution in [23], we construct a systematic theory of
highest rank first (in Section III and Section IV), redesign the
encoding/decoding mechanism in a more elegant way, and
provide the implementation for queue ranking with low time
complexity. We also provide an theoretical model to analyze
the delay and throughput performance for HRF in this paper.

Round-Robin with Longest Queue First (RR/LQF) [24] is
a new single-bit algorithm. Unlike all existing algorithms,
RR/LQF replaces the request phase by a report phase. In the
report phase, depending on if there is a packet arrival to a par-
ticular VOQ, the input sends either ‘‘1’’ or ‘‘0’’ to the output.
Each output keeps track of the number of packets destining
to it and awaiting at the inputs. RR/LQF also uses a global
RR scheduler, implemented based on the preferred input-
output relationship as in [13] to maximize the match size,
and a LQF scheduler to serve the most critical VOQs.
Unlike the (local) LQF scheduler in [13], the winner
chosen by the (global) LQF in RR/LQF is the longest
among all VOQs destining to it. When RR/LQF is exe-
cuted for a single iteration, it was shown that the resulting
single-bit-single-iteration RR/LQF-1 outperforms all existing
single-bit-single-iteration scheduling algorithms. But the
switch-on-a-chip (SoC) implementation of RR/LQF-1 can
be challenging. This is because each output port needs to
maintainN packet counters, one for each VOQ destining to it.
Let the maximum VOQ size be B packets. Then N 2 counters,
each with logB bits, must be maintained. Besides, logB-bit
comparators are needed to determine the longest queue. The
complexity involved is thus non-trivial. Last but not least,
as will be shown in this paper, the queue-based arbitration
adopted by RR/LQF is not as effective as our rank-based
arbitration.
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FIGURE 1. A 4× 4 input-queued switch. Each input has 4 VOQs which are
ranked according to their sizes. All empty VOQs have the special rank 0.

III. HIGHEST RANK FIRST
A. BASIC-HRF ALGORITHM
Consider the 4 × 4 switch in FIGURE 1, where input 0 is a
traffic ‘‘hotspot.’’ With a Longest Queue First (LQF) algo-
rithm such as iLQF [16], each input sends a request (car-
rying the specific VOQ size) to each output. At output 0,
four requests are received and among them, VOQ(0,0) is
the longest (with size 4). Output 0 selects the request from
VOQ(0,0) to grant (by sending a ‘‘1’’). Similarly, outputs 1,
2 and 3 select VOQ(0,1), VOQ(0,2) and VOQ (0,3), respec-
tively. In this case, although each output selects its own
winner independently, the selected winners are synchronized.
As a result, input 0 receives 4 grants, but only one of them
(i.e., VOQ(0,3)) can be accepted. Accordingly, the single-
iteration algorithm based on LQF can only produce a match
of size 1 and weight 6 (i.e., the queue size of VOQ(0,3)).1

With the Basic Highest Rank First (Basic-HRF) algo-
rithm, at output 0 in FIGURE 1, the four requests received
from VOQ(0,0), VOQ(1,0), VOQ(2,0) and VOQ(3,0) have
ranks 3, 2, 3 and 1, respectively. The highest rank is from
VOQ(3,0), and its request is granted although the queue size
of VOQ(3,0) is shorter than VOQ(0,0). Similarly, outputs 1,
2 and 3 grant the requests from VOQ(1,1), VOQ(2,2), and
VOQ(0,3), respectively. As a result, every input receives a
grant, and a match of size 4 and weight 14 is obtained by
using Basic-HRF.

From the examples above, we can see that ranks are of local
significance (of a particular input), whereas queue sizes are of
global significance (across all inputs). To desynchronize the
requests chosen by outputs (so as to maximize both match
size and match weight), rank-based arbitration is arguably
better than queue-based arbitration because of the following
salient points:
• If an output grants a request with rank 1, its grant will be
accepted for sure (by the corresponding input); but if an

1Match size is the number of VOQs that have been matched to outputs in
a switch configuration. Match weight is the sum of the sizes of all VOQs that
have been matched to outputs in that time slot.

output grants a request with the longest queue (among
all requests it received), the grant will be rejected if
the input receives another grant corresponding to a
longer VOQ.

• At an input, the ranks of all VOQs (except empty ones)
are distinct, but their queue sizes can be the same.

• For the switch as a whole, there can be at most N VOQs
with the same rank (excluding the special rank 0), but
there can be at most N 2 VOQs with the same size.

The last two points above imply that when queue-based
arbitration is used, an output will encounter more situations of
multiple requests with the same highest scheduling priority.
As a result, the output have to select the winner randomly
(among VOQs with the same queue size). As is pointed
out in [17], random selection (as in PIM [18]) can actually
intensify grant synchronization – multiple outputs, though
acting independently, grant the requests from the same input
simultaneously.

In addition to the better performance, we can also see
that the rank-based arbitration is simpler to implement than
queue-based one because (a) the request message size is
reduced: without regard to coding the request, there are at
most (N + 1) rank values, but the range of queue size can
be much larger, and (b) the associated processing overhead
is reduced: at each output/input, the arbitration is done by
comparators. With only (N + 1) possible rank values, rank
comparators are simpler to implement than those in queue-
based algorithms.

B. HRF ALGORITHM
Basic-HRF aims at serving the most critical queues first,
and the criticality is measured by queue ranks. That means
maximizingmatch size is not of primary importance to Basic-
HRF. When the input load is light, this is not an issue because
a less-than-perfect match size is good enough to deliver
all arriving packets efficiently. But when the load is heavy,
more packets will be waiting for transmission at inputs, and
the packet delay will increase rapidly with the queue size.
To maximize the match size under heavy load, we propose to
enhance the Basic-HRF algorithm with an embedded round-
robin (RR) scheduler [25], and we simply call the enhanced
algorithm HRF.

The embedded RR scheduler is based on the notion of
preferred input-output pairs. Consider anN×N input-queued
switch. In each time slot, each input is assigned a distinct
preferred output. Without loss of generality, for input i at time
slot t , its preferred output j is

j = (i+ t) mod N . (1)

When input i prefers output j, output j also prefers input i.
So the preferred relationship is reciprocal. From (1), we can
see that each input prefers each output exactly once in every
N slots, forming a round-robin schedule among all input-
output pairs. Consider the special case that all inputs always
have packets for their preferred outputs. The match size
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formed in each time slot, by giving the highest priority to the
preferred input-output pairs, is always maximum, i.e., N .

In the HRF algorithm, scheduling priority is given to the
preferred input-output pairs first (for maximizing the match
size), and the VOQs with the highest rank next (for serv-
ing the most critical queues). At an arbitrary time slot t ,
HRF functions as follows:
• Request: If output j is the preferred output and VOQ(i,j)
is not empty, input i sends a request with rank 1 to output
j and a request with rank 0 to everyone else. If VOQ(i,j)
is empty, input i sends requests with the actual rank
values to all outputs. Note that rank 1 is the highest
rank, and rank 0 is reserved for non-preferred input-
output pairs or empty VOQs which should not attract
any grants.

• Grant: An output grants the request (with rank 1) from
its preferred input. Otherwise, the output grants the
request with the highest rank (and breaks tie randomly).

• Accept: An input accepts the grant from its preferred
output. If there is no preferred grant, the input accepts the
grant with the highest rank. (Note that the VOQ ranking
is available locally at each input.)

The pseudo code of HRF algorithm is given inAlgorithm 1.
Note that (a) all inputs run procedures Request and Accept in
parallel, (b) all outputs run procedure Grant in parallel, and
(c) no message needs to be sent in procedure Accept.

In the request phase, if an input has packets destining to
its preferred output, the input sends a request with rank 1 to
its preferred output, indicating that the preferred VOQ is not
empty (instead of indicating the longest VOQ). At the same
time, the input sends a request with rank 0 to everyone else
even though the corresponding VOQs are not empty. This
subtle design is to ensure that the input does not unnecessarily
attract any grants from other outputs, because the input knows
for sure that, with HRF algorithm, its request will be granted
by its preferred output. It should be emphasized that in
designing iterative scheduling algorithms, subtle differences
like this can make a big difference in performance.

In HRF algorithm, the preferred input-output pairs always
have higher priority than the rank-based arbitration. Does it
imply that the rank-based arbitration is always overshadowed
by the embedded RR scheduler? The answer depends on the
input traffic load. When the traffic is light, most inputs do
not have packets waiting for their preferred outputs. As a
result, the embedded RR scheduler will not take effect, and
the rank-based arbitration mechanism dominates. But when
the traffic is heavy, most inputs tend to have packets waiting
for their preferred outputs. Accordingly, the embedded RR
scheduler will automatically kick in to maximize the match
size. In this case, the rank-based arbitration will play a sec-
ondary/supplementary role.

Simulation results show that Basic-HRF algorithm and
HRF algorithm give almost identical (and the best) perfor-
mance when the input traffic is below 0.6. This confirms that
the performance of HRF algorithm is dominated by its rank-
based arbitration mechanism when the traffic is not heavy.

Algorithm 1 Highest Rank First Algorithm
1: procedure Request(in, time)
2: L[i] = the length of VOQ i at input in
3: pout = (in+ time) mod N
4: if L[pout] > 0 then
5: send 1 to output pout
6: send 0 to other outputs
7: else
8: sort and rank L
9: K[i] = the rank of VOQ i
10: send each K[i] to the corresponding output
11: end if
12: end procedure
13: procedure Grant(out , time)
14: R[i] = the request from input i
15: pin = (out + N − time mod N ) mod N
16: if R[pin] == 1 then
17: send 1 to input pin
18: send 0 to other inputs
19: else
20: m = argmini∈[0,N ) R[i] 6= 0
21: send 1 to input m
22: send 0 to other inputs
23: end if
24: end procedure
25: procedure Accept(in, time)
26: K[i] = the rank of VOQ i got from Request
27: G[i] = the grant from output i
28: pout = (in+ time) mod N
29: if G[pout] == 1 then
30: accept the grant from output pout
31: else
32: n = argminG[i]=1K[i] 6= 0
33: accept the grant from output n
34: end if
35: end procedure

When the traffic load is greater than 0.6, HRF algorithm gives
a much better delay performance than Basic-HRF algorithm.
This is because the embedded RR scheduler has kicked in to
boost the match size.

IV. CODED HIGHEST RANK FIRST
Despite its outstanding delay-throughput performance,
HRF algorithm requires a request with log(N+1) bits to carry
the full rank information. As compared to the class of single-
bit-single-iteration algorithms, the implementation complex-
ity of HRF algorithm is relatively high. In this section, we aim
at minimizing the size of request messages.

A. A SIMPLE 2-BIT APPROACH
A closer examination of Basic-HRF reveals that the
probability that a VOQ is matched successfully reduces
quickly with the rank. In other words, most successfully
matched VOQs have ranks 1 or 2 (i.e., the longest or
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second-longest VOQs). To minimize the request size, instead
of sending the full (N + 1) ranks, we only need to send the
most important ranks.

Assume only two binary bits are used to carry the rank
information. A total of four ranks can be identified. In this
case, we argue that the four most important literal ranks
are: ‘‘longest,’’ ‘‘second-longest,’’ ‘‘others’’ and ‘‘empty.’’
To avoid to attract more than one grants, at each input port
there can be at most one ‘‘longest’’ VOQ, and one ‘‘second-
longest’’ VOQ. But there can be multiple ‘‘empty’’ VOQs.
When a VOQ is not the longest/second-longest/empty,
it belongs to ‘‘others.’’ In other words, ranks 3 to N in a
full rank algorithm (Basic-HRF or HRF) are merged to a
single rank ‘‘others.’’ Among the four ranks designed above,
‘‘longest’’ and ‘‘empty’’ are the most important ones because
granting a non-longest queue is inefficient, and granting an
empty queue is a waste.

Although the above approach of using two-bit requests
can give a decent delay-throughput performance, our goal is
to use single-bit requests so that the HRF algorithm can be
converted into a single-bit-single-iteration algorithm.

B. USING SINGLE-BIT REQUEST
We observe that existing single-bit algorithms [11], [13], [17]
convey two VOQ states to an output, empty or not.
We propose to use a single-bit request to indicate an
increase or decrease of the VOQ rank. Without loss of gen-
erality, let Xt be the single-bit request sent by a VOQ to a
specific output at time slot t . Based on its rank at the previous
time slot (t−1), the VOQ sets Xt = 1 (or 0) if its current rank
is increased (or decreased).

But what if its rank remains the same at both slot t and
slot (t − 1)? Note that the two possible values of Xt have
already been used. Besides, when Xt is received by an output,
how to determine its rank at the corresponding input?We will
address these two questions in the next subsection based on
a three-rank model. At each input, we classify each VOQ
into one of the three literal ranks: ‘‘empty,’’ ‘‘others’’ and
‘‘longest.’’ If a VOQ belongs to ‘‘others,’’ its queue size
is neither empty nor the longest. Obviously, there can be
multiple VOQs having the rank of ‘‘empty’’ or ‘‘others.’’
If there are multiple VOQs with the same longest queue size,
we only label one of them as ‘‘longest’’ and the rest will be
demoted to become ‘‘others.’’ Again, this subtle design is to
prevent an input from attracting multiple grants (while it can
only accept one of them).

C. BASIC-HRF WITH REQUEST CODING
We first focus on the request coding scheme while assuming
the Basic-HRF algorithm is used. Let Xt be the single-bit
request sent by a VOQ at time slot t . With the three-rank
model, our request coding scheme at each input is summa-
rized in FIGURE 2, and is detailed below.
• If a VOQ changes from ‘‘empty’’ (at slot t − 1) to ‘‘oth-
ers’’ or ‘‘others’’ to ‘‘longest’’ or ‘‘empty’’ to ‘‘longest,’’
its rank increases and Xt = 1 is sent.

FIGURE 2. A single-bit request coding scheme based on the three-rank
model.

TABLE 1. Decoding the rank of a VOQ.

• If a VOQ changes from ‘‘longest’’ to ‘‘others’’ or
‘‘others’’ to ‘‘empty’’ or ‘‘longest’’ to ‘‘empty,’’ its rank
decreases and Xt = 0 is sent.

• If a VOQ remains in ‘‘others,’’ Xt =!Xt−1 is sent
(i.e., an alternate sequence of 0 and 1 will be generated).

• If a VOQ remains in ‘‘longest,’’ Xt = 1 is sent.
• If a VOQ remains in ‘‘empty,’’ Xt = 0 is sent.
In the above coding scheme, special attention is required

if the rank of a VOQ remains unchanged. Specifically, for
the VOQ remaining in ‘‘longest,’’ since there is no rank
higher than ‘‘longest,’’ we keep Xt = 1. Similarly, for the
VOQ remaining in ‘‘empty,’’ we keep Xt = 0. But for a
VOQ remaining in ‘‘others,’’ we use an alternate sequence
of 0 and 1. For example, if a request sent in the previous
slot is Xt−1 = 0, the request sent in the current slot will be
Xt =!Xt−1 = 1.

Next we focus on the decoding process at an output upon
receiving a (coded) single-bit request Xt . Note that each
output is required to keep a copy of the requests received from
each input in the previous slot, i.e.,Xt−1. WhenXt is received,
an output decodes the rank of the corresponding VOQ jointly
with the stored Xt−1. The decoding TABLE 1, and explained
below.

Since Xt = 1 indicates a rank increase, receiving consecu-
tive 1s implies that the corresponding VOQ has a higher rank.
Focusing on the three-rank model in FIGURE 2, it can be
seen that two consecutive 1s, i.e., XtXt−1 = 11, guarantee
a state change ending at ‘‘longest,’’ and such a guarantee is
independent of the initial state of a VOQ.2 Take an example.
Assume that the initial state is ‘‘empty.’’ With Xt−1 = 1,
the VOQwill be promoted, at least, to ‘‘others’’ at slot (t−1).

2Initial state refers to the state of a VOQ before sending Xt−1, i.e., at the
end of slot (t − 2) or at the beginning of slot (t − 1).
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FIGURE 3. All possible state transitions for Xt Xt−1 = 01. The resulting state is either
‘‘empty’’ or ‘‘others,’’ no matter what the initial state is.

With Xt = 1 at slot t , the VOQ becomes the ‘‘longest’’ for
sure.

On the other hand, receiving consecutive 0s implies that
the VOQ has a lower rank. From FIGURE 2, it can be seen
that two consecutive 0s, i.e., XtXt−1 = 00, guarantee a state
change ending at ‘‘empty.’’ In other words, we can unam-
biguously identify a VOQ as empty (XtXt−1 = 00) or the
longest (XtXt−1 = 11). This property is particularly impor-
tant because, as we have highlighted before, granting an
empty VOQ is a waste and granting a non-longest VOQ is
inefficient.

If the received requests form an alternate sequence of 0
and 1, it implies no (significant) change in rank. Since the
decoding is based on XtXt−1, we still want to examine if there
is any difference between ‘‘01’’ and ‘‘10’’. Let us focus on
XtXt−1 = 01 first. From FIGURE 2, we can find out that
the current state of the VOQ can be either ‘‘empty’’ or ‘‘oth-
ers.’’ To better understand it, the following scenarios are
considered:
• If the initial state is ‘‘empty,’’ Xt−1 = 1 indicates a
state transition from ‘‘empty’’ to ‘‘others’’ or ‘‘empty’’
to ‘‘longest.’’ At the end of slot (t − 1), there are two
possible states: ‘‘others’’ or ‘‘longest.’’
– For the case of ‘‘others,’’ Xt = 0 indicates another

transition from ‘‘others’’ to ‘‘empty’’ or ‘‘others’’
to ‘‘others.’’

– For the case of ‘‘longest,’’ Xt = 0 indicates another
transition from ‘‘longest’’ to ‘‘empty’’ or ‘‘longest’’
to ‘‘others.’’

• If the initial state is ‘‘others,’’ Xt−1 = 1 indicates a
state transition from ‘‘others’’ to ‘‘others’’ or ‘‘others’’
to ‘‘longest.’’ At the end of slot (t − 1), there are two
possible states: ‘‘others’’ or ‘‘longest.’’
– For the case of ‘‘others,’’ Xt = 0 indicates another

transition from ‘‘others’’ to ‘‘empty’’ or ‘‘others’’
to ‘‘others.’’

– For the case of ‘‘longest,’’ Xt = 0 indicates another
transition from ‘‘longest’’ to ‘‘empty’’ or ‘‘longest’’
to ‘‘others.’’

• If the initial state is ‘‘longest,’’ Xt−1 = 1 indicates a state
transition from ‘‘longest’’ to ‘‘longest.’’ Then Xt = 0

indicates another transition from ‘‘longest’’ to ‘‘empty’’
or ‘‘longest’’ to ‘‘others.’’

FIGURE 3 summarizes the state changes in decoding
XtXt−1 = 01. We can see that the current state of a
VOQ under consideration (i.e., circles in bold lines) will
be either ‘‘empty’’ or ‘‘others.’’ Similarly, the current state
of a VOQ with XtXt−1 = 10 will be either ‘‘longest’’ or
‘‘others,’’ no matter what its initial state is. Between a
request with XtXt−1 = 01 and another with XtXt−1 = 10,
the request with ‘‘10’’ should have a higher scheduling pri-
ority because, at least, ‘‘10’’ guarantees the corresponding
VOQ is nonempty (either ‘‘longest’’ or ‘‘others’’), whereas
‘‘01’’ cannot (due to the probability of being ‘‘empty’’).

In summary, the decoding scheme at each output is shown
in TABLE 1:
• IfXtXt−1 = 00, the VOQ is in ‘‘empty’’ state (regardless
of the VOQ state when Xt−1 was sent).

• If XtXt−1 = 01, the VOQ is either in ‘‘empty’’ state or in
‘‘others’’ state.

• If XtXt−1 = 10, the VOQ is either in ‘‘others’’ state or in
‘‘longest’’ state.

• If XtXt−1 = 11, the VOQ is in ‘‘longest’’ state.
Based on the highest rank first arbitration, the scheduling
priority is ‘‘11’’ > ‘‘10’’ > ‘‘01’’ > ‘‘00’’. Then among
(up to) N requests received, an output can easily identify
the VOQ with the highest rank using a 2-bit comparator
only.

D. CODED HIGHEST RANK FIRST (CHRF)
Unlike Basic-HRF, HRF algorithm has an embedded round-
robin scheduler to maximize the match size. Besides, HRF
algorithm always schedules the preferred input-output pairs
first, and applies the rank-based arbitration mechanism next.
With the above in mind, Coded Highest Rank First (CHRF)
can be implemented as follows:
• Request: At each input i, if VOQ(i,j) is nonempty, where
j is the preferred output in the current time slot from (1),
Xt = 1 it sent to output j, and Xt = 0 is sent to all other
outputs. Otherwise, for each VOQ at input i,
– if it changes from ‘‘empty‘‘ (at slot t − 1) to

‘‘others’’ or ‘‘others’’ to ‘‘longest’’ or ‘‘empty’’ to
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‘‘longest,’’ Xt = 1 is sent to its corresponding
output;

– if it changes from ‘‘longest’’ to ‘‘others’’ or ‘‘oth-
ers’’ to ‘‘empty’’ or ‘‘longest’’ to ‘‘empty,’’ Xt = 0
is sent;

– if it remains in ‘‘others,’’ Xt =!Xt−1 is sent;
– if it remains in ‘‘longest,’’ Xt = 1 is sent;
– if it remains in ‘‘empty,’’ Xt = 0 is sent.

• Grant: At each output j, if Xt = 1 is from output j’s
preferred input, grant this request. Otherwise, among all
the requests received, grant the one with the maximum
(binary) value of XtXt−1. (If there is a tie, select the
winner randomly.)

• Accept: At each input i, if a grant from input i’s preferred
output is received, accept it. Otherwise, among all grants
received, accept the one with the highest rank. (If there
is a tie, select the winner randomly.)

The pseudo code of CHRF is given in Algorithm 2 and the
encoding/decoding mechanism is shown in Algorithm 3.

The CHRF algorithm contains some subtle features which
deserve a close examination. In the request phase, if an arbi-
trary input i has packets for its preferred output j, it sends
Xt = 1 to output j to indicate ‘‘grant me as I have packets
for you,’’ and Xt = 0 to all other outputs to indicate ‘‘do
not grant me.’’ Therefore, Xt ’s in this case are not coded
using FIGURE 2, and they are not used to indicate the rank
increase or decrease. (But if input i does not have packets for
its preferred output j, Xt ’s are coded using FIGURE 2.)
When output j receives Xt = 1, it knows that Xt = 1

should be interpreted as ‘‘its preferred input i has packets for
it, and it must grant input i.’’ But when other outputs receive
Xt = 0, they do not know if Xt = 0 should be interpreted as a
coded request (i.e., a rank decrease), or an indication of ‘‘do
not grant me.’’ This is because they do not know if input i has
packets for its preferred output j or not, which is only known
by output j itself. Our solution is simple (yet effective): If an
Xt is received from its non-preferred input, the output always
treats it as a coded request. Indeed, most of the time it should
be treated as a coded request, especially when traffic is light.
(When traffic is heavy, treating it as a coded request or not
will not affect the performance because the performance then
will be dominated by the embedded round-robin scheduler.)

If this turns out to be a mistake, i.e., Xt = 0 should
be interpreted as ‘‘do not grant me,’’ the chance that the
outputmistakenly grants the corresponding input is rather low
because when Xt = 0, the rank of the corresponding request
must be either ‘‘00’’ or ‘‘01’’, which are the two lowest ranks
in TABLE 1. On the other hand, if an output incorrectly treats
a ‘‘do not grant me’’ as a rank decrease (instead of a rank
increases), this will cause a rank tracking error at the output.
We argue that the adverse effect is limited because (a) it will
only last for two time slots, and (b) the output can still have
many other inputs to grant.

Indeed, we have experimented with different ways to fur-
ther enhance the request phase. For example, when input i
has packets for its preferred output j, it sends Xt = 1 to

Algorithm 2 Coded Highest Rank First Algorithm
1: procedure Request(in, time)
2: L[i] = the length of VOQ i at input in
3: mark all empty VOQs with rank 0
4: mark the longest VOQ with rank 1
5: mark other VOQs with rank 2
6: H[i] = the rank of VOQ i in the last slot
7: K[i] = the rank of VOQ i in the current slot
8: IQ[i] = the request of VOQ i in the last slot
9: IR[i] = Encode(H[i], K[i], IQ[i])
10: pout = (in+ time) mod N
11: if L[pout] > 0 then
12: send 1 to output pout
13: send 0 to other outputs
14: else
15: send each IR[i] to the corresponding output
16: end if
17: H = K
18: IQ = IR
19: end procedure
20: procedure Grant(out , time)
21: OQ[i] = the request from input i in the last slot
22: OR[i] = the request from input i in the current slot
23: pin = (out + N − time mod N ) mod N
24: if OR[pin] == 1 then
25: send 1 to input pin
26: send 0 to other inputs
27: else
28: m = argmaxi∈[0,N ) Decode(OQ[i], OR[i])
29: send 1 to input m
30: send 0 to other inputs
31: end if
32: OQ = OR
33: end procedure
34: procedure Accept(in, time)
35: K[i] = the rank of VOQ i got from Request
36: G[i] = the grant from output i
37: pout = (in+ time) mod N
38: if G[pout] == 1 then
39: accept the grant from output pout
40: else
41: n = argminG[i]=1K[i] 6= 0
42: accept the grant from output n
43: end if
44: end procedure

output j and regularly codes Xt for all other outputs. This has
the advantage of allowing each output to track the VOQ status
more accurately. But the disadvantage, which outweighs the
advantage, is that the input will attract unnecessary grants
from other outputs, yet it can only accept the one from its
preferred output.

In the grant phase, each output grants the request from its
preferred input with the highest priority. If the corresponding
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Algorithm 3 Encoding & Decoding
1: function Encode(last_rank , cur_rank , last_req)
2: case {last_rank , cur_rank}
3: when {0, 0} then return 0
4: when {0, 1} then return 1
5: when {0, 2} then return 1
6: when {1, 0} then return 0
7: when {1, 1} then return 1
8: when {1, 2} then return 0
9: when {2, 0} then return 0
10: when {2, 1} then return 0
11: when {2, 2} then
12: if last_req = 0 then
13: return 1
14: else
15: return 0
16: end if
17: end case
18: end function
19: function Decode(last_req, cur_req)
20: case {last_req, cur_req}
21: when {0, 0} then return 0
22: when {1, 0} then return 1
23: when {0, 1} then return 2
24: when {1, 1} then return 3
25: end case
26: end function

VOQ of its preferred input is empty, the output grants the
request with the highest rank. Notably, the strict granting
order above may limit the performance of CHRF under some
nonuniform and heavy traffic conditions. This is because for
nonuniform traffic, rank-based arbitration is usually a better
choice. But if the traffic is heavy, the embedded round-robin
scheduler tends to dominate. Therefore, when the traffic is
nonuniform and heavy, we may occasionally grant a request
based on the highest rank first and the preferred relationship
next. We leave this for possible future work.

In the accept phase, an input always accepts the grant
from its preferred output first. If there is no preferred grant,
the input accepts the grant with the highest rank.

E. TIME COMPLEXITY
Basic-HRF algorithm and HRF algorithm require each input
to rank/sort N VOQs based on queue sizes (line 8 in
Algorithm 1). The time complexity of common sort algo-
rithms (e.g., quicksort) isO(N logN ). In practice, the ranking
process can be much simpler. This is because any input port
receives and sends at most one packet in each time slot (due
to the nature of input-queued switches). The ranked list can
be stored in a balanced binary search tree [26]. When a new
packet arrives at VOQ(i,j), its queue size is increased by 1,
and other VOQs remain unchanged. Then the new rank of
VOQ(i,j) becomes higher or remains unchanged. The time

FIGURE 4. Fast algorithm for CHRF.

complexity for finding a new rank in a binary tree isO(logN ).
The same procedure can be adopted for packet departures.
The overall time complexity of Basic-HRF or HRF is thus
reduced to O(logN ).
In CHRF algorithm, only three ranks (‘‘empty,’’ ‘‘others’’

and ‘‘longest’’) are to be differentiated. So the ranking pro-
cess can be further simplified. In particular, each input only
needs to maintain a pointer to the longest VOQ (line 4 in
Algorithm 2). But finding the longest VOQ (in an unsorted
list) has a worst-case time complexity of O(N ). To reduce
its complexity, we can adopt the thinking of quasi-LQF [27].
As shown in FIGURE 4, a pointer P points to the VOQwhich
is chosen as the longest. On the arrival of a new packet at
VOQ(i,j), the queue sizes of VOQ(i,j) and VOQ(i,P) are com-
pared (in this example, j = 2 and P = 0). P is then updated to
the longer one (i.e., VOQ 2). Note that there is only one VOQ
chosen as the longest one, even if several VOQs have the same
maximum size. As a result, it only involves one comparison
and (at most) one pointer move when a packet is received.
No comparison is needed at the departure of packets, because
we only need to maintain the longest queue. The complexity
of CHRF is thus reduced to O(1). Of course, the quasi-LQF
may produce a sub-optimal result due to mistracking the
longest queue occasionally [27]. But CHRF can still achieve
the samematch size because the quasi-longest VOQ is always
a nonempty one. It is worth reducing the complexity from
O(N ) to O(1) by using the quasi-LQF, as the value of N is
becoming larger and larger.

V. PERFORMANCE EVALUATION
In this section, we quantitatively study the performance of
Basic-HRF, HRF, and CHRF by simulations. We compare
them with other single-iteration algorithms (including some
multiple-iteration algorithms executed for one iteration):
• SRR [13]: the single-bit-single-iteration algorithm that
employs the preferred input-output relationships.

• π -RGA [14]: a multi-bit-single-iteration algorithm
aiming to reuse the match obtained in the previ-
ous time slots. (The name ‘‘pi-RGA’’ is used in
FIGURE 5–FIGURE 8.)

• iSLIP-1: a single-bit-single-iteration algorithm by
executing the classic iSLIP [17] for one iteration.

• iLQF-1: a multi-bit-single-iteration algorithm by
executing iLQF [16] for one iteration.
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FIGURE 5. Delay vs. input load, under uniform balanced traffic.

FIGURE 6. Delay vs. input load, under uniform bursty traffic.

• SRRR [21]: a 4-phase algorithm where the extra phase
is for an output to inform an input if the input is pointed
to by the RR pointer at this output.

• RR/LQF-1: the newest single-bit-single-iteration algo-
rithm by executing RR-LQF [24] for one iteration.

• Output-queued switch is also simulated for providing a
lower bound on delay performance.

For CHRF, the request coding scheme with three ranks
(see FIGURE 2 and TABLE 1) is adopted. Being a single-
bit-single-iteration algorithm, we focus on comparing CHRF
with four other single-bit-single-iteration algorithms SRR,
iSLIP-1, SRRR and RR/LQF-1. Four types of traffic pat-
terns [16], [17] are simulated, uniform balanced traffic, uni-
form bursty traffic, hotspot output traffic and hotspot input
traffic. For any traffic, if the average number of packets
destining to each output in each time slot is not more than 1 in
the long run, we say it is admissible. Of course, if the traffic
is not admissible, buffer overflow will happen no matter what
scheduling algorithm is used, because each output can accept
atmost 1 packet in each time slot. Therefore, we only consider
admissible traffics. We present the simulation results for a

FIGURE 7. Delay vs. input load, under hotspot output traffic.

FIGURE 8. Delay vs. input load, under hotspot input traffic.

switch with size N = 64 below, and the same conclusions
and observations apply to other sizes. The simulator warms
up with 100, 000 slots and runs another 100, 000 slots for
statistics. Note that the minimum delay of a packet is one
time slot and input buffers are set large enough to avoid any
instantaneous buffer overflow.

A. UNIFORM BALANCED TRAFFIC
Uniform balanced traffic is generated as follows. In each
time slot, a packet arrives at each input with probability p
(i.e., the input load) and destines to each output with equal
probability. From FIGURE 5, we can see that Basic-HRF
outperforms iLQF-1. The significant performance gain when
p > 0.5 is due to rank-based arbitration being better than
queue-based arbitration. When p < 0.7, HRF has almost
identical (and the best) performance as Basic-HRF, which
shows that highest rank first is an efficient mechanism. When
p > 0.7, the embedded global round-robin scheduler (via the
preferred input-output relationship) in HRF kicks in, which
warrants HRF’s best delay-throughput performance among
all single-iteration algorithms.
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As compared to HRF, CHRF cuts down on the request
size from 7 bits (for N = 64) to a single bit at the cost
of slightly increasing the delay. This confirms that (a) the
fine granularity of full (N + 1) ranks is not necessary, and
(b) the request encoding/decoding scheme based on three
ranks (in FIGURE 2 and TABLE 1) is efficient.

As compared to other single-bit-single-iteration algo-
rithms, namely, SRR, iSLIP-1, SRRR and RR/LQF-1,
CHRF gives the best delay-throughput performance. Note
that the global round-robin scheduler (implemented via
the preferred input-output relationship) is embedded in all
three algorithms, i.e., SRR, RR/LQF-1 and CHRF. As a
result, all of them give comparable heavy load performance
(for p > 0.95). Due to the use of rank-based arbitration,
CHRF outperforms both RR/LQF-1 and SRR.As an example,
at p = 0.8 the average delay of RR/LQF-1 is 79.4 time slots,
while that of CHRF is only 28.7 time slots, cutting down the
delay by more than 2 times.

It is also worth noting that despite its complexity, π -RGA,
a multi-bit-single-iteration algorithm, does not perform well
under uniform balanced traffic, and its delay performance
increases sharply when p is just above 0.6.

B. UNIFORM BURSTY TRAFFIC
Bursty arrivals are characterized by the ON/OFF traffic
model, which is a special instance of the two-state Markov
process. It has been shown that the composition of ON/OFF
processes gives rise to long-range dependent (LRD) traffic.
In the ON state, a packet arrival is generated in every time
slot. In the OFF state, there are no packet arrivals. Packets
of the same burst have the same destination output and the
destination for each burst is uniformly distributed. Given
average input load p and burst size s, the state transition
probability from OFF to ON is p/[s(1−p)] and that from ON
to OFF is 1/s. In our simulations, we set burst size s = 30
packets.

From FIGURE 6, we can see that, unlike the perfor-
mance of uniform balanced traffic in FIGURE 5, the delay
builds up quickly with input load for all scheduling algo-
rithms. Nevertheless, Basic-HRF is still consistently bet-
ter than iLQF-1, and CHRF always outperforms SRR and
RR/LQF-1.When p = 0.6, the average packet delays of using
SRR, RR/LQF-1 and CHRF are 83.9, 50.7 and 37.4 slots,
respectively.

In FIGURE 6, CHRF outperforms π -RGA if p ≤ 0.6.
When p > 0.6, π -RGA performs better as it can more
accurately target at scheduling bursty flows first. But
π -RGA requires multi-bit requests and a more sophisticated
arbitration mechanism.

C. HOTSPOT OUTPUT TRAFFIC
We assume that, in each time slot, packets arriving at each
input port follow the same independent Bernoulli process
with probability p. Hotspot outputs are generated as follows.
For any input i, a packet goes to output (i+N/2) mod N with
probability 0.5, and other outputs with the same probability

1/[2(N − 1)]. Since each input has a ‘‘hotspot’’ output, this
traffic pattern is unbalanced and nonuniform [16].

From FIGURE 7 and as expected, Basic-HRF yields much
better performance than iLQF-1, and CHRF defeats SRR,
iSLIP-1, SRRR and RR/LQF-1. This shows that the rank-
based arbitration (in CHRF) is suitable for unbalanced traffic.
Further note that CHRF outperforms π -RGA over almost all
input loads simulated.

D. HOTSPOT INPUT TRAFFIC
Hotspot input traffic is generated as follows. One input port is
always 100% loaded.Without loss of generality, let input 0 be
the fully-loaded input port. The packet arrival rate to other
inputs, or p, varies from 0.1 to 1. For each arrived packet,
its destination is chosen randomly from all outputs. From the
simulation results in FIGURE8, we can see that, again, Basic-
HRF outperforms iLQF-1 and CHRF outperforms SRR and
RR/LQF-1. CHRF also outperforms the more sophisticated
π -RGA under all traffic load. As an example, at p = 0.8,
the packet delay obtained using π -RGA is 402 time slots,
while that of CHRF is only 40 time slots, cutting down the
delay 10 times.

It is interesting to note the ‘‘odd’’ delay performance
of SRR: large delay (> 30 slots) when p is small, and the delay
drops slightly as p increases toward 0.5. This is because input
0 is always fully loaded. When p (for other inputs) is small,
the switch delay performance is dominated by the delay of
packets from input 0. It is because SRR only allows each
input to send at most one 1-request. When the preferred VOQ
of input 0 is empty and the other VOQs of input 0 are back-
logged, input 0 can (still) only send a single 1-request to its
longest VOQ. But this 1-request will fail if the corresponding
output has received a 1-request from its preferred input, or the
output has randomly chosen another 1-request to grant. As a
result, when p is small, the throughput of input 0 will be
much lower than that of using an algorithm allowing multiple
1-requests, e.g., RR/LQF. Accordingly, the packets from
input 0 have to wait for a longer time, resulting in higher
overall delay when p is small.

In summary, under all four traffic patterns, uniform,
bursty, hotspot output, and hotspot input, CHRF yields the
best delay-throughput performance among all single-bit-
single-iteration algorithms, namely, SRR, iSLIP-1, SRRR
and RR/LQF-1. It even outperforms the multi-bit algorithm,
π -RGA, under most traffic patterns.

VI. ANALYTICAL MODEL FOR DELAY PERFORMANCE
In this section, an analytical model is constructed to study
the delay performance of HRF under uniform and low traffic
load. We focus on HRF algorithm because CHRF algorithm
has similar performance, yet is much more difficult to be
modeled. In this section, we are dedicated to the analysis of
delay. The analysis of throughput is provided in Appendix B.

When packets arrive uniformly and infrequently, it is rea-
sonable to assume that all input ports are initially empty.
Then if a VOQ receives a new packet, it becomes the longest
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queue of its input. Without loss of generality, suppose that
at time slot 0, a packet A arrives at input i and destines to
output j. VOQ(i,j) then becomes the longest queue at input i.
Let PAt be the probability that packet A is sent at time slot t .
From (1), VOQ(i,j) is preferred (by the embedded round-
robin scheduler) with the highest priority exactly once every
N slots. So t is upper bounded by N . Since the cut-through
(packet arriving and leaving within the same time slot) is not
allowed, t is lower bounded by 1. Therefore, t falls into the
interval [1,N ] and

N∑
t=1

PAt = 1. (2)

The average delay of packet A can be written as

E(A) =
N∑
t=1

t · PAt . (3)

To calculate (3), we first follow HRF to derive the prob-
ability that packet A is transmitted at slot t = 1, i.e.
PA1 . When t = 1, packet A can be sent under two cases:
(a) VOQ(i,j) is preferred with the highest priority for trans-
mission; (b) VOQ(i,j) is selected as a non-preferred VOQ for
transmission. The probability of case (a) is simply 1/N due
to (1). The second case (b) occurs only when VOQ(i,j) is not
preferred, output j’s preferred VOQ (say, VOQ(k ,j)) is empty
and simultaneously output j grants input i. Note that VOQ(i,j)
is not preferred with the probability (1 − 1/N ). At slot t ,
denote Ppt the probability that output j’s preferred VOQ(k ,j)
is empty, and Yt the expected number of the highest rank-
1 requests received by output j. Since output j randomly issues
one grant among the highest rank requests, the probability
that output j grants input i is 1/Yt . In case (b), packet A is
sent with probability (1− 1/N )Pp1/Y1.

Combining cases (a) and (b) together, the probability that
packet A is transmitted at time slot 1 is

PA1 =
1
N
+

(
1−

1
N

)
Pp1
Y1
. (4)

To get PA1 , we next calculate P
p
1 and Y1. Recall that all VOQs

are assumed to be empty at the beginning of slot 0. Then
output j’s preferred VOQ(k ,j) will be empty at the beginning
of slot 1 unless input k receives a new packet destining to
output j at slot 0. Pp1, the probability that VOQ(k ,j) is empty
at slot 1, is given by

Pp1 = 1−
λ

N
, (5)

where λ (0 ≤ λ ≤ 1) is the offered load at input port k (as
well as all other inputs under uniform traffic).

Although output j’s preferred VOQ(k ,j) is empty and the
request coming from VOQ(i,j) is of the highest rank at slot 1,
it is still possible that output j randomly grants other highest-
rank request. This probability is determined by Y1, the total
number of highest rank requests received by output j at
t = 1. Based on our assumption that a nonempty VOQ is

in fact the longest queue of its input at slot 1, the number of
highest rank requests can be simplified to be the number of
nonempty VOQs. Then Y1 is

Y1 =
λ(N − 2)

N
+ 1, (6)

where ‘‘N−2’’ is to disregard the confirmed empty VOQ(k ,j)
and nonempty VOQ(i,j) from the number of VOQs that
may become nonempty from empty with probability λ/N ,
and ‘‘+1’’ is to compensate for the excluded but definitely
nonempty VOQ(i,j). Substituting (5) and (6) into (4), we have

PA1 =
1
N
+

(N − 1)(N − λ)
N 2 + λN (N − 2)

. (7)

Up to now, we can get the value of PA1 from (7). But
to calculate (3), we still need to follow HRF to derive the
probability that packet A is transmitted at slot 2, i.e. PA2 .
If packet A is not transmitted at time slot 1 (with probability
1 − PA1 ), at slot 2, it can be sent also under two cases that
VOQ(i,j) is preferred or non-preferred by output j. Note that
we have known that VOQ(i,j) is not preferred by output j at
slot 1. (Otherwise, A would have been sent at slot 1 for sure.)
Then VOQ(i,j) will be served exactly once in the subsequent
(N − 1) slots due to (1). PA2 is written as

PA2 =
(
1− PA1

)[ 1
N − 1

+

(
1−

1
N − 1

)
Pp2
Y2

]
. (8)

To get PA2 from (8), we next calculate Pp2 and Y2. Without
loss of generality, let output j prefer VOQ(m,j) (m 6= i) at
slot 2. Pp2 is then the probability that VOQ(m,j) is empty
at slot 2. To ensure that, firstly no packet should arrive at
slot 1 (with probability 1 − λ/N ), and secondly there are
two possible scenarios to consider: (a) no packet arrived (with
probability 1 − λ/N ) at slot 0; or (b) a packet arrived (with
probability λ/N ) at slot 0 but left at slot 1. So

Pp2 =
(
1−

λ

N

)2

+
λ

N

(
1−

λ

N

)
Pp1,1, (9)

where Ppr,l is defined as the joint probability that a packet has
been buffered at the currently preferred VOQ for l slots and
is sent at slot r .

To calculate Pp2 in (9), we first need to derive Pp1,1. Since
VOQ(m,j) is output j’s preferred VOQ at time slot 2, it is
not preferred by output j at slot 1 for sure. Then VOQ(m,j)
has only one chance to be served at slot 1, i.e. as a non-
preferred VOQ.

Pp1,1 =
Pp1
W1
, (10)

where W1 is the total number of highest-rank requests com-
peting for output j’s grant at t = 1. Note that W1 above
is not the same as Y1 in (6). In particular, the confirmed
empty VOQ(k ,j), nonempty VOQ(i,j) and VOQ(m,j) should
be removed from the number of VOQs that may become
nonempty from empty with probability λ/N . Therefore,

W1 =
λ(N − 3)

N
+ 1. (11)
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With (9), (10) and (11), the value of Pp2 can be derived.
To get PA2 from (8), we only lack Y2. Let Pnr denote the
probability that the current non-preferred VOQ is empty at
slot r . Then the probability that a non-preferred VOQ is not
empty at slot 2 is (1− Pn2). Like Y1 in (6), we can write Y2 as

Y2 = (N − 2)(1− Pn2)+ 1. (12)

Pn2 is the probability that the current non-preferred VOQ is
empty at slot 2. To ensure that, first, no packet should arrive
at slot 1 (with probability 1 − λ/N ), and second, there are
two possible scenarios to consider: (a) no packet arrived (with
probability 1 − λ/N ) at slot 0; or (b) a packet arrived (with
probability λ/N ) at slot 0 but left at slot 1. Define Pnr,l as the
joint probability that a packet has been buffered in a currently
non-preferred VOQ for l slots and is sent at slot r . Then

Pn2 =
(
1−

λ

N

)2

+
λ

N

(
1−

λ

N

)
Pn1,1. (13)

We can see that when Pn1,1 is derived, P
n
2 as well as Y2 can

be got. Without loss of generality, let VOQ(n,j) be output j’s
non-preferred VOQ at slot 2. It is still possible that VOQ(n,j)
was preferred by output j at slot 1. Therefore, VOQ(n,j)
has two opportunities to be served at slot 1, i.e., as a pre-
ferred or non-preferred VOQ. The probability that VOQ(n,j)
is preferred by output j at slot 1 is 1/(N−2). Here ‘‘N−2’’ is
to exclude VOQ(m,j) and VOQ(i,j) (not preferred by output j
at slot 1 for sure) from the total number of VOQs that could be
preferred with probability 1/N . If VOQ(n,j) is not preferred
by output j at slot 1, it may still be selected for transmission.
It occurs only when output j’s preferred VOQ(k ,j) is empty
and simultaneously output j grants input n. The probability
of this case is determined by Pp1 and W1. So

Pn1,1 =
1

N − 2
+

(
1−

1
N − 2

)
Pp1
W1
. (14)

Combine (8)-(14), and we have

PA2 =
(
1− PA1

)
QA2 , (15)

where

QA2 =
1

N − 1
+

N−λ
N−1

[
1+ λ

N+λ(N−3)

]
N 2(N−1)

(N−2)(N−λ) − N + λ−
λN

N+λ(N−3)

. (16)

We can see that as long as the switch size N and input
loading λ are given, PA2 can be derived from PA1 . In the general
case, PAt (2 ≤ t ≤ N − 1) can be derived recursively.
We provide the general results in Appendix A. When we
get all PAt (1 ≤ t ≤ N − 1), PAN can be obtained using
constraint (3). The expected delay of Packet A, i.e., E(A)
in (3), is straightforward.

Recall that the input load λ is assumed to be light in our
analytical model. Then packet A will be transmitted with a
very short queuing delay. In other words, when t ≥ 4, PAt is
quite small and has negligible impact on E(A). For example,
when N = 64 and λ = 0.1, PA1 ≈ 0.912 and PA2 ≈ 0.080.

FIGURE 9. Analytical results under low uniform offered load.

Thus
∑N

t=3 P
A
t = 1 − PA1 − P

A
2 ≈ 0.008 only. Motivated by

this observation, we can simplify the calculation in (3) by

E(A) ≈ PA1 + 2PA2 + 3(1− PA1 − P
A
2 ). (17)

Combining (7), (15), (16) and (17), the expected delay of
packet A can be approximated by

E(A) ≈ 3−
2(N 2

− λ)+ λ(N − 1)2QA2
N 2 + λN (N − 2)

. (18)

To see how tight the value in (18) is, the analytical and
simulation results are compared in FIGURE 9. We can see
that, with light traffic, the simulation results almost overlap
with the analytical results.

VII. CONCLUSION
In this paper, we first demonstrated the effectiveness of rank-
based arbitration by a simple algorithm called Basic-HRF.
In Basic-HRF, VOQs at an input port are ranked according to
their queue sizes. The rank of a VOQ, coded by log(N+1) bits
whereN is the switch size, is sent to the corresponding output
as a request. In both grant and accept phases, the request/grant
with the highest rank is given the highest priority. We showed
that such a rank-based arbitration outperforms the widely
adopted queue-based arbitration. To improve the heavy load
performance of Basic-HRF, the rank-based arbitration was
integrated with an embedded global round-robin scheduler.
The refined Basic-HRF algorithm, or HRF algorithm in short,
performs better than almost all existing single-iteration algo-
rithms. But its implementation complexity is higher than
the class of single-bit-single-iteration algorithms due to the
use of multi-bit requests. A novel request encoding/decoding
mechanism was then designed to reduce the request size to a
single bit. Unlike all existing iterative scheduling algorithms,
a single-bit request is used to indicate the increase or decrease
of a VOQ rank, rather than a VOQ is empty or not. Exten-
sive simulation results showed that the resulting algorithm
Coded Highest Rank First (CHRF) provides the best delay-
throughput performance among all single-bit-single-iteration
algorithms.
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APPENDIX A
GENERAL RESULTS FOR PACKET DELAY
From Section VI, we can see that as long as the switch size
N and input loading λ are given, PA2 can be derived from PA1 ,
PA3 can be derived from PA2 and PA1 , and so on. In the general
case, PAt (2 ≤ t ≤ N − 1) can be recursively calculated as
follows.

PAt =

1−
t−1∑
q=1

PAq

[ 1
N + 1− t

+

(
1−

1
N + 1− t

)
Ppt
Yt

]
.

(19)

Like (5) and (6), Ppt is the probability that VOQ(k ,j) is empty
at slot t , and Yt is the total number of highest rank requests
received by the output at slot t . We have

Yt = (N − 2)
(
1− Pnt

)
+ 1, (20)

and

Ppt =
(
1−

λ

N

)t
+
λ

N

(
1−

λ

N

)t−1 t−1∑
r=1

r∑
l=1

Ppr,l

+

(
λ

N

)2 (
1−

λ

N

)t−2 t−2∑
r=1

r∑
l=1

t−1∑
u=r+1

u−r+l∑
v=1

Ppr,lP
p
u,v

+

(
λ

N

)3 (
1−

λ

N

)t−3
×

t−3∑
r=1

r∑
l=1

t−2∑
u=r+1

u−r+l∑
v=1

t−1∑
x=u+1

x−u+v∑
y=1

Ppr,lP
p
u,vP

p
x,y

+ . . .+

(
λ

N

)t−1 (
1−

λ

N

) t−1∑
r=1

Ppr,1. (21)

To calculate (21), we need the value of Ppt,l . It is given by

Ppt,l =

(
1−

l−1∑
v=1

Ppt−l+v,v

)
Ppt
Wt
, (22)

where

Wt = (N − 3)
(
1− Pnt

)
+ 1. (23)

To calculate Yt andWt , we need to determine the value of Pnt
as follows.

Pnt =
(
1−

λ

N

)t
+
λ

N

(
1−

λ

N

)t−1 t−1∑
r=1

r∑
l=1

Pnr,l

+

(
λ

N

)2 (
1−

λ

N

)t−2 t−2∑
r=1

r∑
l=1

t−1∑
u=r+1

u−r+l∑
v=1

Pnr,lP
n
u,v

+

(
λ

N

)3 (
1−

λ

N

)t−3
×

t−3∑
r=1

r∑
l=1

t−2∑
u=r+1

u−r+l∑
v=1

t−1∑
x=u+1

x−u+v∑
y=1

Pnr,lP
n
u,vP

n
x,y

+ . . .+

(
λ

N

)t−1 (
1−

λ

N

) t−1∑
r=1

Pnr,1. (24)

The joint probability that a packet has been buffered in a non-
preferred VOQ for l slots and is sent at slot t is given by

Pnt,l =

(
1−

l−1∑
v=1

Pnt−l+v,v

)[
1

N − 1− l

+

(
1−

1
N−1−l

)
Ppt
Wt

]
. (25)

APPENDIX B
THROUGHPUT AND STABILITY PROOF
If multiple iterations are allowed, with HRF algorithm, there
is at least one match among all the unmatched inputs/outputs
from the last iteration. Thus, maximal size matching will be
achieved after N iterations at most. In other words, with a
speedup 2, the multi-iteration version of HRF is stable if the
traffic is admissible, no matter what the traffic pattern is [26].
In this appendix, we are devoted to analyzing the through-
put of HRF with single iteration and no speedup, and pro-
vide the sufficient condition of stability for single-iteration
HRF algorithm. If not specified, the switch buffer is assumed
to be large enough.

A. A FLUID MODEL
For clarity, we use the term HRF to represent both HRF and
CHRF. Following the approach in [28] and [29], we first
construct a fluid model for HRF. Let λij be the mean packet
arrival rate to VOQ(i,j). A traffic pattern/matrix is admissible
if ∑

i

λij ≤ 1,
∑
j

λij ≤ 1. (26)

Let Zij(n) denote the number of packets in VOQ(i,j) at the
beginning of time slot n. Further let Aij(n) and Dij(n) denote
the cumulative number of packet arrivals and departures for
VOQ(i,j) at the beginning of time slot n respectively. We have

Zij(n) = Zij(0)+ Aij(n)− Dij(n), (27)

where n ≥ 0 and i, j ∈ {0, . . . ,N − 1}.
Assume that the packet arrival process obeys the strong law

of large numbers with probability one, i.e.,

lim
n→∞

Aij(n)
n
= λij, i, j ∈ {0, . . . ,N − 1}.

The switch is, by definition, rate stable if

lim
n→∞

Dij(n)
n
= λij, i, j ∈ {0, . . . ,N − 1}.

If a switch is rate stable for an admissible traffic matrix, then
it delivers 100% throughput.

The fluid model is determined by a limiting procedure
illustrated below. First, the discrete functions are extended to
right continuous functions. For arbitrary time t ∈ [n, n+ 1),
we define

Aij(t) = Aij(n), (28)

Zij(t) = Zij(n), (29)
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and

Dij(t) = Dij(n)+ (t − n)(Dij(n+ 1)− Dij(n)). (30)

Note that all functions are random elements of the set
{0, 1, 2, . . .}. We shall sometimes use the notation Aij(·, ω),
Zij(·, ω) and Dij(·, ω) to explicitly denote the dependency on
the sample path ω. For a fixed ω, at time t , we have [28]
• Aij(t, ω): the cumulative number of arrivals to VOQ(i,j);
• Zij(t, ω): the number of packets in VOQ(i,j);
• Dij(t, ω): the cumulative number of departures from
VOQ(i,j).

For each r > 0, we define

Ārij(t, ω) = r−1Aij(rt, ω), (31)

Z̄ rij (t, ω) = r−1Zij(rt, ω), (32)

and

D̄rij(t, ω) = r−1Dij(rt, ω). (33)

It is shown in [29] that for each fixed ω satisfying (27)
and any sequence {rn} with rn → ∞ as n → ∞,
there is a subsequence {rnk } and the continuous functions
(Āij(·), Z̄ij(·), D̄ij(·)), where (Ārij(t, ω), Z̄

r
ij (t, ω), D̄

r
ij(t, ω))

converges as

Ā
rnk
ij (t, ω) → λij · t, (34)

Z̄
rnk
ij (t, ω) → Z̄ij(t), (35)

and

D̄
rnk
ij (t, ω)→ D̄ij(t), (36)

uniformly on compacts as k →∞ for any t ≥ 0.
Definition 1: Any function obtained through the limiting

procedures in (34), (35) and (36) is said to be a fluid limit of
the switch. The fluid model equation using HRF is

Z̄ij(t) = Z̄ij(0)+ λijt − D̄ij(t), t ≥ 0. (37)

Definition 2: The fluid model of a switch operating under
a scheduling algorithm is said to be weakly stable if for every
fluid model solution (D̄, Z̄ ) with Z̄ (0) = 0, Z̄ (t) = 0 for
almost every t ≥ 0.

B. STABILITY PROOF
From [28], a switch is rate stable if its corresponding fluid
model is weakly stable. Our goal here is to prove that for every
fluid model solution (D̄, Z̄ ) using HRF, Z̄ (t) = 0 for almost
every t ≥ 0. Specifically, we will use Fact 1 from [29].
Fact 1: Let f be a non-negative, absolutely continuous

function defined on R+ ∪ {0} with f (0) = 0. Assume that
for almost every t , f (t) > 0 and f ′(t) ≤ 0. Then f (t) = 0 for
almost every t ≥ 0.
Note that R+ is the set of positive real numbers and f ′(t)

denotes the derivative of function f at time t .
In the following theorem, we show the sufficient condition

for 100% throughput of HRF.
Theorem 1: (Sufficiency) When λij ≤ 1/N (for all i, j ∈
{0, 1, . . . ,N − 1}), HRF can achieve 100% throughput.

Proof: Define B , {m : Z̄im(t) > 0}. Let Gi(t) denote
the joint queue occupancy of all nonempty VOQs at input
port i. We have

Gi(t) =
∑
m∈B

Z̄im(t). (38)

Because Z̄ (t) is a non-negative and absolutely continuous
function, from (38), Gi(t) is also non-negative and absolutely
continuous. Without loss of generality, assume all VOQs are
initially empty, i.e., Z̄ (0) = 0. Then Gi(0) = 0 and the
derivative of Gi(t) is

G′i(t) =
∑
m∈B

Z̄ ′im(t).

Combine the above equation with (37), and we get

G′i(t) =
∑
m∈B

λim −
∑
m∈B

D̄′im(t).

From the condition 0 ≤ λij ≤ 1/N (for all i, j ∈
{0, 1, . . . ,N − 1}),

G′i(t) ≤
h
N
−

∑
m∈B

D̄′im(t), (39)

where h = ‖B‖ ≥ 0.
Suppose that Gi(t) > 0 when t > 0. This implies that
∀m1 ∈ B and ∀m2 /∈ B, Z̄im1 (t) > 0 and Z̄im2 (t) = 0. Then
Z̄im1 (t) − Z̄im2 (t) > 0. By the continuity of these functions,
∃δ such that

min
t ′∈[t,t+δ]

Z̄im1 (t
′)− Z̄im2 (t

′) > 0, ∀m1 ∈ B, ∀m2 /∈ B.

Let

q = min
m1∈B
m2 /∈B

min
t ′∈[t,t+δ]

{Z̄im1 (t
′)− Z̄im2 (t

′)}.

Thus for a large enough k , we have Z̄
rnk
im1

(t ′)− Z̄
rnk
im2

(t ′) ≥ q/2,
where ∀m1 ∈ B, ∀m2 /∈ B, and t ′ ∈ [t, t+ δ]. Also for a large
enough k , we have rnk · q/2 ≥ 1. Thus Zim1 (t

′) − Zim2 (t
′) ≥

1, where ∀m1 ∈ B, ∀m2 /∈ B, and t ′ ∈ [rnk t, rnk (t + δ)].
This means that in the long time interval [rnk t, rnk (t + δ)],
any nonempty VOQ at input port i belongs to the set U ,
{VOQ(i,m) : m ∈ B}, and any VOQ that belongs to set U
is nonempty [28], [29]. Since HRF always gives the highest
priority to the preferred input-output pairs calculated by (1),
during the same time interval, each nonempty VOQ sends at
least one packet per N slots. Then in the long time interval
[rnk t, rnk (t + δ)], input i sends at least h = ‖B‖ packets per
N slots. In other words,∑

m∈B

[
Dim(rnk t

′)− Dim(rnk t)
]
≥ Lh, (40)

where L ∈ Z, NL ≤ rnk t ′ − rnk t < NL + N . So we have

L >
rnk · (t

′
− t)

N
− 1. (41)
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Combining (40) with (41), we have∑
m∈B

[
Dim(rnk t

′)− Dim(rnk t)
]
>
h · rnk · (t

′
− t)

N
− h.

Since h = ‖B‖ is within [0,N ], its impact is insignificant
for fluid limit [28]. Dividing the above equation by rnk and
letting k →∞, the fluid limit is obtained as:∑

m∈B

[
D̄im(t ′)− D̄im(t)

]
>
h · (t ′ − t)

N
.

Further dividing the above equation by (t ′ − t) and letting
t ′→ t , the derivative of fluid limit is∑

m∈B

D̄′im(t) >
h
N
. (42)

Combine (39) and (42), and we get

G′t (t) < 0.

Based on Fact 1, Gi(t) = 0 for almost every t ≥ 0. Due to
(38), Z̄im(t) = 0 for almost every t ≥ 0. Then HRF is weakly
stable. We proved Theorem 1 that when λij ≤ 1/N (for all
i, j ∈ {0, 1, . . . ,N − 1}), HRF achieves 100% throughput.
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