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ABSTRACT This paper presents a smartphone app that performs real-time voice activity detection based
on convolutional neural network. Real-time implementation issues are discussed showing how the slow
inference time associated with convolutional neural networks is addressed. The developed smartphone app is
meant to act as a switch for noise reduction in the signal processing pipelines of hearing devices, enabling
noise estimation or classification to be conducted in noise-only parts of noisy speech signals. The developed
smartphone app is compared with a previously developed voice activity detection app as well as with
two highly cited voice activity detection algorithms. The experimental results indicate that the developed
app using convolutional neural network outperforms the previously developed smartphone app.

INDEX TERMS Smartphone app for real-time voice activity detection, convolutional neural network voice
activity detector, real-time implementation of convolutional neural network.

I. INTRODUCTION
Voice activity detectors (VADs) are often used to iden-
tify sections or parts of noisy speech signals that contain
speech activity. They constitute a key module in many speech
processing pipelines, in particular in hearing improvement
devices including hearing aids and cochlear implants. VADs
have also been used as a switch to enable noise classification/
estimation during noise-only portions of noisy speech
signals. For example, in [1], a VAD was used for this pur-
pose, see Figure 1, where a noise classification or estimation
module was activated by the VAD to adjust the parame-
ters of a noise reduction algorithm depending on the noise
class or type. For signal sections or parts where speech in
noise or speech+noise was detected, no noise classification/
estimation was done and the noise reduction was performed
based on the last identified noise type.

Applications of VADs such as the one mentioned above
require its operation to be carried out in a real-time and frame-
based manner. A real-time VAD was developed in [2] to
run on smartphones, where it was shown that the switching
done automatically by the VAD matched the switching done
manually.

The motivation behind using smartphones as the hard-
ware platform is that the smartphone use is ubiquitous with

FIGURE 1. VAD used as a switch to activate noise classification or
estimation during noise-only sections of noisy speech signals.

more than three quarters of people in the US owning smart-
phones [3]. Smartphones are equipped with powerful ARM
multi-core processors and they can be easily interfaced with
hearing devices wirelessly via low-latency Bluetooth [4] or
by wire using headphone cables. Our research group has
been working on developing various smartphone apps to
enhance the listening experience of hearing device users,
e.g. [2], [5], [6].

Traditionally, statistical modelling has been utilized in
VADs to separate speech and noise parts or sections in noisy
speech signals. The VAD which is specified as a standard by
ITU is G.729 Annex B (G729.B) [7]. This VAD uses a fixed
decision boundary in a feature space. The features used are
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line spectral frequencies, full-band energy, low-band energy
and zero crossing difference. This VAD is widely used in
Voice over Internet Protocol (VoIP) for silence compression.
A highly cited VAD is the one developed by Sohn et al. [8],
which considers the discrete Fourier transform (DFT) coeffi-
cients of noise and speech as independent Gaussian random
variables to perform a likelihood ratio test (LRT). In another
VAD developed by Gazor and Zhang [9], speech was consid-
ered to be a Laplacian random variable. Ramirez et al. [10]
extended the work in [8] and incorporated multiple observa-
tions from the past and future frames and named it multi-
ple observations likelihood ratio test (MO-LRT). The VAD
approach developed by Shin et al. [11] showed that mod-
elling the DFT coefficients as a generalized Gamma distri-
bution (G0D) provided more accuracy than the previously
developed approaches.

Apart from the statistical modelling approaches noted
above, more recently VAD approaches have been devel-
oped using machine learning techniques. Some examples
of these approaches are mentioned here. Enqing et al. [12]
used the same features in G729.B together with a support
vector machine (SVM) classifier. Ramirez et al. [13] used
long-term signal-to-noise ratio (SNR) and subband SNR fea-
tures together with a SVM classifier. Jo et al. [14] used
the likelihood ratios from a statistical model together with a
SVM classifier. Saki and Kehtarnavaz [1] developed a VAD
using subband features together with a random forest (RF)
classifier. VADs using deep neural networks have also
appeared in the literature. For example, Zhang and Wu [15]
used a collection of features including pitch, DFT, mel-
frequency cepstral coefficients (MFCC), linear predictive
coding (LPC), relative-spectral perceptual linear predictive
analysis (RASTA-PLP) and amplitude modulation spectro-
grams (AMS) together with a deep belief neural network.
Hughes and Mierle [16] considered 13-dimensional percep-
tual linear prediction (PLP) features together with a recurrent
neural network (RNN). Thomas et al. [17] used log-mel spec-
trogram with its delta and acceleration coefficients together
with a convolutional neural network (CNN). In [18], Obuchi
applied an augmented statistical noise suppression (ASNS)
before voice activity detection to boost the accuracy of VAD.
In this VAD, feature vectors consisting of log mel filterbank
energies were fed into a decision tree (DT), a SVM and a
CNN classifier.

As far as real-timeVADs are concerned, Lezzoum et al.[19]
utilized normalized energy features along with a thresholding
technique. The real-time VAD developed by Sehgal et al. [2]
was implemented to run on smartphones as an app using the
features developed in [1].

Although many VADs have been reported in the litera-
ture, the real-time implementation aspects such as compu-
tational efficiency, frame processing rate, accuracy in the
field or realistic scenarios are often not adequately addressed.
Deep learning approaches have shown that voice activity
detection can be performed more effectively. However, such
approaches have very long inference times creating hindrance

in their utilization in a real-time frame-based speech pro-
cessing pipeline. This is mainly due to the fact that neural
network architectures are normally defined to be as large
and as deep as possible without taking into consideration
real-time limitations in practice. The main contribution made
in this paper lies in the development of a practical CNN
architecture for voice activity detection to enable its real-time
operation as an app running on smartphone platforms.

II. IMPLEMENTED VAD ALGORITHM
This section discusses the features and classification used in
the implemented VAD algorithm.

A. LOG-MEL FILTERBANK ENERGY FEATURES
The input to the CNN are considered to be the log-mel
filterbank energy images, similar to the ones utilized in [18].
The reasoning for choosing this feature is stated below.

In [20], it was shown that representing audio as images
using mel-scaled short time Fourier transform (STFT) spec-
trograms consistently performed better than linear-scaled
STFT spectrograms, constant-Q transform (CQT) spectro-
gram, continuous Wavelet transform (CWT) scalogram and
MFCC cepstrogram as inputs to CNNs for audio classifi-
cation tasks, especially when used with a two-dimensional
CNN classifier. In addition, in [18] it was shown that using
the log-mel filterbank energy extracted from the mel-scaled
STFT spectrogram performed better when using CNN as
compared to other classifiers. Furthermore, and more impor-
tantly, the feature log-mel filterbank energy used here is
computationally more efficient for real-time implementation
than CQT spectrogram, CWT scalogram and MFCC cepstro-
gram. Also, the log-mel filterbank energy feature possesses
fewer coefficients per frame compared to linear-scaled STFT
spectrogram and mel-scaled STFT spectrogram, leading to a
reduced inference time and smaller CNN architecture.

A log-mel energy spectrum represents the short-term
power of an audio signal in the mel-frequency scale [21] over
some time duration. The log-mel energy spectrum is made up
of mel-frequency spectral coefficients (MFSC). These coef-
ficients are similar to MFCC noting that MFCC are obtained
by taking the DCT of MFSC.

The mel scale of frequencies denotes a perceptual scale
of frequencies which are subjectively judged to be equal
in distance to one another in terms of hearing sensation.
The function B for computing mth mel-frequency from fre-
quency f in Hertz and its inverse B−1 are given by [21]:

B(f ) = 2595 log10

(
1+

f
700

)
(1)

B−1(m) = 700
(
10

m
2595 − 1

)
(2)

To compute the MFSC of an audio signal, the signal is
first divided into short frames of duration 20-40 ms. It is
observed that shorter frames do not provide enough data
samples for an accurate spectral estimate, and longer frames
do not account for possible frequent signal changes within
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a frame. Frames are overlapped and a weighted window
(e.g., Hanning) is applied to reduce artifacts that occur in the
DFT computation due to rectangular windowing. As lower
weights are allocated to the samples at the beginning and end
of a frame, overlapping is done to capture the effect of these
samples in a prior and in a post frame. After collecting and
windowing an audio frame, its Fourier transform is computed
via the Fast Fourier Transform (FFT) algorithm. Since the
FFT is mirrored in frequency, only the first half of the FFT is
used.

A triangular overlapping filterbank consisting of N tri-
angular filters is considered to compute MFSC. A lower
frequency and a higher frequency are specified to limit the
spectrogram within a range of frequencies. Ideally, a value
of 300 Hz is used for the lower frequency and 8000 Hz is used
for the higher frequency for speech signals with the sampling
frequency being greater than 16000 Hz. Next, N + 2 equally
spaced frequencies (m̂) in the mel-domain between the lower
and higher frequencies are obtained. These edge frequencies
are then converted to the frequency domain and their values
in terms of the FFT bin number are found via multiplication
with the number of FFT bins (K ) and division by the sampling
frequency (fs). The mel spaced filterbank is then created as
follows:

f̂ (n) =
(K + 1) ∗ B−1(m̂(n))

fs
, n = 0 . . .N + 1 (3)

Hn (k) =



0 k < f̂ (n− 1)
k − f̂ (n− 1)

f̂ (n)− f̂ (n− 1)
f̂ (n− 1) < k ≤ f̂ (n)

f̂ (n+ 1)− k

f̂ (n+ 1)− f̂ (n)
f̂ (n) < k ≤ f̂ (n+ 1)

0 k > f̂ (n+ 1) ,

k = 1 . . .K/2

n = 1 . . .N (4)

where H denotes the amplitude of the nth filter at frequency
bin k , and f̂ is the collection of N + 2 edge frequency
bin values of the filters spaced equally in the mel domain.
Figure 2 exhibits the relationship between the edge frequen-
cies in the frequency andmel domains and Figure 3 illustrates
the triangular filters of the filterbank as observed in the
frequency domain.

The filterbank is then multiplied with the power spectrum
estimate of the FFT. The product of each individual filter is
summed and the log of each sum is taken to compute MFSC,
as indicated in the following equation:

MFSC (n) = log
(∑K

k=0
Hn (k) ∗ |F (k)|2

)
, n = 1 . . .N

(5)

After finding N MFSC coefficients, they are concatenated
to create an N × B image, where B represents the number
of frames considered in the spectrum. This image is called
the log-mel energy spectrum which is then fed into the CNN

FIGURE 2. Graph displaying the relationship between edge frequencies
in the frequency and mel domains; lower frequencies are spaced closer
than higher frequencies in the frequency domain, whereas they are
equally spaced in the mel domain. The lower frequency is 300 Hz
and the higher frequency is 8000 Hz, and the sampling frequency
is 16000 Hz for the construction of the filterbank.

FIGURE 3. This figure exhibits the mel filterbank consisting
of 40 overlapping triangular filters. The filters are spaced non-linearly in
the frequency domain, with the filter width smaller in the lower
frequencies and broader in higher frequencies. These filters
are equally spaced in the mel domain.

discussed in the next subsection. All the steps taken to obtain
the log-mel energy spectrum are shown in Figure 4.

As shown in Figure 5, the use of log-mel energy spectrum
images as input to the CNN allows the sections or parts of a
noisy speech signal with speech content to be distinguishable
from the sections or parts without the speech content or with
pure noise. The sections of the log-mel energy spectrum
appearing in red/yellow color show the presence of speech
and the rest of the image appearing in green/blue color as
background noise. The CNN discussed next has the capa-
bility to exploit these differences to classify a frame as pure
noise or speech in noise.

B. CONVOLUTIONAL NEURAL NETWORK CLASSIFICATION
The classification or decision is done by using Convolu-
tional Neural Network (CNN). CNNs were introduced by
Lecun et al. [22] for document recognition and have recently
come into wide spread utilization. They have been applied
to various speech processing applications such as speech
recognition and VAD [17], [18], [23]. These neural networks
process matrices as inputs, predominantly images, with their
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FIGURE 4. Illustration of the image formation module of the developed VAD app: The frames shown are collected with 50% overlap followed by the
MFSC feature extraction. The extracted MFSC features are concatenated to form a log-mel energy spectrum image.

FIGURE 5. A labelled log-mel energy spectrum image showing a
part or section containing speech in an audio file. The CNN is trained to
classify such sections as speech in noise to prevent the noise
classifier or estimator to execute during such sections.

hidden layers performing convolution and pooling functions
together with a fully-connected layer similar to a conven-
tional backpropagation neural network. The convolution lay-
ers are capable of extracting local information from the
input image/matrix via the weighted learnable kernels with
non-linear activations. These kernels are replicated over the
entire input space. After every forward pass, each convolution
layer generates a feature map. The convolution layers are
trained to activate the feature maps when patterns of interest
are observed in the input. These activated feature maps are
sub-sampled to reduce their resolution using max-pooling or
convolution with longer strides, and then fed into the next
convolution layer. Fully connected layers are utilized to com-
bine the output of the final convolution layer and thus to
classify the overall input using a non-linear output layer.
The output layer in our case is considered to be a soft-
max layer reflecting the probabilities associated with the
two classes corresponding to pure noise or noise-only and
speech+noise or speech in noise.

Figure 6 provides an illustration of how the CNN is struc-
tured for the VAD. A N × B log-mel energy spectrum image
is used as the input. Normally B is considered to be greater
than N for capturing temporal detail. However, in our case,
in order to gain computational efficiency and allow frame-
based classification, B is considered to be equal to N , that
is a square log-mel energy spectrum image. The kernels of
the convolutional neural network extract local features of
the log-mel energy spectrum image, thereby examining local
patterns in both time and frequency. This is different than
traditional VADs that examine the spectrum in its entirety.
This locality approach allows the CNN to focus on cleaner
parts of the spectrum for speech presence and compensate
for parts of the spectrum that may contain ambient noises.
Also, the kernels can map the local temporal structure of
the utterances, generating more effective temporal behavior
mapping compared to other VADs.

To gain computational efficiency, the pooling layer is not
used and instead the convolution layers are arranged in strides
of 2 to reduce image sizes. When using strides of more
than 2, there is a noticeable loss of accuracy. This reduces
the computation time for the convolution layer and removes
the computation time for the pooling layer. For gaining fur-
ther computational efficiency, only a single channel image is
used here and the delta and acceleration features are not used.

The activation function used is the ReLU activation func-
tion defined as:

ReLU (x) = max(0, x) (6)

where x denotes the input to the activation layer. The ReLU
activation layer has an output of 0 if x is less than 0, and its
output is equal to the input if x is positive.

III. REAL-TIME IMPLEMENTATION
This section discusses the major implementation steps taken
in order to run the developed CNN-based VAD algorithm in
real-time as an app on smartphone/tablet platforms.
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FIGURE 6. Illustration of the developed CNN-based VAD: The log-mel energy spectrum image is fed into the CNN convolution layers. The output of
the final convolution layer is flattened into a vector and fed into a fully connected layer. Finally, the output of the fully connected layer is fed into a
softmax layer.

A. SOFTWARE TOOLS UTILIZED
The CNN VAD algorithm including input image formation
and labelling was first implemented in MATLAB. The input
images were used to perform the CNN training in an offline
manner using the software tool Tensorflow in Python [24].
The reason for using Tensorflowwas that this tool has a C++
API that can be used on smartphones to run the inference-
only part of the CNN. The offline trained CNN with the
trained weights was then taken as an inference-only structure
by removing the backpropagation, training and dropout layers
so that it could be used for real-time operation or testing on
smartphone platforms.

The image formation or feature extraction module for the
CNN-based VAD was then coded in C to generate a smart-
phone app by using the software shells developed in [25]. For
deployment on the iOS mobile devices, the GUI was coded in
Swift and the audio input/output (i/o) was coded in Objective-
C using the software package Core Audio [26]. For Android
smartphones, the GUIwas coded in Java and the audio i/o was
done using the software package Superpowered APK [27].

B. LOW-LATENCY
There exists some latency associated with any frame-based
audio processing app. This latency is due to the time it takes
for the input hardware to collect audio samples required
to fill an audio frame and output that frame through the
i/o hardware. This latency is dependent on the smartphone
i/o hardware and exists even in the absence of any pro-
cessing. For real-time audio applications, if the time delay
between input and output audio frame gets greater than 15ms,
it becomes noticeable and if it is greater than 30 ms, it can
create a hindrance in maintaining a conversation.

To implement the lowest latency audio setup on iOS smart-
phones, it is required to read and write audio data sam-
ples at a sampling rate of 48 kHz with a buffer size of

64 samples or 1.34 ms. These constraints are met here by
creating independent synchronous callbacks for reading and
writing or outputting audio frames. As these constraints are
not optimal for the developed VAD, an audio optimization
technique is thus designed to run the VAD at its optimal
parameters while maintaining these lowest latency con-
straints. The same approach is followed for Android smart-
phones noting that the i/o frame size varies from Android
device to Android device due to different manufacturers.
For example, for the Google Pixel Android smartphone,
the smallest frame size to have the lowest latency is
192 samples or 4 ms at 48 kHz.

C. VAD AUDIO PROCESSING SETUP
The optimal parameters for the VAD constitute 16 kHz sam-
pling frequency with a processing frame size of 400 sam-
ples or 25 ms with 50% overlap. As there is a mismatch
between the lowest latency i/o parameters and the VAD
feature extraction parameters, one needs to synchronize the
two events. Figure 7 shows the steps taken to achieve this
synchronization in a frame-based manner while maintaining
the lowest latency. The steps explained in this subsection are
with respect to iOS smartphones noting that the same steps
are applicable to Android smartphones as well.

The audio is read from the microphone at a rate of 64 sam-
ples with a sampling frequency of 48 kHz. A circular buffer
as discussed in [28] is used to collect audio samples till the
required overlap size of 600 samples or 12.5 ms is reached,
which is the size corresponding to 50% overlap of the pro-
cessing frame. Frames are downsampled by passing them
through a bandlimit lowpass filter that filters all frequency
components above 8 kHz. A decimation in time is then carried
out by selecting every 3rd sample from the bandlimited sam-
ples. This produces frames of 200 samples at 16 kHz, which
is still 12.5 ms in time. An overlapped frame is concatenated
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FIGURE 7. Real-time processing modules used in the developed CNN-based VAD app. Circular buffers are used to synchronize the VAD
processing with the smartphone audio i/o hardware.

with a previous overlapped frame to form a processing frame
of 25 ms or 400 samples. The reason for doing this lies in
the fact that the MFSC are extracted between 300 Hz to
8 kHz since most of the speech frequency content lies in this
range.

Another reason for using the above approach is to save the
FFT computation time. If audio samples are not downsam-
pled, the FFT for the processing frame size of 1200 sam-
ples needs to be computed for a resolution of 2048 fre-
quency bins with the Nyquist frequency of 24 kHz. As only
the audio samples corresponding to 300 Hz to 8 kHz are
needed, two-thirds of the FFT are not used, thus making
the computation inefficient. If the number of FFT bins is
increased, the computation time increases even further. In
comparison, when the audio samples are downsampled to
16 kHz followed by the FFT, the 512 frequency bins are
more than adequate for a processing frame size of 400 sam-
ples. As the Nyquist frequency is 8 kHz, a very small por-
tion of the FFT is thrown away for the feature extraction
and the frequency resolution becomes much higher than
before.

D. CNN ARCHITECTURE
To run the developed VAD app in real-time, the input images
have to be extracted on a frame-by-frame basis but the clas-
sification is not required to be done per frame basis. Hence,
a multi-threaded approach is used here for the classification.
The CNN is run on a parallel synchronous thread and the
image formation is done on the main audio i/o thread. This

saves computation time in the main audio i/o thread for other
processing modules to be executed in a speech processing
pipeline.

The CNN architecture considered does not use pooling
to reduce the image size. The convolution is done with a
stride of 2 to reduce the amount of computation. The CNN
architecture utilized is given in Table 1.

TABLE 1. CNN architecture for VAD.

To train the CNN model, the Adam optimization algo-
rithm [29] was used with cross-entropy as the loss. For a
binary classification task, cross-entropy loss is computed as
follows:

loss = − (y ∗ log (p))+ (1− y) ∗ log(1− p) (7)

where y denotes the true binary prediction, which is set as 0
for ‘‘noise only’’ frames and 1 for ‘‘speech+noise’’ frames,
and p is the output of the CNN reflecting the probability of
occurrence of ‘‘speech+noise’’.
The weights and biases for all the nodes and kernels were

initialized with a truncated normal distribution with zero
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mean and a standard deviation of 0.05. As discussed in [30],
a dropout of 25% was used with the fully connected layer to
prevent over-fitting. The model was trained for 12 epochs,
with 975 iterations per epoch. The learning rates were grad-
ually decreased for the first 6 training epochs with a learn-
ing rate of 10−3, the next 4 epochs with a learning rate
of 10−4, and the final 2 epochs with a learning rate of 10−5.
A 10-fold non-overlapping cross-validation scheme was used
for training with a single fold left-out for testing and the rest
used for training.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. OFFLINE EVALUATION
To train and evaluate the developed CNN VAD, speech files
were degraded with noise at different SNR levels to create
a noisy speech dataset. The speech corpus used for evalu-
ation was the PN/NC version 1.0 corpus [31]. This corpus
consists of 20 speakers (10 male, 10 female) from two
American English dialect regions (Pacific Northwest and
Northern Cities) reciting 180 IEEE ‘‘Harvard’’ set sen-
tences. In total, it consists of 3600 audio files. The noise
dataset used was the DCASE 2017 challenge dataset [32]
that consists of 15 different background noise envi-
ronments. All the speech sentences were used for the
evaluation.

Log-mel filterbank energy images were extracted and used
for the CNN VAD and subband features were extracted and
used for the RF VAD. Both classifiers were evaluated using a
10-fold cross-validation scheme. The images were extracted
for a frame size of 25 ms with 50% overlap at a sampling
frequency of 16 kHz. For the log-mel energy spectrum,
the low frequency was taken to be 300 Hz and the high
frequency was taken to be 8 kHz, the number of filters was
set to 40 and the size of the FFT to 512 bins. The log-mel
energy spectrum images were extracted every 62.5 ms and
the probability output of the CNNVADwas averaged over the
current and previous extracted images. The subband features
were extracted with 8 subbands and with a 512 size FFT.
A median smoothing filter was applied to about 20 frames
to stabilize the decision output of the VAD.

In addition to the above two VADs, G729B and Sohn’s
VADswere also evaluated on the same dataset using the codes
for G729B provided at [33] and for Sohn’s VAD provided
at [34]. These codes were run for the parameters specified in
the codes.

The criteria used to evaluate the VADs was Speech Hit
Rate (SHR), that is the number of speech frames correctly
classified as speech, and Noise Hit Rate (NHR), that is the
number of noise frames correctly classified as noise. For
the speech processing pipeline of interest to us, it is crit-
ical to get both SHR and NHR high because a low NHR
would mean an inaccurate estimation or classification of
noise and a low SHR would mean that the speech is also
used to estimate or classify the noise, leading to erroneous
outcome.

TABLE 2. Offline average NHR (noise hit rate) in %.

TABLE 3. Offline average SHR (speech hit rate) in %.

Tables 2 and 3 show the comparison between the NHR and
SHR of the four VADs examined, respectively. For the CNN
and RF VAD, the accuracy provided denotes the average
of the accuracy of the 10-fold cross-validation. As can be
seen from these tables, the NHR of the statistical VADs
(G729B and Sohn) was found to be low when compared to
themachine learning VADs. The SHR of the VADswas found
to be high, however, the CNN VAD performed better than the
other VADs. The statistical VADs exhibited a bias towards
speech classification and tended to label sections of noise as
speech leading to their inflated SHR rates.

Figure 8 shows the accuracy of the VADs in terms of NHR
and SHR in different noise environments. As can be observed
from this figure, the CNN VAD generated both high SHRs
and high NHRs. The RF VAD generated a low SHR for
0 dB SNR and the statistical VADs generated low NHRs and
inflated SHRs.

B. REAL-TIME TESTING
To evaluate the real-time operation of the CNN VAD app,
40 sentenceswere considered in a crowded noise environment
scenario with 1 female and 3 male subjects each reciting
10 totally different sentences. The outcomes of the CNN
VAD app were stored to compare to the ground truth, which
had been manually labelled offline. The VADs had not been
trained on either the environment or the subjects before. The
audio was collected on the smartphone to evaluate the other
3 VADs as well. The audio files varied in SNR from 7 dB to
15 dB.

TABLE 4. Real-time average SHR and NHR in %.

Table 4 shows the NHR and the SHR of the 4 VADs
for the real-time collected data files. As noted in this table,
the NHR of G729B and Sohn VADs were found to be
low, which led to inflated SHRs due to their bias towards
speech. The RF VAD and the CNN VAD were found to have
high NHRs but the CNN VAD outperformed the RF VAD in
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FIGURE 8. SHR and NHR comparison for the four VADs in different noise
environments.

terms of SHRs. In addition, the RF VAD exhibited a delayed
response due to the median filter decision post processing.
Figure 9 shows an example speech sentence from a real-time
scenario and the outputs of the VADs. This figure shows
that G729B and Sohn’s VAD labeled many noise portions
as speech. The Random Forest VAD decision was normally
delayed after the speech was started. This would lead to noise
estimation errors in noise reduction or speech recognition
tasks. This delay was not present in the CNN VAD.

V. REAL-TIME CHARECTERISTICS
This subsection provides the real-time running characteristics
of the developed CNN VAD app. To test the app, an iPhone
7 iOS smartphone and a Google Pixel Android smartphone
were used. The audio latency for these devices was mea-
sured to be 13-15 ms for iPhone 7 and 38-40 ms for Google
Pixel. Ideally for a real-time frame-based audio processing
app to run smoothly at the lowest hardware permissible audio
latency without any frames getting skipped, all processing
should take place within the time frame of the audio i/o frame,

FIGURE 9. Example waveforms of a real-time speech signal in noisy
background together with the VAD output shown in the form of binary
signals indicating the presence and absence of speech activity.

that is within 64 samples or approximately 1.3 ms for iOS
smartphones. This timing varies for Android smartphones
depending on their audio i/o frame size corresponding to the
lowest audio latency. For the Google Pixel Android smart-
phone used, it is 192 samples or 4 ms.

To implement the real-time VAD app, two optimization
steps were taken. Firstly, the GCC compiler optimization
level was set to level 2 (-O2). The processing time per frame
without optimization was 0.72 ms and with optimization was
0.43 ms for iPhone 7. For Google Pixel, the frame time with
optimization was 1.7 ms. Secondly, the CNN was run on a
parallel synchronous thread as it was not necessary to run
it on the main audio thread. Since the VAD decision was
designed to run every 5 frames, a timed thread was executed
periodically every 62.5 ms which handled the CNN compu-
tations. This approach provides extra computation time on
the main audio thread to run other audio processing modules.
Figure 10 shows the frame processing time per framewith and
without multithreading for iPhone 7. As seen from this figure,
without multithreading, the frame processing time crossed
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FIGURE 10. Frame processing time with and without multi-threading on
iPhone 7 showing that multi-threading enables processing times to
remain within the permissible 1.3 ms real-time processing.

FIGURE 11. CPU and memory consumption for (a) iOS and (b) Android
versions of the app.

1.3 ms which caused frames to get skipped, whereas with
multi-threading the timings remained within the permissible
range.

The CPU, memory and battery usage of the app is also
shown in Figure 11 for the iOS and Android smartphones
used. The CPU consumption of the iOS version of the
app are quite low compared to the Android version as the
Tensorflow API on Android runs in Java causing more CPU
consumption. Although both the iOS and Android versions
of the app exhibit low memory consumption, the memory
consumption is lower for the Android version than the iOS
version because the GUI elements in iOS are written in Swift
which occupy more memory than the ones written in Java for
the Android version. The memory consumption of the iOS
version without starting the app is 17.5 MB and after starting
the app is 20.8MB, which means the actual memory footprint

FIGURE 12. GUIs of (a) iOS and (b) Android versions of the app.

of the algorithm is only 3.3 MB in iOS. This shows that the
app does not crowd the CPU and the memory resources of
smartphones.

The GUI of the app is displayed in Figure 12 for both
the iOS and Android versions. The GUI consists of buttons
to start and stop the app, a switch to store the audio signal
from the smartphone microphone, a display of the CNN
classification outcome, and a slider to update the GUI display
rate.

A video clip of the developed CNN VAD app running
in real-time can be viewed at this link: www.utdallas.edu/
∼ kehtar/CNN-VAD.mp4.

VI. CONCLUSION
This paper has provided a convolutional neural network
smartphone app to perform voice activity detection in real-
time with low audio latency. The app has been developed
for both Android and iOS smartphones. The architecture of
the convolutional neural network has been optimized to allow
audio frames to be processed in real-time without any frames
getting skipped while maintaining high accuracy of voice
activity detection. Multi-threading has been utilized which
makes the app run in parallel to the main audio path thus
providing a computationally efficient framework for running
other signal processing modules in real-time. The results
obtained indicate that the developed app based on convolu-
tional neural network outperforms the previously developed
app based on random forest.
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