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ABSTRACT Non-orthogonal multiple access (NOMA) has emerged as a key technology for boosting
the capacity of 5G networks. Since, the latter are expected to be heterogeneous networks (HetNets),
the performance of NOMA on 5G HetNets is highly anticipated. In this paper, we present a system-level
analysis, focused on the capacity dimensioning, of a 5G HetNet with hybrid multiple access where NOMA
and orthogonal multiple access coexist. We use dynamic power allocation and consider four generic pairing
methods for NOMA: Hungarian, Gale–Shapley, random, and exhaustive. Through our results, we show
that the optimal or close-to-optimal pairing methods offer the highest capacity gain (22%–24%) when the
network cells are equally loaded. On the contrary, if the load is unequal and load balancing techniques are
used, simpler pairing methods offer higher gains (approximately 29%). This leads to the idea of a flexible
choice of the pairing method to be used for NOMA depending on the network load, thus achieving a balance
between the network capacity gain and the complexity of the pairing method. In our network, for 100 cells,
the combination of the Hungarian and the random method allows supporting 4% higher network traffic
volume than if either of these two methods is exclusively used. Such gain can be translated into fewer cells
needed for the same traffic volume, or higher traffic volume with the same number of cells. Furthermore,
our results on network user dimensioning show that NOMA and HetNets can have the capacity to cope with
the high data demand expected for 5G.

INDEX TERMS NOMA, capacity dimensioning, pairing methods, 5G, HetNets, hybrid multiple access.

I. INTRODUCTION
As the demand for digital content and services over the
mobile networks continues to rise, same as the number
of users/devices coming online, the current fourth genera-
tion (4G) of mobile networks are about to reach their capacity
limit. It is expected that by 2022, there will around 9 bil-
lion mobile subscriptions, 8.3 billion mobile broadband sub-
scriptions, and 6.2 billion unique mobile subscribers. With
this high number of subscriptions, the mobile data traffic is
also expected to grow, reaching values of 71 ExaBytes per
month. Most of this high data volume is fueled by the video
applications [1].

Therefore, one of the main improvements that comes
with the deployment of the fifth-generation of mobile net-
works (5G), is higher capacity in comparison to 4G. 5G
networks are expected to handle traffic 1000 times higher
than 4G, and with connections up to 10 to 20 times faster.
Moreover, near-zero latency, and energy saving and cost
reduction are also requirements. With this, 5G welcomes the
rapid development of the Internet of Things (IoT), connected

homes, smart cities, autonomous driving, ultra-high defini-
tion (UHD) video and virtual reality, among others.

Two of the main solutions that have emerged as capacity
boosters for 5G are non-orthogonal multiple access (NOMA)
and massive deployment of small cells. With the integration
of NOMA, the spectral efficiency can be increased, offer-
ing higher capacity than orthogonal multiple access (OMA)
without increasing the available resources. This is pos-
sible through user pairing and multiplexing in the same
time/frequency resources. However, in crowded scenarios
where the network performance can significantly degrade,
additional solutions might be needed to cope with the high
traffic volume. For this, cell densification is a straightfor-
ward solution. By massively deploying small cells and tightly
integrating them with the already deployed macro cells,
the network load can be spread and enhance the quality of
service (QoS).

The implementation of these solutions, lead to what is
known as heterogeneous networks (HetNet) with hybrid
multiple access (MA). That is, networks where macro and
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small cells coexist, as well as different multiple access (MA)
schemes.

A. MOTIVATION AND CONTRIBUTION
The implementation of NOMA in HetNets can offer extended
benefits since both technologies share the objective of
improving the spectral efficiency. The work in [2] proposes
a resource management design for NOMA in HetNets and
shows that NOMA based HetNets allow achieving a signifi-
cantly higher performance than OMA based HetNets.

The benefits of NOMA and small cells for 5G have been
studied separately in numerous research works.; [3]–[7] are
some examples of such works. However, since the integra-
tion of small cells and NOMA is a natural one, research
on how their combination influences the performance of a
HetNet from a system-level perspective is needed. Moreover,
research on how such combination influences the deployment
and dimensioning of 5G HetNets is highly anticipated.

The purpose of this paper is to provide a system-level
evaluation of the impact of NOMA in the downlink capacity
dimensioning of a HetNet with hybrid MA. Most of the
research works that can be found nowadays related to NOMA
focus on single cell implementations; therefore, we present an
analysis that considers a more realistic approach and that can
be used as a guide for future 5G network deployments. Since
the decision of using either OMA or NOMA for each user in a
HetNet depends on how the pairing is done, we also focus on
how the pairing selection affects such dimensioning. For this,
we compare four generic pairing algorithms, showing their
complexity in terms of the runtime, and we propose the use
of a cost matrix to help in the pairing selection. The reason
for selecting generic pairing methods aims at speeding up the
NOMA rollout in 5G networks; in this way, the network oper-
ators can rely on such methods while, perhaps, some other
optimized methods for each network condition are defined.
Through our results we show the impact of NOMA and the
pairing method selected on the number of cells needed, users
served, and data plans offered Furthermore, we show that a
flexible selection of the pairing method, based on the network
load conditions, is preferred over a single pairing method.

B. SMALL CELLS AND HetNets
The deployment of cells is needed for network densifica-
tion purposes; with a massive deployment of cells, network
capacity and coverage can be enhanced. Although deploying
moremacro cells can seem a straightforward solution, finding
places for deploying these cells can become increasingly
difficult and cost prohibited. There is where small cells play
a key role; their reduced size and low power makes them
suitable for deployment in places such as lamp posts, traffic
lights, and buildings facades. Moreover, the deployment of
small cells has become simpler as features as interference,
mobility, and software-defined networking (SDN) have been
defined by the Third Generation Partnership Project (3GPP)
for small cells [4]. Newwireless backhaul solutions have also
emerged for small cells, facilitating their rollout.

Small cells can be mainly added in hot spots where the
data demand is high, by the edge of the cell to benefit the
users susceptible to low QoS, and in areas not covered by
the macro cells (both outdoor and indoor). At the same time,
small cells allow offloading the macro cells, improving the
QoS for all the users in the network. With the deployment of
small cells, a layer of short-range access points is overlaid
on the existing network, allowing this to reduce the distance
between the users (UEs) and the base stations (BSs), which
results in lower propagation losses, and higher data rates and
energy efficiency [8], [9]. Network densification through the
deployment of different types of cells essentially leads to
HetNets; Fig. 1 shows a typical architecture of a HetNet.

FIGURE 1. HetNet example with hotspots and cells edges covered by
small cells.

For in-band deployments of HetNets where all the
cells operate at the same frequency, techniques such as
inter-cell interference coordination (ICIC), enhanced ICIC
(eICIC), coordinated multipoint (CoMP), and enhanced
CoMP (eCoMP) have been added by the 3GPP for a more
efficient management of inter-cell interference [4]. However,
in scenarios where macro cells and small cells operate at
different frequencies (out-of-band deployments) the inter-
cell interference can be handled with simple interference
management methods. In [3], target scenarios for small cells
enhancements have been defined for 5G HetNets. The out-
of-band implementations in [3] represent one of the biggest
advantages/changes for 5G; not only they allow to explore
new frequency bands (e.g., millimeter wave bands) to enjoy
more and wider spectrum, but also with them the decoupling
of the control and user plane (C/U plane split) is possible.

In in-bandHetNets, coverage and data services are simulta-
neously provided by both types of cells, with the control and
data plane coupled. This architecture allows for ubiquitous
coverage, at the expenses of having all the cells working,
even under low load conditions, resulting in a sub-optimal
use of resources and energy [10]. On the contrary, in a C/U
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plane split architecture, the macro cell is in charge of the
control plane, and hence it provides ubiquitous coverage and
manages the mobility using the lower frequency bands; it
also provides data services for the UEs not covered by small
cells. Moreover, the macro cells provide data services to high-
speed UEs to avoid frequent handovers in the small cells.
The small cells are in charge of the user plane, boosting
the capacity by providing high-speed data connections, and
more flexible/cost-energy efficient operations in higher fre-
quencies [10]–[12]. Since the propagation losses increase
as the frequency increases, high frequencies offer smaller
coverage area, thus making them suitable for small cells.
With the C/U plane split architecture, the UEs will be simul-
taneously connected to the macro and the small cells; this
dual connectivity allows for a fast handover of the UE to
the macro cell in case that the connection to the small cell
fails. With this architecture, a new interface will be required
through which the macro cell can manage the small cells;
this interface will allow the macro cell to activate/deactivate
the small cells for energy saving purposes and to partici-
pate in the radio resource management to help mitigate the
interference [10], [13]. Fig. 2 illustrates a HetNet with C/U
plane split architecture.

FIGURE 2. HetNet with C/U plane split architecture. High-speed UEs and
those not covered by the small cells receive data and control from the
macro cell. UEs covered by the small cells receive control from the macro
cells and data from the small cells.

Due to the benefits of implementing HetNets, many
research works have emerged on the topic. In [14] an
overview of HetNets architectures focusing on the capacity
and coverage benefits that can be achieved throughmultilayer
and multi-Radio Access Technology (RAT) deployments, is
presented. Andrews et al. [15] study four different approaches
for load balancing in HetNets: relaxed optimization, game
theory, Markov decision processes, and range expansion

(i.e. biasing); this study shows that although load balancing
is still a challenge in HetNets, it offers considerable new
flexibility and gain to the system design. The work in [16]
focuses on the inter-cell interference in HetNets and evaluates
the performance of eICIC techniques. In [17] an extensive
research on the technical details and performance gains of
HetNets can be found. Moreover, in [18] a framework of a
cooperative HetNet for 5G with a particular highlight on the
energy efficiency and spectrum efficiency has been studied.

C. NOMA PLUS OMA
Multiple access (MA) techniques are used to allow sharing
the available resources among a large number of UEs in the
most effective way. As one of the most limited resources in
a mobile network is the spectrum, in an MA system differ-
ent UEs get to simultaneously use the available bandwidth.
MA schemes can be broadly classified into two categories:
OMA and NOMA [19]. OMA schemes have the advantage
of avoiding intra-cell interference but they require careful
cell planning to reduce inter-cell interference. The later can
be achieved by having sufficient distance between the re-
used channels, which results in a low spectral efficiency.
On the contrary, NOMA schemes are prone to high intra-
cell interference, but are robust against fading and inter-cell
interference.

In 4G long-term evolution (LTE), orthogonal frequency
division multiple access (OFDMA) was chosen for the down-
link. The selection of this MA scheme was a key step for
increasing the capacity and improving the performance in 4G
LTE. Despite the significant enhancements that OFDMA
offers, they might not be sufficient to cope with the expected
traffic demands for 5G. Therefore, new MA schemes aim-
ing at further increasing the spectral efficiency are highly
anticipated. In this regard, NOMA has gained a lot of atten-
tion as an MA technique that can boost the capacity of 5G
networks, because of its ability to increase the spectral
efficiency [5]–[7]. Other benefits of using NOMA include
higher cell-edge throughput, relaxed channel feedback, and
low transmission latency. Furthermore, with NOMA, a good
operating point where both spectrum efficiency and energy
efficiency become optimum, can be achieved [20].

Unlike the OMA schemes used in 4G LTE, orthogonality
in the resources (e.g., frequency, time, spreading codes) is no
longer needed with NOMA. The main idea behind NOMA
is to allocate the same frequency channel to two or more
multiplexed UEs at the same time. Fig. 3 shows a comparison
of users multiplexing between OMA and NOMA for four
UEs; here it can be seen that the OMA transmissions are
done with full power, while the NOMA ones are done with
split power The UEs to be multiplexed in NOMA should be
selected in a manner that UEs with high channel conditions
can access the resources assigned to UEs with low channel
gain, thus achieving a higher spectral efficiency. This is where
the advantage of NOMA over OMA schemes used in 4G
relies on. At the transmitter side, NOMA uses superposi-
tion transmission to join the multiplexed UEs signals; at the
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FIGURE 3. Users multiplexing differences between OMA and NOMA.

receiver. successive interference cancellation (SIC) is used to
eliminate the multiuser interference [5].

Many research works have already been done regarding
NOMA and its performance, challenges, node cooperation,
and user pairing. The works in [7] and [20]–[23] present a
comprehensive approach to NOMA.Moreover, a NOMAver-
sion for the downlink referred to as multiuser superposition
transmission (MUST) has been proposed by the 3GPP [24]
to be implemented in the future LTE networks. However,
the implementation of NOMA in 5G does not mean that it will
replace the OMA schemes used nowadays. Depending on the
load and the UEs channel conditions, the systemmight decide
to use either OMA or NOMA for each UE. This leads to
having a hybrid MA system in 5G, where OMA and NOMA
coexist [6], [20], [25]. This coexistence is in accordance with
the coexistence of multiple radio access technologies (RATs),
which is highly anticipated for 5G. Fig. 4 shows an example
of UEs multiplexing in a hybrid MA system.

D. NOMA IN 5G HetNets
The implementation of NOMA in HetNets can offer extended
benefits since both technologies share the objective of
improving the spectral efficiency. Particularly interesting is
the case of NOMA with millimeter wave (mmWave) fre-
quencies. The use of mmWave frequencies (i.e. 30-300 GHz)
for the small cells in 5G is a promising implementation [8].
Even though the use of such high frequencies comes with
many propagation challenges, its combination with tech-
niques as massive multiple-input-multiple-output (MIMO)

FIGURE 4. Users multiplexing in a hybrid multiple access system,
combining OMA and NOMA.

and beamforming strengthens the viability of mmWave
in 5G [9], [26], [27]. Nevertheless, the combination of
mmWave and NOMA is a challenging aspect. The works
in [28]–[32] have researched on the integration of NOMA
with mmWave and massive MIMO.

II. THE THEORY BEHIND NOMA
Two main categories of NOMA have been broadly defined
in the literature: power-domain NOMA and code-domain
NOMA. In the former, the signal of each multiplexed UE is
separated in the power domain; the poorer the channel con-
ditions, the higher the power allocated, and vice versa. In the
latter, user-specific spreading codes are used to differentiate
themultiplexed signals. The work in [20] presents an inside to
the most relevant NOMA techniques. In this paper we focus
on the power-domain NOMA in the downlink, so from now
on we refer to this scheme simply as NOMA.

In NOMA, besides the multiplexing in time and frequency
domains, UEs are also multiplexed in the power domain.
The principle of NOMA is to select UEs with a high dif-
ference in their channel conditions and multiplex them in
the same time/frequency resources, but with different levels
of transmission power. This allows UEs with high channel
conditions to access the resources assigned to UEs with poor
channel conditions, hence increasing the spectral efficiency
and the system capacity [6]. In the transmitter, signals from
the multiplexed UEs are superposed and adaptive power
allocation techniques are used to define the power for each
UE. The power allocated depends on the channel conditions,
the higher the channel gain the higher the power, and vice
versa.

Although power-sharing reduces the power allocated to
eachmultiplexedUE, they benefit from being scheduledmore
often and having access to more bandwidth [33], as shown
in Fig. 3. In the receiver side, SIC techniques are used to
mitigate the inter-cell interference. The number of UEs that
can be multiplexed in the same resources with NOMA is not
restricted; however, the inter-cell interference is proportional
to the number of UEs. Moreover, the constellation of the
superposed signal in the transmitter becomes more complex
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as the number of multiplexed UEs increases, posing great
challenges on the decoding side and compromising the net-
work performance. Therefore, and for simplicity reasons, for
the rest of the paper, we assume only twoUEs are multiplexed
in the same resources.

A. SUPERPOSITION TRANSMISSION
Superposition transmission is a physical layer technique, first
proposed in [34] that allows a single transmitter to simulta-
neously send a combination of independent signals to sev-
eral UEs. The transmitted signal after applying superposition
techniques for two UEs would be as follows:

X =
√
P1X1 +

√
P2X2 (1)

with

P = P1 + P2 = 1 (2)

where Xi is the signal corresponding to the UEi’s message,
Mi; and Pi is the power ratio for UEi. The difference between
the values of P1 and P2 should be large enough to guarantee a
successful decoding of the superposed signal. The waveform
used for the transmissions could be based on orthogonal fre-
quency division multiplexing (OFDM), same as in 4G LTE.

B. SUCCESSIVE INTERFERENCE CANCELLATION
Because of the non-orthogonality of NOMA, interference in
the power domain is intentionally added in the transmitter.
To mitigate this interference, SIC can be applied [34]. The
received signal by UEi is of the form:

Yi = hiX +Wi (3)

where hi represents the complex channel coefficients between
UEi and the BS, and Wi(n) represents the Gaussian noise
plus inter-cell interference experienced by UEi. The optimal
order for decoding the received signal is in the order of the
increasing signal strength (i.e. the channel gain normalized
by the noise and inter-cell interference) [5]. In this regard,
UEs are organized based on their signal strength; so that any
UEn first decodes the strongest signal and removes that from
the received combined signal, isolating the desired signal.
To better exemplify SIC, let us assume that we have two UEs,
UE1 and UE2, and that UE2 is first in the decoding order,
hence its signal is the strongest (with more power). In the UE2
receiver, the decoding will go as follows [35]:

1. The message M2 is decoded from Y2, treating X1 as
noise. The interference caused by UE1 on UE2 should
not significantly affect the performance of UE2, as the
power from such interference is likely to be much
smaller than the desired signal. This is valid as long
as an effective power allocation was performed in the
transmitter.

For UE1 the decoding process is more complex and here is
where SIC is applied:

1. The message M2 is decoded from Y1, treating X1 as
noise. This step is possible because of the fact that the

FIGURE 5. Transmission and reception of signals in NOMA for two users.

channel gain of UE1 is higher than that of UE2, so as
long as the rate of UE2 is within the Shannon limits of
its receiver, it will also be within the limits of the UE1
receiver.

2. X2 is regenerated by using an encoder, and with the
knowledge of h1 and P2, h1

√
P2X2 is subtracted from

Y1, obtaining:

Y ′1 = Y1 − h1
√
P2X2

= h1
√
P1X1 +Wi (4)

3. The message M1 is decoded from Y ′1.
In [24], several receiver schemes are proposed for NOMA

depending on the UE channel conditions. Fig. 5 shows an
example of the transmission and reception of NOMA for two
UEs. The messagesM1 andM2 are mapped to the signals X1
and X2, respectively. These signals are then scaled according
to the values of P1 and P2, and summed to generate the
supperpositioned signal that is sent to both UEs. During the
transmission, each signal is affected by the channel condi-
tions of its respective receiver. Once the signal is received,
the far UE, UE2, simply decodes the stronger signal, whereas
the near UE, UE1, applies SIC before decoding its signal.

C. DATA RATES
Theoretically, it is known that NOMAoffers a bigger capacity
region than OMA [20], [21]. Assuming a successful decoding
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and no error propagation, the data rates with NOMA for UE1
and UE2, can be represented by (5) and (6), respectively:

R1 = log2

(
1+

P1 |h1|2

No,1

)
(5)

R2 = log2

(
1+

P2 |h2|2

P1 |h2|2 + N o,2

)
(6)

where No,i is the power spectral density of Wi. As the values
of R1 and R2 depend on the power allocation ratio P1

/
P2,

the overall throughput gain of NOMA is tightly related to
the power allocation scheme selected. In comparison, for an
OMA transmission, the data rates of UE1 and UE2 are given
by (7) and (8), respectively:

R1 = α log2

(
1+

P1 |h1|2

αNo,1

)
(7)

R2 = (1− α) log2

(
1+

P2 |h2|2

(1− α)N o,2

)
(8)

where α represents the bandwidth assigned to UE1, with the
remaining bandwidth being assigned to UE2. When using
numerical examples, it can be shown that the rate values
corresponding to NOMA are considerably higher than those
of OMA [5].

D. RESOURCE MANAGEMENT
The appeal of NOMA for 5G networks relies on its more
effective utilization of scarce resources (e.g., spectrum) than
4G; therefore, to really exploit the capacity benefits offered
by NOMA, resource management must be done in the most
effective possible way. In NOMA, there are three resources
that must be carefully allocated: power, frequency and time.
Since a group of UEs will be assigned to the same frequency
channel during the same time, such UEs must be chosen to
guarantee that there will be a capacity gain and that resources
will not be wasted. Moreover, the power allocation for each
multiplexed UE in NOMA must also be carefully chosen
to allow the correct decoding of the signals on the receiver
side. Both user-pairing and power allocation, are complex
processes that require optimization algorithms to allow for
the best results with the minimum resources. Some research
works have been focused on these two processes, as outlined
in the following.

The work in [36] deals with user pairing for two NOMA
system: NOMA with fixed power allocation and cognitive-
radio-inspired NOMA. Results show that each of these sys-
tems exhibits a different behavior when selecting the UEs
to be paired, and that the gains of fixed power NOMA over
OMA can be further increased by selecting UEs whose chan-
nel conditions are more distinctive. In [37], a user pairing
and power allocation approach based on a proportional fair
(PF) metric is used to achieve a balance between transmission
efficiency and user fairness. The proposed scheme offers low
computational complexity by deriving the prerequisites for
user pairing and avoiding comparison of candidate user pairs.

Murti and Shin [38] propose three user pairingmethods based
on the CQI; results are presented for cases with perfect and
imperfect SIC and compared with OMA. Matching theory is
proposed in [39] as an approach to optimize user pairing and
power allocation in the downlink in a cognitive radio NOMA.
Results show that the low complexity proposed algorithm
results in a stable matching and outperforms an OMA system.
In [40] two user pairing strategies are proposed, where all
the users, including those in the middle of the cell who are
typically left unpaired, are considered; results show that the
proposed algorithm can outperform the near-far pairing, espe-
cially in scenarios with imperfect SIC. In [41] a comprehen-
sive review of resource management in NOMA is presented;
here the authors propose a resource management frame-
work based on game-theoretic models for power-domain and
code-domain NOMA.

III. NOMA IMPLEMENTATION
A. POWER ALLOCATION
The selection of the power ratio in NOMAdirectly impacts on
the UEs data rate and thus in the system performance. More-
over, because of the power-domain multiplexing, the power
ratio of one of the multiplexed UE affects the data ratio of
not only that UE but also of its pairs, as can be seen in
equations (5) and (6).

Despite the research works done on the topic, power allo-
cation in NOMA still remains as an implementation issue.
In general, two types of power allocation can be considered
for NOMA. One, based on a fixed set of power allocation
coefficients, and other based on dynamic power allocation.
In this paper, we use the later by implementing the approach
suggested in [42], where the power for the NOMA UE with
the strongest channel gain is derived from the assumption that
the capacity of its paired UE will be the same in NOMA as
in NOMA. Equations (9) and (10) are used to estimate the
power allocation for UE1 (UE with higher channel gain) and
UE2, respectively, based on the SINR of UE2, γ2:

P1 =

√
1+ γ2 − 1
γ2

, with γ2 > 0 (9)

P2 = 1− P1 (10)

B. USER PAIRING
For the pairing process, UEs are divided into two groups in the
scheduler. Group A corresponds to those UEs that have been
already selected by the scheduler to transmit in the following
subframe; we refer to this as pre-scheduling. Group B corre-
sponds to those UEs that are in need of resources but were
not selected to transmit during the pre-scheduling because of
lack of resources. The UEs in the groups are not sorted in any
particular order. A proportional fair scheduling algorithm is
used for the resources assignment and the priority of each UE
is assigned according to the following metric PF i [t] [43]; the
UEs with the highest PF i [t] are scheduled first:

PF i [t] = Ri [t]
/
Si [t − 1] (11)
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where t is the subframe number, Ri [t] is the target data rate
and it depends on the application in use by UEi, and Si [t − 1]
is its average experienced data rate and can be estimated as:

Si [t] =
t − 1
t

Si [t − 1]+
1
t
Ri [t] (12)

In this paper we evaluate the performance of four generic
pairing algorithms for downlink NOMA, aiming at maxi-
mizing the system capacity with relatively low complexity.
For the first approach, we treat the pairing as an assignment
problem, using the Hungarian method [44] to find an optimal
solution by which the systems gets the maximum capacity.

For the second approach, we use the Gale-Shapley algo-
rithm [45] to find a stable pairing. Unlike the Hungar-
ian method that finds the optimal solution by minimizing
(or maximizing) a cost associated with a set of pairs, the Gale-
Shapley algorithm finds an optimal solution based on the sta-
ble marriage criterion. Up to date, no work on user pairing for
NOMA in HetNets has evaluated the Hungarian method, and
the work in [46] proposes an extension of the Gale-Shapley
algorithm for user pairing in NOMA. The third algorithm is a
simple random pairing, in which UEs from Group A choose
the best available pair from Group B. The fourth algorithm is
an exhaustive search over all possible pair combinations. For
all four algorithms, we first generate a cost matrix that reflects
the cost of each possible pair. Table 1 shows an example of
such matrix:

TABLE 1. Cost matrix.

where Ci,j is the cost function and is represented by:

Ci,j =
1

1+ RT1SINR
; with i ≤ n; n ≤ j ≤ m (13)

with

RT = Ri + Rj; with i ≤ n; n ≤ j ≤ m (14)

1SINR =
∣∣SINRi − SINRj∣∣ ; with i ≤ n; n ≤ j ≤ m (15)

where RT is the sum of the UEi and UEj data rates, according
to (5) and (6), and 1SINR is the difference in the channel
gain of UEi and UEj. The lower the value of Ci,j the higher
the pair throughput, RT . The selection of this cost function
aims at facilitating the pairing mainly for the Hungarian
and Gale-Shapley algorithms, although it also applies to the

other methods. The two former methods are defined to min-
imize the cost associated with certain pair selection; for this,
they give preference to the pairs whose cost is lower (as we
explain ahead). Because the rate gain in NOMA is higher as
the channel gain difference between the paired UEs increases,
as 1SINR increases so does RT ; thus, approximating the cost
function to zero. This means that as the paired UEs offer
higher sum rates, a lower cost will be associated with them,
giving such pair a higher probability of being chosen dur-
ing the pairing process. When calculating Ci,j the following
restrictions apply:

(i) RT ≥ Ri, with Ri calculated according to (7). This
guarantees that the pairing will result in a capacity gain.

(ii) I ′MCS i < I ′MCS j , to guarantee that the UE with high
channel gain is the one accessing the resources assigned to
the UE with low channel gain.

The values I ′MCS i,1 and I ′MCS j,2 correspond to the mod-
ulation and coding scheme (MCS) index of UEi and UEj,
respectively, after the CQI estimation for NOMA.

Because of the inter-cell interference that is intentionally
added in NOMA, in a network with hybrid MA the CQI
reported by the UE to the BS might not be based on the
effective SINR after SIC. Hence, a CQI mismatch between
OMA and NOMA transmissions can be expected [32], [42].
A solution for this could be to have all the UEs report the CQI
assuming an OMA transmission (i.e. without SIC estima-
tions) and have the BS estimate the CQI for NOMA, in order
to select the correctMCS. For this, we use the approximations
proposed in [33]:

CQI ′i =
P2CQI i

P1CQI i + 1
; with i ≤ n; j ≤ m (16)

CQI ′j = P1CQI i; with i ≤ n; j ≤ m (17)

where CQI ′i and CQI
′
j are the estimated CQIs for NOMA,

and CQI i and CQI j are the reported CQIs for UEi and UEj,
respectively. In our model, the CQI reported is estimated
based on the SINR and for a block error rate (BLER) of 10%.

The UE pairs that do not fulfill the restrictions (i) and (ii)
are considered as non-suitable pairs; thus, in the cost matrix,
a cost much higher than the maximum Ci,j is assigned, so that
such pairs are not considered during the pair selection. Once
the cost matrix is generated, we proceed with running the
algorithms to find the best pairs that minimize the cost and
therefore maximize the system capacity. The number of pairs
should be equal to the number of UEs in the group with fewer
members, unless there are two or more UEs that can only be
paired with the same UE from the opposite group, because of
the pairing restrictions set. In case of the latter, fewer pairs
than expected will be considered.

For the Hungarian and Gale-Shapley algorithms, if the
number of UEs in Group A and Group B are not equal,
dummy rows/columns should be used to generate a square
matrix, since both algorithms require square matrixes to find
the optimal solution.

To exemplify the use of the considered pairing methods in
a cell, let us assume that we have a total of six UEs; let us
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FIGURE 6. Single cell scenario for user pairing example in NOMA.

also assume that all six UEs need resources in the following
subframe and that after the pre-scheduling and the grouping,
UEs are divided as shown in Fig. 6.

After calculating the cost of each possible pair according
to (13) and assuming that conditions (i) and (ii) are ful-
filled, our cost matrix would look as shown in Table 2. The
following subsections explain the pairing process and their
complexity (i.e., number of iterations) for all four methods
considering the example in Fig. 6.

TABLE 2. Cost matrix for user pairing example in NOMA.

C. HUNGARIAN METHOD
The Hungarian method is a combinatorial optimization algo-
rithm used for solving a two-sided one-to-one matching
problem. For this method, the problem can be mathematically
expressed as:

Minimize
n∑
i=1

m∑
j=1

Ci,jxij (18)

where

xij =

{
1, if the UEi is already paired with UEj

0, if the UEi is not paired with UEj

with the restrictions
(iii)

n∑
i=1

xij = 1; j = 1, 2, . . . n, to guarantee that the UEi

only has one pair.

(iv)
m∑
j=1

xij = 1; i = 1, 2, . . . n, to guarantee that the UEj

only has one pair.
In Fig. 7 the basic steps of the Hungarian algorithm are

applied to the cost matrix in Table 2., until obtaining the
final matrix from which pairs are selected by choosing those
with Ci,j = 0. From Fig. 7 we have a total of three pairs

FIGURE 7. Hungarian method application on a user pairing example for
NOMA.

as required by the algorithm (i.e., the number of pairs has to
be the same as the cost matrix dimension). If after the row
and column reduction the number of pairs is not optimal,
further steps are taken to optimize the solution. Such steps
can be found in [44]. The complexity of this algorithm is
calculated as the number of iterations needed to find the
optimal pairing. The execution of each step defined by the
algorithm is considered an iteration (e.g., each row/column
reduction, each zero assignment).

Furthermore, if some of the pairs are those previously
defined in the cost matrix as non-suitable, such pairs are
omitted during the scheduling and the UEs involved from
Group A continue with OMA, whereas the ones from Group
B are not scheduled.

D. GALE-SHAPLEY ALGORITHM: PROBLEM
FORMULATION
The Gale-Shapley algorithm uses the stable marriage crite-
rion to find stable assignments (pairs). Once the cost matrix
is generated, each UE in Group A sorts the UEs in Group B
in order of preference, based on the cost functions defined
in (11). The lower the cost the higher the preference. The
iterative algorithm is then applied to the sorted matrix, during
which the UEs from Group A ‘‘propose’’ as a pair to the UEs
in Group B. The UEs in the latter either accept (if they are
free) or reject (if they are paired and prefer their current pair
to the one proposing) the proposition. The solution is said to
be stable if, and only if, there exists no UEi and UEj who are
not paired with each other but who would both prefer each
other over their present partners.

Assuming the same cell scenario as in the previous sub-
section, we apply the Gale-Shapley algorithm to the matrix
in Table 2, until obtaining the final pairing for a total of three
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FIGURE 8. Gale-Shapley algorithm application on a user pairing example
for NOMA.

pairs. The steps applied are shown in Fig. 8. The complexity
of this algorithm is calculated as the iterations for the UEs
ranking plus the number of proposals done (accepted and
rejected) until the stable solution is found.

Even though the solution provided by the Gale-Shapley
algorithm is stable, it is not necessarily the optimal solution.
In general, there are several solutions to the pairing when
applying this algorithm [47]. The solutions depend on the
group that does the proposal. In this regard, and if we follow
the dynamic explained above, the stable solution is optimal

FIGURE 9. Random pairing application on a user pairing example for
NOMA.

for the UEs in Group A, but not necessarily for the UEs
in Group B. Similarly, if the proposal is done by the UEs
in Group B, the solution would be optimal for those UEs.
It could be the case, that the stable optimal solution is the
same regardless of which group proposes.

Same as with the Hungarian method, if the stable
solution considers pairs that have been marked as non-
suitable, such pairs are ignored during the scheduling
process.

E. RANDOM AND EXHAUSTIVE PAIRING
In the random method, UEs in Group A simply choose the
best unpaired UE in Group B, according to the cost of each
pair. From the cost matrix in Table 2, the pair choosing
process can be seen in Fig. 9. The complexity of this method
is calculated as the number of iterations needed until all the
pairs have been found.

For the exhaustive pairing, all possible pairs are evalu-
ated to find the combination of pairs that yields the min-
imum cost. Although the solution from this method is the
optimal solution, its complexity makes is computationally
expensive. For a cost matrix of size C (n,m) with n ≥ m,
a total of n!

/
(n− m)! iterations are needed to evaluate all

the pairs. Each iteration corresponds to the evaluation of
one of the possible permutations. When applied to the cost
matrix from Table 2, the pairing from the exhaustive search
is shown in Fig. 10; six iterations are neededwith this method.
Although the number of iterations for this example is lower
with the exhaustive method, this would not be the case as the
dimensions of the cost matrix increase.

From Fig. 7-10 we can see that the same pairing was
obtained from all four algorithms. Nevertheless, the process
of finding the pairs becomes more complex as more UEs are
considered and as some of the pairs do not fulfill the criteria
explained above.

F. LOAD BALANCING
The randomness associated with how, when and where the
mobile UEs use and demand data from the network, leads
to unequal load in neighboring cells. Thus, a cell can be
overloaded, while its neighbors have available resources that
are not being utilized.
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FIGURE 10. Exhaustive pairing application on a user pairing example for
NOMA.

This load imbalance affects the performance of the net-
work, and load balancing techniques can be used to use the
resources more efficiently. During these techniques, the BSs
communicate to each other and exchange information to com-
pare the cells load.

In this paper, we use the load balancing technique for
NOMA proposed in [48]. In this technique, to which we
will refer to as LB-NOMA, the balancing is done after
the pairs for NOMA have been selected; the purpose is to
force handovers of the active UEs that could not be paired
(i.e., OMA UEs) and that are located in the overlapping area
of two or more cells. This helps to minimize the OMAUEs in
the congested cells, thus increasing the system capacity since
more resources are available for the paired UEs. The imple-
mentation of LB-NOMAcomeswithmany challenges related
mainly to the complexity of doing selected load-base han-
dovers and avoiding ping-pong effects for the UEs involved.
Nevertheless, we analyze the performance of LB-NOMA in
HetNets assuming that these challenges are overcome since
they rely on software configurations that can be integrated
into the system. Furthermore, with such assumption, we can
focus on determining if the gains in the network capacity are
significant enough to consider its implementation.

IV. SINGLE CELL PERFORMANCE
For our first performance analysis we consider a highly
loaded (i.e., 100% load) single cell with hybrid MA, operat-
ing at 2.6 GHz, andwith UEs randomly deployed. The pairing
algorithms selected for our implementation are compared for

FIGURE 11. Sum rate gain for a single cell for four pairing algorithms for
NOMA; OMA is used as the benchmark.

this cell. The results are shown for the downlink and use
OMA as the benchmark. In Fig. 11 the sum rate gain is shown
for all four pairing methods. We can see that the Hungarian
method offers a rate gain highly similar to the exhaustive
method, with an average of 23.3% and 24%, respectively.
The variation for bothmethods is approximately 12-39%. The
results from theGale-Shapley and random algorithms are also
highly similar to each other, with an average gain of 18.3%
and 18.5%, respectively; the variation in these methods is
wider, which implies a higher uncertainty in the gain that can
be obtained. For the Gale-Shapley algorithm, such variation
is 4.6-42.4%, whereas for the random algorithm is 3.6-42%.

From Fig. 11 is it clear that the Exhaustive algorithm is the
best option for increasing the system capacity, followed by
the Hungarian method. Nevertheless, the speed/complexity
of the methods should also be considered. Fig. 12 shows the
computational complexity in terms of the number of iterations
required for each pairing method. We can see from Fig. 12a
that the implementation of the exhaustive pairing results in
the highest complexity (i.e., number of iterations), with val-
ues up to 2E+21 times higher than the highest complexity
for the other three methods. With such complexity, the use
of the exhaustive method would likely be time prohibited
in a real implementation where every 1 ms a new subframe
must be sent. In our implementation, the performance of the
exhaustive pairing could be obtained from simulations results
for up to 10 pairs, due to software limitations. For higher
number of pairs, a combination of simulations results and
numerical estimations were used.

In Fig. 12b the complexity of the pairing methods is shown
excluding the exhaustive pairing for a better perspective of the
performance of the remaining methods. For the Hungarian
method, although its complexity is lower than that for the
exhaustive pairing, it is on average 85 times higher than
for the Gale-Shapley algorithm. The complexity difference
between the Hungarian and Gale-Shapley algorithms is due
to the fact that with the former an optimal solution must be
obtained, whereas with the latter only a stable solution is
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FIGURE 12. Complexity of the pairing algorithms for NOMA, represented
as the number of iterations versus the number of pairs per subframe: a)
for the four pairing methods considered; b) for the three methods with
lower complexity.

needed, which is not necessarily optimal. The selection of
one or the other depends on the computational speed and the
time constraints. The random algorithm is the one with the
lowest complexity, with 9 times fewer iterations needed than
with the Gale-Shapley algorithm. Since the capacity gain of
the Gale-Shapley over the random algorithm is negligible,
the implementation of the random pairing (following the
cost function and the pair restrictions proposed above) might
offer a better tradeoff between complexity and capacity gain.
To further analyze this, a system-level analysis is presented
in the next section.

V. NETWORK PERFORMANCE
A. NETWORK MODEL
For evaluating how NOMA affects the downlink capac-
ity dimensioning of a HetNet, we consider a two-tier

FIGURE 13. Two-tier HetNet model.

out-of-band deployment. The first tier corresponds to the
macro cells operating at 2.6 GHz, whereas the second tier
corresponds to the small cells operating at 28 GHz; since the
study of the coexistence challenges of NOMA and mmWave
is outside the scope of this paper, we assume that such
design challenges are overcome. This assumption is consid-
ered valid since, for mmWave NOMA, solutions related to
beamforming techniques such implementation feasible have
been proposed in [49] and [50]. The LTE-compatible 5G
network model is deployed in MATLAB and consists of a
wrap-around cluster model of seven macro cells, with small
cells deployed inside their coverage area. The density of small
cells on each macro cell depends on the UEs density. Sparse
deployment of small cells is used for areas that have identified
hotspots, whereas a dense deployment is used for macro cells
that are constantly fully loaded. The small cells are modeled
as clusters of 7, 3 or 2 cells, or as a single cell. Since the
small cells operate at mmWave, the inter-cell interference
is rather limited thanks to the high propagation losses at
these frequencies [51]. All cells are considered to be located
outdoors. Fig. 13 shows the network model, the macro and
small cells characteristics are summarized in Table 3 and
Table 4, respectively.

For the coverage calculation of the macro cells, an inter-
site distance (ISD) of 600 m is used, along with the path loss
model 3D-UMa [52]. For the small cells, the ISD is 100 m
and the path loss model UMi [53] is used. Table 5 summarizes
the parameters used for the link budget calculations and the
signal generation.

The UEs in the network are randomly located inside the
coverage area of each cell using a normal distribution; the
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TABLE 3. Macro cells characteristics.

TABLE 4. Small cells characteristics.

TABLE 5. Parameters for link budget calculation and signal generation.

small cells provide the data connections for the UEs inside
their coverage area, while the macro cells provide such con-
nections for the rest of the UEs. A total of 2376 UEs are
served by the network (Table 3). Four UE profiles are con-
sidered, which determine the size and inter-arrival time of
the UE’s packets: video streaming, FTP file transfer, web

FIGURE 14. Network sum rate comparison for the modeled HetNet.

FIGURE 15. Sum rate gain for the modeled HetNet for four pairing
algorithms for NOMA; OMA is used as the benchmark.

browsing and IoT sensors. The work in [54] is used for the
characteristics of the first three profiles, whereas the work
in [55] is used for the IoT sensors. The profile for each UE is
randomly selected while guaranteeing that the average load
of the respective serving cell is maintained.

For the MA scheme, the BS decides between OMA and
NOMA depending on the results of the user pairing process.
NOMA is applied independently in each network tier.

B. HetNet ANALYSIS AND DIMENSIONING
For this section, the results of our network model
in Fig. 13 are analyzed. We consider the four pairing algo-
rithms mentioned above and also compare the performance
of the network with LB-NOMA. The results of the system
sum rate are presented in Fig. 14, whereas the sum rate gain
is shown in Fig. 15 using OMA as the benchmark.

From Fig. 14 and 15 we can verify the better performance
that can be achieved by incorporating NOMA in a HetNet.
Furthermore, the gain of using LB-NOMA can also be noted,
especially for the random pairing. For the NOMA+OMA
cases we can see the same trend as in the single cell analysis,
which was expected; the Hungarian algorithm offers the high-
est sum rates and capacity gain after the exhaustive algorithm,
achieving an average of 199 Gbps for a gain of 22% and
204 Gbps for a gain of 24%, respectively. In contrast, with the
Gale-Shapley algorithm, a sum rate of 196 Gbps is achieved
for 21% gain, whereas with a random pairing the sum rate is
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approximately 192.5 Gbps for 18% gain. The combination of
NOMA with mmWave in the small cells allows having such
high rates because of thewide spectrum available and itsmore
effective utilization.

Interestingly, we can see that when LB-NOMA is used, the
random method offers the highest capacity gain, with 29%
gain corresponding to a sum rate of 210 Gbps; this equals
to a gain of 11% because of the use of load balancing in
NOMA. To understand this behavior, let us remember that
NOMA is more effective as the difference in the channel
gain of the paired UEs becomes larger. This typically occurs
between UEs located close to the BS and near the edge of
the cell. Therefore, when an optimal method is used to find
the pairs, the UEs located at the edge of the cell will be
chosen with a higher probability, since pairing themwith UEs
close to the BSs yields the highest system gain. With pairing
methods that are not optimal, such as the random and the
Gale-Shapley algorithm, the probability of having active UEs
at the edge of the cell that are not paired is higher. Hence,
when LB-NOMA is implemented, more UEs are likely to
be moved to cells that are not fully loaded. This makes the
LB-NOMA more efficient when the pairing method fails to
choose the best possible pairs. Then, in scenarios where the
cells are not equally loaded, the implementation of a simple
pairing method such as the random can be chosen along with
LB-NOMA. On the contrary, if all cells tend to be fully
loaded thus limiting the need for LB-NOMA, optimal pairing
methods should be considered.

To now illustrate how the implementation of NOMA
affects the capacity dimensioning of a HetNet, let us consider
our network model from Fig. 13. For the estimations we use a
traffic volume based dimensioning; assuming that during the
busy hour the average load of the cells is 50% and that the
busy hour carries 15% of the daily traffic, the traffic volume
T in GB/month/km2 can be estimated as:

T =

(
Sum rate [GBps]·3600 [s] · 50%

15%

)
· 30 [days]

area [km2]
(19)

The results are shown in Fig. 16; the seven macro cells are
fixed for every case, and the capacity expansion is done by
adding small cells. From these results, we can see the advan-
tages of NOMA from a dimensioning perspective. In a first
glance, the most noticeable gain, in terms of the cells needed
to support certain traffic volume, is that of including NOMA
(independently of the user pairing method) as anMA scheme.
This gain is clearer as the traffic volume increases. Because
of the massive amount of data expected for 5G networks,
the implementation of NOMA is an attractive feature to meet
the capacity requirements while minimizing the deployment
costs associated.

If our network, for example, needs to handle a vol-
ume of 0.2 EB/month/km2, with OMA we would need
98 cells. On the contrary, if we have a hybrid MA sys-
tem with OMA+NOMA (Fig. 16a) and the pairing is done
with the Hungarian algorithm, 81 cells are needed; same

FIGURE 16. Number of cells needed versus network traffic volume for
OMA and for hybrid MA for four pairing algorithms: a) NOMA+OMA;
b) LB-NOMA+OMA.

as with the exhaustive pairing. The highest cell require-
ment from the hybrid MA cases comes with the use of the
Gale-Shapley or random algorithms, with 82 cells needed
to support such traffic volume; nevertheless, both methods
offer a gain of 16 cells over OMA. Moreover, it is important
to highlight that, as shown in Fig. 16, the higher the traffic
volume, the higher the gain in the number of cells needed.

For the hybrid MA system with LB-NOMA+OMA
(Fig. 16b), the best performance is offered when the random
pairing is used, as expected from the results obtained for a
single cell scenario shown in Fig. 14-15. For the same traffic
volume of 0.2 EB/month/km2, 75 cells are needed for the
random pairing. The remaining three methods, each needs
81 cells; this represents little to no improvement compared to
their equivalents in the NOMA+OMA cases, especially for
scenarios with lower traffic volume. Thus, the benefits of LB-
NOMA highly depend on the chosen pairing method. When
close-to-optimalmethods are used, the space left for improve-
ments with LB-NOMA is limited. On the contrary, simpler
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FIGURE 17. Gain for the modeled HetNet for four pairing algorithms for
NOMA; OMA is used as the benchmark: a) Traffic volume gain; b) Number
of deployed cells gain.

algorithms can be used if their weaknesses are balanced with
other optimization techniques, such as load balancing.

In Fig. 17 the traffic volume gain and the gain in the number
of deployed cells are shown, using OMA as the benchmark.
For a NOMA+OMA implementation, the use of the Hungar-
ian method is preferred, since it offers an average gain of 20%
in the traffic volume (Fig. 17a) that can be supported and its
complexity is lower than the exhaustive method, which offers
a 21% traffic volume gain. TheGale-Shapley algorithm offers
a 17% gain, whereas the gain for the random method is 16%.
On the contrary, for a LB-NOMA+OMA implementation,
the random method offers the highest gain in the traffic
volume supported, with 24.6%.

For the number of cells needed, we can see from Fig. 17b
that for NOMA+OMA the highest gain in the number
of cells deployed (a gain meaning fewer cells needed) is
achieved with the exhaustive method, with a gain of 14%.
However, considering the complexity of the exhaustive
method, the Hungarian method could offer a better trade-
off between complexity and gain, with 13% saving in cells
needed. For LB-NOMA+OMA the highest gain is achieved
with the randommethod, with 15.6%. The gain in the number

FIGURE 18. Traffic volume that can be supported by the modeled HetNet,
with 100 cells deployed for OMA and for NOMA.

of deployed cells can be translated into a gain in the deploy-
ment cost of the network; in this respect, if 15.6% fewer cells
are needed to cope with the capacity demand, roughly 15.6%
can be saved from the deployment cost, while maintaining the
network revenues.

The selection of the pairing method in a hybridMAHetNet
could then be flexible and subject to the load conditions of the
cell and its neighbors. The BSs could choose the best method
for pairing in NOMA according to the network conditions.
This will allow using simpler and faster, but less efficient,
pairing algorithms when the load in the cells is unequal,
and compensate the inefficiency of the pairing by using LB-
NOMA. The optimal or more efficient algorithms could then
be reserved for cases where LB-NOMA is not applied, either
because all cells have a similar load or because such feature is
not available. By having this flexibility in the implementation
of NOMA, the network capacity can be improved while
lowering the deployment costs.

For example, in our network, the Hungarian method could
be selected for NOMA, whereas the random method could
be used for cases when LB-NOMA is beneficial (unequally
loaded cells). With such implementation, and assuming that
100 cells can be deployed (7 macro cells plus 93 small cells),
an average network traffic volume of 0.26 EB/month/km2 can
be supported, as shown in Fig. 18. In contrast, if only the
Hungarian or the randommethod is used, the same number of
cells can handle 0.25 EB/month/km2. This difference of 4%
is only due to the flexible choice of the pairing method and
directly translates into a 4% gain in the network revenues,
since either more UEs or higher data plans can be supported.

Moreover, either combination of hybrid MA offers sig-
nificantly higher capacity than the use of only OMA,
with which 0.20 EB/month/km2 can be supported with the
same 100 cells; this corresponds to capacity gains between
25-30% because of the use of NOMA. For a simple rev-
enue estimation, we can refer to Table 6, where we consider
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TABLE 6. Simple network revenue estimation based only on the end
users revenues, for three combinations of multiple access.

TABLE 7. Simple network user capacity estimation, for three
combinations of multiple access.

100 cells and the pairing methods with the best tradeoff
between complexity/capacity gain for our network (i.e., Hun-
garian for NOMA and random for LB-NOMA). Only end
users revenues are considered and we assume that the price
of each GB/month is $2 (example value estimated from data
plans commercially offered nowadays). The highest revenues
correspond to the hybrid multiple access with flexible pair-
ing method, with 2.34 million dollars per month, offering a
4% gain over the other hybrid MA access considered and
a 30% gain over OMA. Furthermore, if we consider the
2376 UEs simulated, an average of 493 GB/month/UE can
be offered with the hybrid MA and flexible pairing as shown
in Table 7, being the highest monthly data allowance. Since
such a huge amount of data will be likely too high for the
average monthly consumption, we can see that for a data plan
of 30 GB/UE/month, up to 58,513 UEs could be served by
the network, versus 56,263 and 45,010 for the other hybrid
MA options and OMA, respectively. These numbers result
interesting considering the high data demands and increase
number of connected devices connected that are expected for
5G networks.

VI. CONCLUSIONS
In this paper, we have analyzed, from a system-level per-
spective, the performance of a HetNet with hybrid MA. Our
network model consists of an out-of-band deployment of
macro and small cells, where NOMA and OMA coexist. For
NOMA we made particular emphasis on the pairing process,
comparing the performance of four generic pairing methods:
Hungarian method, Gale-Shapley algorithm, random pairing,

and exhaustive pairing. Furthermore, we considered the use
of load balancing techniques with NOMA (LB-NOMA) to
further increase the overall network capacity. Our results
show the clear capacity benefits of hybrid MA over OMA
in HetNets. More interestingly, our results also showed the
impact of the efficiency of the pairing method and the use of
load balancing techniques for NOMA in the overall network
capacity. The use of optimal or close-to-optimal pairingmeth-
ods offers the higher capacity gains (22-24%) in cases where
load balancing techniques are not used. On the contrary,
if LB-NOMA is used, simpler pairing methods can offer a
higher gain (approximately 29%); that is because the ineffi-
ciency in choosing the best pairs can be compensated through
load balancing techniques. We showed in our dimensioning
results that hybrid MA with LB-NOMA+OMA and with
random pairing requires significantly fewer cells deployed
to offer the same capacity than the other combinations con-
sidered. For a network traffic volume of 0.2 EB/month/km2,
with OMA 98 cells are needed, with NOMA+OMA and
exhaustive pairing 81 cells are needed, whereas with LB-
NOMA+OMA and random pairing 75 cells are needed.
These results lead us to consider a flexible selection of the
pairing method for NOMA depending on the load conditions
of the network. For scenarios where all cells are equally
loaded and thus load balancing techniques are not effective,
the selection of a close-to-optimal (typically more complex)
pairing method is preferred. On the contrary, in scenarios
where cells are unequally loaded, the selection of simpler
and faster pairing methods combined with load balancing
techniques could offer a better performance for the network,
in terms of capacity and pairing complexity in NOMA.
In our network, for 100 cells deployed the combinations
of the Hungarian and the random method, for NOMA and
LB-NOMA respectively, allows supporting 4% higher net-
work traffic volume, than if either of the two methods is
exclusively used regardless of the network load conditions.
This 4% gain reflects directly as a revenue gain for the
network since either more UEs can be supported or higher
data rate plans can be offered.

The analysis of HetNets with hybrid MA combining OMA
and NOMA is still on early stages, hence research work on
how the resource management on such networks influences
the dimensioning and deployment of 5G networks is highly
anticipated. Further research on how to select the appropriate
pairing method depending on the network conditions should
be done, considering variables such as the changes in the cells
load, e.g., during the peak hours, or during night hours in
commercial and business areas.
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