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ABSTRACT In recent years, with the rapid development of industrial Internet of Things, the rapid growth
of data has become a severe challenge and precious opportunity faced by many industries. The information
society has entered the era of big data. Feature selection is frequently used to reduce the number of features
in many applications of Internet of things, where data of high dimensionality are involved. To the best of
our knowledge, a fewer researchers focus on the physical distribution of data and the anisotropy of the
data characteristics. To this end, this paper introduces a novel feature selection approach based on potential
entropy evaluation criteria (FMPE). The FMPE method considers the distribution of the data itself when
measuring the importance of the feature. The data is mapped into a high-dimensional space which has
better divisibility by extending data field to generalized multidimensional data field. Related experiments
and analyses on UCI data sets and face data sets show that the FMPE algorithm can effectively eliminate
the unimportant features or noise features to improve the performance of the classification algorithm.
A high classification accuracy is achieved by the combination of the selected feature subset and a variety of

classifiers and the FMPE algorithm is independent of the specific classifier.

INDEX TERMS Feature selection, potential entropy, data field, high classification accuracy.

I. INTRODUCTION

In the current Industrial Internet of things environment,
the knowledge contained in it is excavated to guide actual
production and specific application [1]. The importance of
feature selection and learning is more prominent, which not
only can effectively solve the “Curse of dimensionality™,
alleviate the current situation of “information abundance,
knowledge shortage™, but also better reduce complexity and
understand data [2]. Duda et al. pointed out that the accu-
racy of classifier will decrease when the number of features
exceeds the threshold [3]. The performance of classifier will
decline sharply, especially when the correlation features are
added. In the low dimensional space, the neural network with
normal operation will fail as the dimension increasing [4].
Dimension reduction can effectively speed up the processing
of the algorithm, avoid the bad effects of redundant fea-
tures and noise features on pattern recognition [5]. With the
increasing of the data dimension, in order to accelerate the

speed of data processing, and avoid over fitting phenomenon,
dimensionality reduction has become a hot research field of
data mining [6]. In order to improve the speed of data process-
ing and the pattern recognition accuracy dimension reduction
is an important part of high-dimensional data mining.

The goal of dimension reduction is to find a low dimen-
sional space in which data is organized into different clus-
ters and easily separated. In addition, the low dimensional
representation provides the possibility for data visualization
and facilitates exploratory analysis of data [7]. In statistics,
dimension reduction projects higher dimensional space to
lower dimensional space, and get more accuracy of classi-
fication or regression. Set up a d dimensional data set R¢
containing n samples, that is x; {k = 1,2...., n}, the goal
of dimension reduction is to find a new projection space R",
F:R? - RM, x — ¢ = F(x) and ¢ as the dimension reduction
of x. The dimension of this space is (h < d), the point in R"
isty {k =1,2....,n}. Dimension reduction consists of two
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strategies: feature selection and feature extraction [8]. Feature
selection aims to select the most representative feature sub-
set; the meanings of the selected features are not changed.
The optimal feature subset is easy to understand. Feature
extraction projects high-dimensional data to low dimensional
space [9]. The new feature space extracted by feature extrac-
tion has more distinguishing ability than the original space,
but the new feature space has no actual physical meaning.
Relative to feature extraction, feature selection retains the
origin form of features. This is one of the main reasons
for feature selection is widely used. Since feature selection
needs to measure the importance of all features and calculate
the association between features, it does not apply to the
dimension reduction of large number features data [10]. For
this kind of data, feature selection is usually taken as the
subsequent step of feature extraction to improve the general-
ization ability of classification model. Feature selection also
is used to visualize and understand the data. The best subset
of features can improve the efficiency and the accuracy of the
classifier.

Dash and Liu point out that the classic feature selection
consists of four basic steps: the generative process, the eval-
uation function, the stopping criterion, and the verification
steps [11]. Among them, the generation process and the eval-
uation function are two main steps. The generative process
is a search process for generating feature subsets. A variety
of search strategies, including full search, heuristic search,
and random search can be used to generate feature subsets.
An evaluation function measures the identity of a feature
subset and identifies different tags. The evaluation functions
include five categories: distance, information, dependency,
consistency, and classifier error rate. The feature selection
algorithm using only the first four evaluation functions is
called the filtered feature selection algorithm. Wrapper type
feature selection algorithm uses classifier error rate as an
evaluation function. In general, the Wrapper method can
achieve better classification accuracy, but the filtering method
is faster.

In filtering feature selection algorithms, the feature impor-
tance is obtained according to the intrinsic nature of data sets
which is independent of subsequent algorithms. Numerous
researchers have studied searching for a minimum subset of
features which satisfy some goodness evaluation criterions.
So far, various evaluation criteria have been studied to remove
a number of less informative features. Such as, information
entropy [12], correlation [13], rough set theory [14], cluster-
ing [15], constraint score [16], class separation [17], depen-
dency measure [18] and consistency measure. For supervised
classification processes, important features clearly contribute
to the separation of features between classes.

Existing feature evaluation criteria have less research on
the physical distribution of data and the relationship between
data field features. Therefore, this paper proposes a new
method to measure the feature importance based on potential
entropy (FMPE). FMPE evaluates and analyzes the selection
and application of the field function to measure the feature
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importance. It studies and improves the potential entropy
selection strategy. Experiments and analyses in ten common
data sets show that FMPE is independent of specific classifi-
cation algorithm, and can select feature subset with high divi-
sion which can effectively maintain or improve classification
accuracy.

The rest of this paper is organized as follows. Fundamen-
tals and the FMPE algorithm are presented in Section 2.
Experiments and analysis of FMPE algorithm are showed in
Section 3. Finally, conclusion and discussion are discussed in
last Section.

Il. THE FMPE ALGORITHM

The concept of generalized data field is introduced to FMPE
algorithm, each original feature will be calculated according
to potential value Sy, within class and the potential value Sy
between different classes. If the corresponding Sy, is larger
and S,y is smaller, this feature has a high class distinction and
invariance within class.

Firstly, the data set is projected into the data space through
the potential function, and the importance of the feature is
calculated. Secondly, the more important steps are selection
strategy of potential function, feature importance measure-
ment based on potential entropy and feature subset search
strategy.

A. SELECTION OF POTENTIAL FUNCTION
The estimation of potential value is related to the data set,
the unit potential function and the influence factors. The
anisotropy of data characteristics is mainly controlled by the
influence of factor o. Usually, the potential field distribution
is unknown, but according to the potential function, the prob-
ability density function is a normalization constant. If the
overall distribution of a given data set is known, the potential
function estimation accuracy depends on the unit potential
function and influence factors of the selection. When the
influence factors are fixed, the same effect can be obtained
for different potential functions. It is important to estimate
the density of the potential function, that is, the center and
magnitude of each data field.

Set D = {x1,x2,...x,} is a data set, x; is a data sample,
and then the potential value of data point can be expressed as
Equation 1.

b= mix K (1)

K () is the potential function, m; is the mass of xi, and o is
the factor. Where ) 7, m; = 1. If each object has an equal
mass m;, a simplified formula for the potential function can
be obtained as Equation 2.

1 x—Xl-

p == K(—

Suppose in the multidimensional data field, the influence
factor sigma is different in different dimension, then the

) @)
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potential function is defined as Equation 3.

1 n x — X;
== = 3)
where H is the p x p positive definite matrix which is related to
the influence factor. In order to facilitate computation, the H
is set a positive definite triangular matrix, and the simplified
estimate of the potential function is defined as Equation 4.

_ 1 n ' D xj — Xij
Py =— mix {Hj_lK (—Uj )} @)

where o; is the influence factor of jth dimension. If the data
is two-dimensional, then j = 1, 2.

@ (x)

B. FEATURE SELECTION BASED ON POTENTIAL ENTROPY
Given feature fy € F’, k = 1,2,...,p feature subset
F’ € F. The potential value of data points in a data field
is Y1, Y2, ... ¥y, then the importance measure of the feature
subset F’ can be expressed as Equation 5.

mp ) ==Y Y toa(2)
-y a- —) log(1 — ﬁ) )
where ¥ (x) = 137 | {]_[}- m; - k(";xi)}, z is the sum of

the potential values.

A feature potential entropy describes how much informa-
tion a feature vector contains. The more information a feature
contains, the smaller the entropy is. When the projection
object is uniformly distributed, each object location potential
value of approximately equal, and the corresponding feature
importance tends to 0. On the other hand, the asymmetric
distribution of projection object, entropy has a smaller poten-
tial value. When calculating the potential entropy of a data
field, the minimum potential entropy corresponding to the
optimal o is defined as Equation 6.

Imp (f)opt = imp(f)n:g,,, (6)

In this paper, the nonparametric kernel density estimation
method proposed by Hall P is used to calculate o [19]. The
standard deviation of the upper density of each direction is o.

Another parameter m; needed to calculate the potential
value. FMPE uses the ratio of intra class distance and inter
class distance as the quality of data points which is defined
in Equation 7. Among them, the potential matrix is obtained
by the potential function in the generalized data field. For
supervised learning problems, the importance of the feature
is related to the class potential value Sy, and the inter class
potential Sy,.

mi == )

where
1
S:fl— Z (W (X)) — ¥ )@ (X)) — ¥ )T (8)
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The definition of spatial distribution matrix between
classes S ,;// is as Equation 9.

S = SWE)—Y O X) =¥ ) ©)

Total feature distribution matrix is defined as Equation 10.

1 n
sy =SV +58) = - Do W) = YO (X))
—yx)T (10)
where Y (X) = 2 30, Y0, ¥ (1) = & YL, WX, j =

I, ..., c. According to the above definition, S:f and S;f are
non-negative matrix. For a given feature f normalization is
also called deviation normalization. A linear transformation
of the raw data maps the values to [0-1]. The translation
function is defined as Equation 11.

f — min

f=——— (11

max — nmin

max is the maximum of the sample data, and min is
the minimum of the sample data. Mass vector M =
{my, my, ...m;, m,}, where n is the number of features, and
the value of m; is the weight of the ith feature. The impact
factor vector o = {01, 02 . .. 0}, 0,}, 0; is the factors affecting
of theith feature. The mean of each samples in all direc-
tions is the potential value of the sample that is defined as
Equation 12.

1 n
X == v (12)

where ¢ (X;) = [[rm;- k( ’) J is the jth sample of
ith feature.

C. LAYER BY LAYER SEARCH OF IMPORTANT

FEATURE SUBSETS

After getting out the feature importance, the best feature sub-
set is obtained by using hierarchical clustering method [20].
The distance between the selected feature subset F' and the
label class C, Sp(C; F') can be expressed as the sum of the
distance between the selected features and the classed that is
defined as Equation 13.

Ly n
SHCiFY =)

Given the correlation between alternative features and
selected features, that is:

SE) =2 CUC 9 (14)

S(Cis f) 13)

The update function within the class distance is defined as
Equation 15.

Sw (F',s) = Sw (F') + S(f) (15)

The size of the feature subset F’ also needs to be consid-
ered. In general, the smaller the feature subset F’ means the
less selected features and more robust classifier. Based on
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the above analysis, for each candidate feature, its evaluation
function is defined as Equation 16.

J(F) = SUCEELS
[F'| + Sy(F’, 5)

The |F'| is the feature number of feature subset. The
larger value of evaluation function J(F’) means the closer
the correlation between the new feature and the class labels
that the new feature subset is more helpful for classification.
The evaluation function also takes into account the correla-
tion between the selected feature subset and new candidate
feature. If the correlation of candidate features and existing
feature subset is too high, it means this feature is redundant
and unnecessary. Instead, it shows that the new feature is
an effective feature that can be incorporated into the feature
subset. In this way, the final feature subset is guaranteed and
the classification accuracy is improved and the feature subset
is reduced.

A given feature subset of original feature set, properties of
importance measure: if one is helpful to present the clustering
structure features of f ¢ S was added. The distribution of
data uncertainty will be reduced, then the minimum entropy
generalized data field will become smaller, resulting in the
importance of the new feature subset measure will be greater.
On the contrary, if adding a confusing feature, the distribution
of data uncertainty will increase, the minimum entropy cor-
responding to the generalized data field will increase, and the
importance of the new feature will be reduced, that is J(F’ +
f) < J(F'). Obviously, an important feature for a subset F’,
delete any one of them could lead to a decline J (F) with anti-
monotonicity. Through the feature importance, the optimal
feature subset is determined.

(16)

D. THE ALGORITHM FRAMEWORK OF FMPE

According to the information entropy important feature is
added to the candidate feature subset. S,(C; F’) and S,,(F’, s)
of each candidate feature are calculated , the feature with
largest J(f) is combined with F’ to assemble a new feature
subset. If the selected feature number reaches the thresh-
old or Imp(F") becomes large, the selection process is end.
The framework of the FMPE is shown in Algorithm 1.

If the sample data set contains n» samples with m features,
then the time complexity of the potential entropy calcula-
tion is O(n?). The time complexity of distance calculation
between the candidate feature f and the tag class C is O(n).
In the algorithm, the time complexity of the measurement
standard J(f) is O(nm). Therefore, the time complexity of
select or assemble a candidate feature is O(nm?). Then the
total time complexity of FMPE is O(n> 4+ nm?).

Ill. EXPERIMENTS AND ANALYSIS

In order to verify the effectiveness of the proposed algo-
rithm, experiments and analyses are carried out on ten typical
datasets. Distance descriptions are also performed on the iris
and teach data sets. Firstly, in the iris data set the projection
images of different dimensions show that the high points of
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Algorithm 1 Feature Selection Method Based on Potential
Entropy (FMPE)
Input: Training examples {x1, x2, ...x,} and class labels
{V1,¥2, ... Yc}, parameter §
Output: Feature subset F;

1) SetF' =®,5,=0,8,=0,8;

2) For each f in F, Calculate its Imp(f);

3) Sort F by Imp(f) value;

4) f = argmin (Imp(f)); F = F — (f}F" = {f};

5) While |F'| <8 orJ(F'+f) > J(F')do
f = argmin (Imp(f)); F' = F' + {f}; F = F — (f};
Sw = Sw+S(f), Sp = Sp + S(C, f);

6) Return the subset F’;

spatial data field. Secondly, on the teach data set through the
distribution of potential lines to justify the feature selection
results. Finally, the effectiveness and independence of FMPE
algorithm are verified.

A. FEATURE SUBSET SELECTION OF IRIS

Taking Iris data as an example, the feature importance, the
measurement process and the evaluation criteria of the feature
subset are described. The Iris data set contains three classes:
setosa, versicolor, and virginica. Each class contains 50 sam-
ples and the total is 150 samples.

0.5

Ins Datafield

0.4
03[
0.2

0.1
0.3 0.4 05 0.6 0.7

FIGURE 1. Two-dimensional data field graph of Iris.

The Iris data set is projected into the generalized data field
by potential function. A two-dimensional map of the data
field is shown in Fig.1. The three-dimensional map of the data
field distribution is shown in Fig.2.

The Knn algorithm is used as the classifier on the original
dataset and projected dataset. The result of classification is
shown in Table 1.

According to the feature importance measure using gener-
alized data field, the optimal feature subset of Iris is {X3, X4}.
KNN classifier and PCA algorithm are used to extract the
feature vector {pci, pc2}, Misclassification sample number
and rate of different subsets are shown in Table 2.
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FIGURE 2. Three-dimensional data field graph of Iris.

TABLE 1. Error number and rate of Knn algorithm.

le

setosa versicolor virginica Error rate

data

original 3 11 16 20.0%

projected 0 0 7 4.67%
TABLE 2. Classification accuracy of different feature subsets.

feature subset {Xs, X4} {X, X0,X3,X4} {pci, pc2}

Misclassification 17 17

sample number

Misclassification 4% 11.33% 11.33%

rate

98

96

94

92

90

88

LOO recognition rates using KNNC (%)

86

PSR- PR MU RIS Y PR —

i i i i i i i
1 12 14 16 18 2 22 24 25 28 3
Mo. of projected features based on PCA

FIGURE 3. The classification accuracy of Iris using FMPE.

As the changes with the number of extracted features,
the change of classification accuracy is shown in Fig 3.

Fig.3 is the classification accuracy varies with the dimen-
sionality obtained by the KNN+FMPE. As can be seen,
the FMPE method has the highest classification accuracy
when the dimension number is two.
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TABLE 3. Feature importance ordering of teach data sets.

Feature X, X, X, X, X,
importance  0.33 0.21 0.18 0.14 0.14

B. FEATURE SUBSET SELECTION OF TEACH
The teach data set contains five feature vectors. The metric
of feature importance is calculated according to the potential
entropy of the feature. Feature importance ordering of teach
data sets is shown in Table 3.

Accordance with FMPE algorithm, the optimal feature
subset is {X3, X3, X5}. The histogram of the teach feature is

shown in Fig.4.
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FIGURE 4. Histogram of teach features.
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FIGURE 5. The equipotential lines of feature X, and X,.

Through the analysis of Fig.4, the X and X, features have
two values, and the distinction between the different cate-
gories is small. X5, X3 and X5 has high degree of distinction
which is consistent with the above experimental results. The
two-dimensional equipotential line distribution of feature X,
and feature X3 is shown in Fig.5.
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FIGURE 6. The equipotential lines of X,, X5 and X;s.
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FIGURE 7. Scatter plots of X2, X3 and X5.

The two-dimensional equipotential line distribution of fea-
ture X3 and feature X5 is shown in Fig.6.

Fig 7 is a scatter diagram of feature X,, X3 and Xs.
From the distribution of teach’s 3D scatter diagram and
its equipotential line, it can be seen from Fig.5, Fig.6 and
Fig.7 that the teach data set embodies the local distribution
feature, and automatically generates multiple field potential
centers.

C. FMPE ALGORITHM INDEPENDENT EXPERIMENTS

In order to compare the classification performance of FMPE
with other feature selection algorithms and identify its inde-
pendent, ten public test data sets from UCI machine learning
repository (http://archive.ics.uci.edu/ml) [21] were used as
classification dataset. The basic properties of datasets are
described in Table 4.

The mean filling strategy is used to fill the Incomplete data,
that is to say, for missing or invalid data values, statistical
interpolation is used to fill missing data. The FMPE algo-
rithm is used to sort the feature importance of the data sets
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TABLE 4. Dataset properties for experiments.

Data Instances Attributes Classes
Cancer 198 32 3
Derm 366 33 6
Glass 214 9 6
Heart 270 13 2
Pro 997 20 3
Iris 150 4 3
Sonar 208 60 2
Teach 151 5 3
Wine 178 13 3
Vote 232 16 3

in Table 4. The feature importance ranking results are shown
in Table 5.

The order of feature importance is from small to large. The
smallest feature importance measurement can be removed
preferentially. The final feature is the largest feature impor-
tance measure, which allows priority to be added to feature
subsets.

In order to verify the independence between the specific
algorithm in the classification algorithm, this paper adopts
three kinds of typical algorithm as the classifier, respectively
is NBC (Naive Bayesian Classifier) [22], SRC (Sparse Rep-
resentation based Classifier) [23] and SVM [24]. In order to
make the algorithm more representative, the SRC algorithm
adopts the SRC and SRCL respectively. The dimensional-
ity and classification accuracy of each classifier are respec-
tively given before and after dimensionality reduction. Firstly,
the potential entropy of each feature is calculated and sorted,
and then a feature subset is selected. 60% of the data set is
used as training samples, and the rest is test samples. The
accuracy of each algorithm is the average accuracy of ten
times cross validation, and the arithmetic precision is retained
at most one decimal places.

FMPE effectively removes the noise features that affect
classification, and for NBC, SRC, SVM and SRCL clas-
sifiers, the classification accuracy is improved or almost
unchanged after dimensionality reduction. The above experi-
ments further confirm that the FMPE algorithm is indepen-
dent of the specific classifier, which is only related to the
distribution of the data itself, and also show that FMPE has a
certain universality.

Through FMPE, the dimensionality of each data set is
reduced to some extent, and the classification accuracy of
classifier is improved. At the same time, due to the reduc-
tion of dimensionality, FMPE improves the generalization
ability of classifier to a certain extent. We can find that the
classification accuracy of the FMPE is higher than the prior
dimension reduction in most datasets. It can be seen from
Table 5 that the effect of dimensionality reduction is different
in different data sets using FMPE algorithm. But after feature
selection, the performance of classifier is basically improved.
After reducing the dimension, the values of classification
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TABLE 5. Classification accuracy of FMPE using different classifiers (%).

Data Num Num-FMPE ~ Nbc Nbc-FMPE Src Src-FMPE Svm Svm-FMPE Srcl Srcl-FMPE
Cancer 32 16 66.7 64.7 73.3 70.7 72.7 72.7 60.6 63.6
Derm 33 29 96.7 96.2 97.3 97.3 98.9 97.3 235 26.8
Glass 9 7 50.5 47.7 68.2 67.3 75.7 77.6 64.4 69.2
Heart 13 6 59.5 60.1 50 55.4 62.8 60.8 36.5 473
Pro 20 17 65.3 65.1 90.7 90.4 69.1 71.3 87.8 87.4
Iris 4 2 96.0 96.0 94.7 94.7 97.3 96.0 92.0 93.3
Sonar 60 23 64.4 67.3 83.7 89.4 72.1 76.0 70.2 85.6
Teach 5 3 46.7 48.0 62.7 64.0 60.0 64.0 28.0 30.7
Vote 16 7 94.0 95.7 96.6 97.4 96.6 97.4 37.1 15.5
wine 13 6 94.0 95.7 80.9 89.9 472 50.6 95.5 93.3
TABLE 6. Feature importance ordering of wine data sets (%).
Feature X; Xjo Xy X2 Xi3 Xu X6 X, X9 X5 Xy X5 Xy
imp 15.9 12.7 9.1 9.0 8.4 7.9 7.8 6.7 5.6 4.9 4.4 4.2 4.0
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FIGURE 8. The classification accuracy changes of teach using
PCA and FMPE.

accuracy are expressed in bold. Using the NBC classifier in
the data set, five classification accuracy has been improved;
the accuracy of the SCR classifier and the SVM classifier has
been improved in six data sets; the accuracy of the SCRL
classifier has been improved in seven data sets.

D. CLASSIFICATION EXPERIMENTS ON TEN UCI DATASETS
In order to further illustrate the effectiveness of the FMPE
algorithm, the performance of FMPE algorithm and the clas-
sical dimensionality reduction algorithm PCA and LDA are
compared and analyzed. Principal component analysis (PCA)
is a multivariate statistical method, which is often used to
reduce the dimensionality of multivariate signals [25]. The
LDA algorithm can be used to determine the direction of
projection. All samples are projected onto a coordinate axis,
and the scatter between the classes of the projected samples in
the projected feature space is the largest and the scatter within
the class is minimum [26].

As the teach data set changes with the number of extracted
features, the classification accuracy changes as shown
in Fig.9. The classification accuracy of the KNN+PCA
method varies with the dimension, and the right side of the
image is the change of the classification accuracy after using
the KNN+4-FMPE projection. As can be seen from Fig.8, both
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FIGURE 9. The classification accuracy changes of wine using
PCA and FMPE.

the PCA and the FMPE methods have the highest classifica-
tion accuracy and the same classification accuracy when the
dimension is two.

Wine data set was used for further experimental analysis.
The 13 components of the data source wine are: Alcohol,
Malic acid, Ash, Alkalinity of ash, Magnesium Tot, alphe-
nols, Flavanoids, Nonflavanoid phenols, Proanthocyanins,
Color intensity, Hue,0D280/0OD315 of diluted wines,
Proline. The importance metric ordering of each feature
vector is shown in Table 6.

The data of each sample in the data source file is complete,
and the change curve of the classification accuracy is shown
in Fig.9.

The two-dimension reduction methods can effectively
improve the classification accuracy, the PCA method in the
7 dimension is began to converge, the classification accuracy
is 77%, the FMPE method in the 3 dimension is began to
converge, the classification accuracy is 93.05%, regardless
of the dimension selection or classification accuracy can be
seen, the FMPE method is better than the PCA method.

In ten UCI data sets, respectively using FMPE and prin-
cipal component analysis (PCA), linear discriminant anal-
ysis (LDA) for dimension reduction methods, combined
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TABLE 7. Classification accuracies of different methods (%).

Data KNN Knn_LDA Knn_PCA Knn_FMPE
Cancer 76.26 68.12 65.70 78.20
Derm 98.09 97.00 95.80 98.08
Glass 69.16 73.36 73.72 73.83
Heart 46.13 41.41 41.80 81.40
Pro 91.07 84.70 88.20 92.08
Iris 96.67 96.70 96.00 98.00
Sonar 87.00 82.69 83.20 89.53
Teach 59.60 69.72 68.31 70.20
Vote 80.34 95.32 92.10 97.80

TABLE 8. Comparison of FMPE and other feature selection algorithms (%).
Data KNN SD MI RSFS SFS SFFS FMPE
Cancer 76.26 74.24(10) 77.27(10) 75.76(11) 77.78(3) 77.78(3) 78.20(16)
Derm 98.09 84.7(10) 77.32(10) 92.35(12) 98.91(16) 96.72(9) 98.08(29)
Glass 69.16 68.69(6) 68.69(6) 72.90(5) 68.22(8) 71.03(7) 73.83(7)
Heart 46.13 59.60(6) 59.60(6) 44.78(6) 57.24(8) 61.28(6) 81.40(6)
Pro 91.07 89.57(10) 89.57(10) 89.27(11) 92.08(17) 86.76(7) 92.08(17)
Iris 96.67 97.33(3) 97.33(3) 96.00(2) 96.67(4) 96.67(4) 98.00(2)
Sonar 86.54 86.54(10) 86.54(10) 87.98(21) 87.02(11) 89.90(16) 89.53(23)
Teach 59.60 59.60(5) 59.60(5) 59.60(3) 59.60(5) 59.60(5) 70.20(3)
Wine 80.34 82.58(7) 82.58(7) 82.58(6) 94.94(8) 96.07(7) 97.80(7)
Vote 93.53 96.98(6) 96.98(6) 96.98(5) 96.98(1) 96.98(1) 96.98(6)

with the KNN classifier for high-dimensional data sets. The 100

classification accuracy was obtained after the classification, 90

the classification accuracy as shown in Table 7. 80

The values in Table 7 are the classification accuracies cor- .. 70
responding to different dimensionality reduction strategies, § 60
and the maximum numerical accuracy of each of these four 3 20
.. o 40 {
strategies is used for each set of data. < 5 ,
Among them, Knn_FMPE indicates that the FMPE is used 20 1

to reduce the dimension first, and then the classification 10 ‘ | ‘

accuracy is obtained by using the KNN classifier. As can be 0

seen from Table 7, KNN FMPE algorithm is better than other $ Q& & ™ 0 o

: : e PO
three algorithms in classification accuracy. In order to express & PO

this result intuitively, the classification result is described by
column diagram as shown in Fig.10. It can be seen in Fig.10,
the classification accuracy of FMPE in the 8 data sets are
the highest, in the other two data sets on the classification
accuracy and the highest classification accuracy shows that
there is little difference between feature subset is obtained by
the FMPE algorithm is more divisibility.

FMPE and the commonly used feature selection
algorithms SD(Statistical Dependency) [27], MI(Manual
Information) [28], RSFS(Random Subset Feature Selec-
tion) [29], (Sequential Floating Forward Selection ) [30] are
compared and tested. The comparison results are shown in
Table 8.
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FIGURE 10. Classification accuracy contrast chart.

In Table 8, still using the UCI public data sets are related
to the experimental analysis, the first column is the classi-
fication accuracy using the KNN algorithm in the original
data set; behind each column indicate the use of different fea-
ture selection algorithm to obtain the optimal feature subset,
the classification accuracy by KNN classification, the classi-
fication accuracy of two decimal places.
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TABLE 9. The number of features selected by FMPE.

Dataset Fnum FMPE
Umist 644 38
Orl_original 10304 58
AR_database 19800 103

TABLE 10. Classification accuracy comparison of different algorithms (%).

atasets .
m\ Umist

Orl_original AR_database

pea 99.5 98 92.1
sift 95.1 91.5 97.1
pso 95.1 90.5 94.3
cmim 94 93.2 92.1
AdaBoost 99.3 98.5 90.7
FMPE 99.7 98.7 98.8

The numerical value contained in the posterior bracket
is the feature number of the feature subset. It can be seen,
the classification accuracy on ten data sets of FMPE are more
than the most feature selection strategy. FMPE can choose a
subset of features high discrimination, but also should pay
attention to that the average number of extracted features by
FMPE algorithm is more than other algorithms.

E. CLASSIFICATION EXPERIMENTS ON

THREE FACE DATASETS

Face data is a typical high-dimensional data, and how to
find the feature points of face has been a hot research area
of dimensionality reduction. FMPE algorithm uses the form
of potential entropy to represent the features of human face
data, and finds the points with great potential energy as the
recognition feature for face recognition. In order to verify the
effectiveness of the algorithm, this paper does some exper-
iments and Analysis on three general face databases ORL,
Umist and AR_database.

Table 9 shows the number of features selected by the orig-
inal dimension Fnum and FMPE algorithm in three general
face databases.

The accuracy of face recognition using 7 dimensionality
reduction methods is shown in Table 10.

It can be seen, the classification accuracy of FMPE are
more than the most feature selection strategy. FMPE can
choose a subset of features with high discrimination.

IV. CONCLUSION

New technology changes, such as the end to end transmission
of the Industrial Internet of things, have pushed mankind to
an era of great information [31]. However, in the face of the
electronic information of the multitude, they are at a loss, how
to acquire the information we need is an urgent problem [32].
In feature selection, eliminating important features can lead to
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lower performance of the learning algorithm. For supervised
classification, an efficient feature subset selection mechanism
can improve the performance of classifier. The importance of
features is an important basis for feature selection, accord-
ing to the importance of the existing feature measurement
algorithm on the features of physical distribution and spatial
distribution of sample points to consider fewer problems,
this paper puts forward a new measurement algorithm based
on entropy FMPE features of potential importance. FMPE
calculates the entropy of each feature by the intra class and
inter class potential values. According to the hierarchical
clustering algorithm, select those relatively important fea-
tures, forming the best subset of features. Compared with
FMPE and PCA, LDA algorithm, the overall performance
of FMPE is better than the latter two algorithms. Combining
FMPE with a variety of classifiers, the classifier can effec-
tively improve or maintain the classification accuracy of the
classifier on the basis of reducing the data dimensionality.
Comparing the FMPE and the commonly used feature selec-
tion algorithms, the average classification accuracy of the
feature subset selected by FMPE is the highest. Although
the classification accuracy of FMPE is satisfactory, there is
still room for improvement in terms of the data specificity
and the selection of feature subsets [33]. However, the pro-
posed FMPE and related experimental analysis also proved
the feasibility of using the potential entropy to measure the
importance of features, which laid the foundation for further
research.
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