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ABSTRACT A single radio frequency (RF) channel digital beamforming (DBF) array antenna based on
compressed sensing (CS) was proposed to reduce the hardware costs, power consumption, and the design
complexity of large-scale DBF systems. For DBF antenna systems, the general way to obtain the signals
received by each sensor is to connect each sensor to an independent RF receiver channel. When the array
contains a large number of sensors, themultichannel signal sampling schememakes the system power hungry
and expensive. A time sequence phase weighting (TSPW) technology provides a solution to this problem.
The TSPW antenna array can obtain the signals received by each sensor with only one RF receiver channel by
sequentially sampling the specific single channel signals, which are produced by the TSPW array. However,
the number of single channel samples scales linearly with the number of sensors. The sampling time will
be so long as to be unacceptable when the array contains a large number of sensors. To overcome this
problem, we introduced CS theory to the TSPW array. With the help of CS, the sampling frequency can be
simultaneously reduced in both time and spatial domain, which correspond to the reduction of the number of
both the samples and sensors. Theoretical analyses have been proposed to show the conditions that should
be met for successful reconstruction. The simulation results from an X-band array with an aperture size
of 80λ under the signal-to-noise ratio of 15 dB and the scenario of six targets showed that the proposed array
could save above 63.1% of sensor numbers and above 84.4% in sampling time when compared with those
of conventional TSPW arrays.

INDEX TERMS Single RF channel, cost-effective antenna array, compressed sensing, digital
beamforming (DBF).

I. INTRODUCTION
Many modern communication and radar systems such as
5th generation wireless systems (5G), underwater sonar
systems, and personal radar systems are equipped with
large-scale antennas to improve the performance of the sys-
tems [1]–[3]. The signals received by each antenna element
should be obtained for further signal processing. The tradi-
tional way to obtain these signals is to connect each array
element to an independent radio frequency (RF) receiver
channel, as shown in Figure 1. Therefore, the number of RF
receiver channels has to be equal to the number of antenna
elements, which usually makes the antenna systems compli-
cated, bulky, and costly [4]–[6]. Moreover, the channel uni-
formity will significantly affect the system performance [7].

Many efforts have been made to reduce the hardware cost
and the design complexity of the digital beamforming (DBF)
systems in the past. An effective approach was presented by
reducing the multiple RF receiver channels to a single RF
receiver channel [8]–[10]. One feasible single RF channel
solution is the single channel time sequence phase weight-
ing (TSPW) array [11], as shown in Figure 2. The antenna
part is a fully filled uniform antenna array that satisfies the
spatial Nyquist sampling rate. Each array element is followed
by a reflected-type 0/π phase shifter. Next, the original array
signal X is weighted by the phase shifter. For a conven-
tional TSPW array with N sensors, these shifters change
state N times in one single channel sampling cycle Tsingle
to produce N correlated single channel outputs. The single
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FIGURE 1. Block diagram of a classical multichannel digital
beamforming (DBF) array with N antenna elements.

FIGURE 2. Structure and signal processing flowchart of a conventional
single radio frequency channel time sequence phase weighting digital
beamforming array.

channel outputs are received by one coherent RF receiver
channel. One weighting state corresponds to one single chan-
nel sample. The weighting values in a Tsingle constitute a
Walsh-Hadamard matrix W. The single channel output is
the summation of the weighted array signals and can be
written as:

Y =WX (1)

Since the matrix W is an orthogonal matrix and the inverse
matrix of W is W−1 = W/N , the original array signals can
be recovered by

X̃ =W−1Y =
1
N
WY (2)

According to the Parseval’s theorem, the energy of the
recovered signal in (2) is equal to that of the original array

signal X in (1). There is no signal to noise ratio (SNR)
degradation after processing [12]. The TSPW technology
was used first in a real X-band phased antenna array radar
system to realize angular super resolution [13]. In their works,
the TSPW technology was adopted in a normal phased array
to grant the phased array angular super resolution capac-
ity. The angular resolution was improved by a factor of
two under SNR ≥ 18 dB. An independent multi-beam DBF
antenna array based on the TSPW technology was realized
in [11] to synthesize eight orthogonal beams according to
the fast Fourier transform (FFT) procedure. The hardware
implementation details have been described.

However, the TSPW array still runs into some challenges
for practical applications. One of the most important chal-
lenges is the real-time processing problem [14]. The conven-
tional TSPW array uses the Walsh-Hadamard matrix, which
is an orthogonal square matrix, as the weightingmatrix. Thus,
it restricts the number of phase weightings to be equal to
the number of antenna elements. In other words, the signal
channel sampling time of the conventional TSPWarray scales
linearly with the number of antenna elements. Thus, it will
cost toomuch time to obtain enough single channel samplings
for recovering the original signal when dealing with large-
scale array antenna applications.

Compressed sensing (CS) theory has been widely stud-
ied as it shows that the sparse or compressible signals and
images can be correctly recovered with sub-Nyquist rates.
Since the array signal is compressible [15]–[19], it can be
used in array signal processing for reducing the hardware
and software costs. A CS array architecture, which applies
CS in the spatial domain, is proposed in [20]. All outputs
from the array elements are randomly projected to a few
receiver channels, then the full array aperture distribution
can be recovered by the observation data. In [21], the analog
to digital converter (ADC) of the receiver channels were
replaced by an analog to information convertor (AIC). The
AIC can obtain the signals with the sub-Nyquist rate [22].
However, the main drawback of these schemes is that the
projection circuit that transforms the original array signals
into compressed signals is too complex to be configured.
An improvement method was proposed in [23] to simplify the
projection circuit, which exploited the structure of the single
channel TSPW array so that the complexity of the projection
circuit was reduced. However, this scheme restricted the num-
ber of antenna elements to be equal to the number of normal
multichannel array elements.

In this paper, we merged the signal obtaining principle of
the CS theory and the hardware implementation method of
the TSPW array to produce a single RF channel spatial-time
compressed sensing (STCS) antenna array. It possessed both
the low cost and low power consumption properties of the
conventional TSPW array, and could also effectively reduce
the single channel sampling time and the number of sensors
by exploiting the sparse property of the array signals with the
help of CS theory. There are three main differences between
the proposed array and the conventional TSPW array.
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First, the proposed array employs a sparse antenna array
to sample the spatial signals to further reduce the number
of sensors for a fixed aperture size. Second, the weighting
circuit produces a random Bernoulli matrix rather than a
Walsh-Hadamardmatrix to compress the array signals. Third,
the problem of obtaining the original array signals is now
described as a Lasso problem, which can be solved by sparse
signal recovery algorithms.

The rest of this paper is organized as follows. In Section II,
the structure and signal processing algorithm of the pro-
posed array are presented. Theoretical analyses of the con-
ditions that should be met for successful reconstruction are
given in Section III. Numerical simulations are presented in
Section IV. Finally, conclusions are drawn in Section V.

FIGURE 3. Structure and signal processing flowchart of the proposed
array. The red lines highlight the differences between the conventional
TSPW array and the proposed array.

FIGURE 4. Comparison between the conventional TSPW array and the
spatial-time compressed sensing array.

II. PROPOSED SYSTEM
A. ARRAY STRUCTURE AND SIGNAL
PROCESSING FLOWCHART
The array structure and signal processing flowchart of the
proposed array are illustrated in Figure 3. In this scheme,
the antenna is composed of M (M < N ) elements selected
randomly from an N -element fully filled array. In other
words, the N -M sensors are removed. The removal process
is illustrated in Figure 4. The elements at the edge of the
array should be retained to preserve the original aperture size

of the original fully filled array. According to this construc-
tion method, a sparse antenna array can be produced. Since
the hardware implementation and signal processing method
of single RF channel technology is independent of antenna
structure, we only use a linear array for demonstration pur-
poses and provide an example in Section IV to show that
the proposed array and signal recovery method were also
compatible with the planar array.

The angle-dependent spatial signals are first sampled
by the sparse array with M sensors. The outputs of each
element were then randomly weighted by the reflected-type
0/π phase shifters. The signals after weighting were then
combined and received by only one RF receiver channel.
In contrast to the conventional TSPW array that requires
N weighting operations to obtain N single channel sam-
ples for signal recovery, the proposed array required only
L(L < N ) weighting operations. The weighting values con-
stituted a uniform Bernoulli matrix with independent and
identically distributed random variables. With the help of
the proposed array structure, the sparse property of the array
signal could be exploited in both spatial and time domains.

The signal recovery problem of the conventional TSPW
array is a problem of solving systems of linear equations.
However, since the number of phase weightings L is less
than the number of array elements N , the signal recovery
problem of the STCS array is that of solving underdetermined
equations. This problem can be solved by the sparse signal
recovery algorithm according to compressed sensing theory
as the array signal is compressible.

B. SIGNAL PROCESSING METHOD
Let xF (t) = [x0 (t), x1 (t), · · · , xN−1 (t)]T denote the base-
band original array signal of a N -element fully filled array
at instant time t , where [·]T denotes the transpose opera-
tion. Consider K as the far-field narrowband signals uk (t),
k ∈ 1, 2, · · · ,K , from directions θk impinging on the array.
The signal xF (t) can be expressed as

xF (t) =
K∑
k=1

uk (t)a(θk )+ n(t) (3)

where n(t) is the noise vector, uk(t) is the baseband signal;
and a(θk ) is the angle-dependent directional vector of the
kth target which can be expressed as

a(θk ) =
[
1, ej2πd sin(θk )/λ, . . . , ej2π (N−1)d sin(θk )/λ

]T
(4)

where d is the spacing of adjacent elements; λ is the wave-
length and [·]T denotes the transpose operation.
The fundamental assumptions of this paper were that the

targets had no or little relative velocity; otherwise, motion
compensation processing should be added. This is another
research topic of the TSPWarraywhichwas beyond the scope
of this paper. The radar cross-section was constant from pulse
to pulse, but varied independently from frame to frame with
variance σ 2

k , namely, it obeyed the Swerling Case I model.
In other words, the amplitude and phase of the baseband
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array signals after being sampled by the coherent RF receiver
channel were not changed during the single channel sam-
pling procedure. Based on these assumptions, we suppressed
the common time dependency of xF (t) in (3) and adopted
the notation xF to denote the original array signal, which
was the same as that in [24] for simplicity. Thus, the major
goal of this paper is to correctly obtain the original array
signal xF with less single channel sampling time and fewer
sensors than those of a conventional TSPW array.

For a given phase weighting rate, the number of weight-
ing operations L, which corresponds to the number of
single channel samples, is related to the single channel sam-
pling time. Thus, in the following portions of this paper,
we use the number of single channel samples L to charac-
terize the single channel sampling time. Monopulse radar
is selected as the research platform like that used in [13].
The weighting operation rate is equal to the pulse repetition
frequency (PRF).

Decompose the angle range from −90◦ to 90◦ into P
parts, where P denotes the number of grids and satisfies
P ≥ N > K . Let θ =

{
θ0, θ1 · · · , θP−1

}
be the set of

angle sampling grid. Each grid denotes a potential source
location. Since the TSPW array and the STCS array had the
same aperture size, the physical angular resolution was the
same. The algorithm angular resolution of the STCS array
is associated to the number of grids P. When P equals N ,
then the algorithm angular resolution equaled the Rayleigh
resolution. Angular super-resolution can be achieved when
selecting P to be larger than N . Increasing the number of
grids can obtain a better sparse approximation. However,
it also increases the mutual coherence which will lead to the
degradation of the recovery performance. Details about the
selection of this parameter will be discussed in Section III.

A matrix A
(
θ
)

based on the steering vectors corre-
sponding to all potential source locations was constructed
as A

(
θ
)
=
[
a
(
θ0
)
, a
(
θ1
)
, · · · , a(θP−1)

]
. One might raise

the objection that the real direction-of-arrival (DOA) of the
target may not come from the angle grid set θ . Actually,
this is another important research topic that is called the
off-grid problem. The works in [25]–[27] can be used by
the STCS array to deal with this problem. This was beyond
the scope of this paper, so this discussion is not continued.
The direction-of-arrival of the target was assumed to have
come from θ , and was denoted as θk ∈ θ , to simplify the
analysis. In the presence of noise, the original array signal xF
can be expressed in sparse form as

xF = A(θ̄ )V+ e (5)

where V is the sparse projection vector; and e is the noise
vector. Since the number of targets is K , the number of
nonzero entries of V is also K . With (5), the original array
signal xF is expressed by a transform matrix A

(
θ
)
and a

sparse projection vector V.
In contrast to the sampling methods used by the classical

multichannel DBF array and the TSPW array, the proposed

array takes two steps to compress and sense the original array
signal. The first step is to sample xF with a sparse antenna
array in the spatial domain. The positions of the sensors of the
sparse antenna array are randomly distributed. The output of
the sparse array xS = [x ′0, x

′

1, · · · , x
′

M−1] can be considered
as a random sampling of the original array signal. According
to (5), it can be written as

xS = AS (θ̄ )V+ eS (6)

where AS (θ ) is the transform matrix of the proposed array,
which is obtained by selectingM rows fromA

(
θ
)
according

to the positions of the retained sensors. eS is the noise vector.
The second step takes place in the time domain. The output of
this step is the single channel samplings, which are denoted
as an L-dimensional vector y′ = [y′0, y

′

1, · · · , y
′

L−1]
T . Let

wl = [w′0 (l) ,w
′

1 (l) , · · · ,w
′

M−1 (l)], l ∈ {0, 1, · · · ,L − 1},
denote the vector of the lth phase weighting state. After L
phase weighting operations, the weighting values constitute
a random Bernoulli matrix WS , which is usually called a
measurement matrix. The single channel samplings y′ can be
expressed as

y′ =WSxS =WSAS (θ̄ )V+ e′S (7)

where e′S = WSeS is the measurement noise. According
to (5), if the sparse projection vectorV can be estimated from
the single channel samplings y′, the original array signal xF
can be obtained.

The number of phase weightings L is less than the number
of array elements N , which leads (7) to be underdetermined
equations. The solution of (7) is not unique. However, since
we have prior knowledge about the projection vector V,
which is a K -sparse vector, the sparse signal recovery algo-
rithm can be used to solve the problem. Finding the sparse
projection vector V from the single channel samplings y′ is a
Lasso problem. The estimation of V is obtained by solving a
l1-norm minimization program as

V′ = arg min
V

∥∥WSAS (θ̄ )V− y′
∥∥2
2 + µ ‖V‖1 (8)

where µ > 0 is the regularization parameter corresponding
to the noise power; and V′ is the recovered sparse projection
vector.

So far, the sampling and signal processing method for
acquiring the original array signal by using the STCS array
has been established. Equation (8) has already been written
as the standard form of the sparse signal recovery problem
and it can be solved by any sparse signal recovery algorithm.
For example, the basis pursuit denoising (BPDN) sparse
signal reconstruction algorithm can be used for obtaining a
good reconstruction performance. If the Rayleigh resolution
is achieved, then the computational complexity associated
with the SCTS array isO(N 3). The orthogonal matching pur-
suit (OMP) algorithm can also be used to solve the problem.
The computational complexity ofOMP associatedwith STCS
array isO(KLN ). However, the performance is not as good as
that of BPDN. Since the processing time ismore important for
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the STCS array, we chose to sacrifice recovery performance
for speed. The band-excluded Locally Optimized Orthogonal
Matching Pursuit (BLOOMP) algorithm [28], which is a
variant of the OMP, was adopted to solve the above problem.
The computational complexity was equal to that of OMP.
Since the computational complexity of the conventional
TSPW array, which uses the Walsh-Hadamard transforma-
tion, was O(N 2), the computational time of these two arrays
was expected to be approximately the same. The BLOOMP
algorithm can also be replaced with Fast OMP algorithm to
reduce the computational complexity to O

(
NK 2

)
. On the

other hand, since the weighting operation rate equaled the
PRF and the single channel sampling time could not be
reduced by parallel processing, the sampling time dominated
the entire processing time. Thus, the reduction of the number
of single channel samples will provide more contributions
than the reduction of computational complexity for enhanc-
ing the real-time processing capability of single RF channel
DBF systems.

After obtaining the recovered sparse projection vector V′,
the original array signal can be obtained by

x′F = A(θ̄ )V′ (9)

where x̃′F is the recovered array signal. If the recovery is
successful, it will contain the same target information as that
of the original array signal xF .

III. THEORETICAL ANALYSES
In the previous section, we showed the array structure and
the array signal recovery method of the single RF channel
STCS array. However, using the CS theory to compress and
successfully recover the original signal is conditional; there-
fore, the original array signal is not always correctly obtained
by the STCS array in all cases. In this section, we present
the conditions for successful reconstruction so that the STCS
array should meet.

The sparse/compressible property of the original array
signal enables the possibility of successful reconstruction
with the compressive sampling [15]–[19]. The number of
signals K affects the sparse property of the array signal.
Compressive sampling of the STCS array is implemented by
the sparse array antenna and the Bernoulli weighting circuit,
which corresponds to the transform matrix and the mea-
surement matrix, respectively. According to CS theory, the
measurement matrix and transform matrix must be selected
to satisfy the same properties to guarantee successful recov-
ery [29]–[31]. For the STCS array, the transform matrix is
based on the directional vector. The number of sensors M
and the number of grids P determines the property of the
transform matrix, which will affect the sparse representation
of the array signal. The measurement matrix is based on
the uniformly distributed random variable. The number of
single channel samples L determines the property of the
transform matrix. In summary, the relative relations among
the parameters K ,M , P, and L will affect the performance of
the reconstruction. The signal-to-noise-ratio (SNR) can also

affect the performance of reconstruction since the observa-
tion noise can contaminate the sparse projection vector to
degrade the sparse property of the array signals. Since we
have not proposed a new sparse signal recovery algorithm,
the quantitative analysis of the impact of noise is not included
in this paper. However, we have still provided an example in
Section IV to qualitatively describe how the noise impacts the
performance of the STCS array.

According to Section II.B, the measurement matrix and
transform matrix of the STCS array are denoted as WS and
AS (θ ), respectively. The equivalent observation matrix 6 is
6 = WSAS (θ ). Theoretical studies in [32] showed that if
the equivalent observation matrix6 obeys the uniform uncer-
tainty principle (UUP), then the successful reconstruction can
be expected by solving the convex optimization problem

min ‖V‖1 subject to
∥∥y′ −6V∥∥2 ≤ η (10)

where η is the regularization parameter corresponding to the
noise power, which satisfies ‖e′S ‖2 ≤ η. Although the forms
of Equations (10) and (8) are different, they actually solve
the same problem. A necessary condition for the equivalent
observation matrix6 to conform to UUP is that the matrix6
has a small constrained isometry constant (RIC). The K -RIC
of the matrix6, denoted by δK (6), is defined as the smallest
quantity satisfying [32]

(1− δK (6)) ‖V‖22 ≤ ‖6V‖
2
2 ≤ (1+ δK (6)) ‖V‖22 (11)

for all V ∈ CP. Specifically, if the matrix 6 satisfies
δ3K (6)+3δ4K (6) < 2, then the recovered sparse projection
vector V′ and the real sparse projection vector V have the
following relationship∥∥V′ − V

∥∥
2 ≤ Cη (12)

where the constant C depends only on the K -RIC. Thus, the
parameters of the STCS array needed to be set to let the
equivalent observation matrix 6 have a small RIC.
According to Section II.A, the measurement matrix is an

L ×M Bernoulli matrix that satisfies

P(
∣∣∣‖WSV‖22 − ‖V‖

2
2

∣∣∣ ≥ ε ‖V‖22) ≤ 2e−c
L
2 ε

2
, ε ∈ (0, 1/3)

(13)

where c > 0 is a small constant. Based on the concen-
tration inequality, if the RIC of the transform matrix AS (θ )
is δK (AS (2)) and the number of single channel samples L
satisfies [33]

L ≥ Cγ−2
(
K ln(

P
K
)+ ln(2e(1+

12
γ
))+ ζ

)
(14)

for some γ ∈ (0, 1) and ζ > 0. Then, the matrix 6 has RIC

δK (6) ≤ δK (AS (2))+ γ (1+ δK (AS (2))) (15)

with probability, at least 1-e−ζ . Thus, for fixed γ and ζ , if the
single channel samples L satisfies

L ≥ C0K ln(
P
K
)+ C1 (16)
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Then, the RIC of matrix 6 is restricted by the RIC of the
transformmatrixAS (θ ). Equation (16) shows that the number
of single channel samples L should satisfy the logarithmic
relation with the number of angle grids P and the number of
targets K for successful reconstruction. The more targets to
be detected or the greater number of grids to be decomposed,
a greater number of single channel samples is needed.

Directly calculating the RIC of the matrix AS (θ ) is non-
deterministic polynomial (NP) hard [34]. According to [33],
the K -RIC of the matrix AS (θ ) satisfies

δK (AS (θ̄ )) ≤ (K − 1)µ(AS (θ̄ )) (17)

where µ(AS (θ̄ )) is the coherence, which is defined as

µ (AS (2)) = max
0≤i<j≤P−1

∣∣aS (θi)T aS (θj)∣∣
‖aS (θi)‖2 ·

∥∥aS (θj)∥∥2 (18)

where aS (θi) is the column ofAS (θ ). The coherence measures
the largest correlation between any two columns of AS (θ ).
WhenAS (θ ) is an orthogonal matrix, thenµ(AS (θ̄ )). Relative
to RIC, the coherence is more easily calculated; however,
the value range of the coherence still cannot be determined
in advance when designing the array.

According to the array antenna design theory [35], if the
array elements are isotropic and the amplitude weights are the
same, then the normalized beam pattern of the sparse array
pointed at θ0 is

B(θ0, θ) =
1
M

M∑
m=1

e−j
2π
λ
rm[sin(θ )−sin(θ0)], θ ∈ [−90◦, 90◦]

(19)

where rm is the distance of the mth elements relative to
the reference element. The normalized power pattern of the
sparse array is F (θ0) = |B(θ0, θ)|2. When (18) was com-
pared with (19), we found that the coherence was essentially
the maximum value of the square root of the normalized
power pattern of the sparse array (θ 6= θ0) pointed at the
direction θ0.

If the aperture size of the array is D, to retain all informa-
tion of the array without aliasing, the maximum angle bin of
the set θ should be 1θmax = arcsin(λ/D) and the minimum
number of grids is Pmin = N = 2D/λ + 1. More grids
provide a better sparse approximation while also requiring
more of memory and computation resources. If 1θmax → 0,
which means the P → ∞, then we have → µ (AS (2)) 1,
which will seriously degrade the recovery performance [36].
Thus, to reduce computational complexity while maintaining
a good sparse approximation, we set the number of the grids
P = Pmin to let the algorithm angular resolution of the STCS
array equal to the Rayleigh angular resolution. The multires-
olution grid refinement technology in [17] can be adopted to
realize angular super resolution. If 1θmax = arcsin(λ/D),
then the set of angle sampling grid is θ = arcsin[2(p−N0)/N ],
p = 0, 1, . . . , 2N0, whereN0 = bN/2c. means round towards
zero. At this point, the coherence µ (AS (2)) is just the
maximum sidelobe level of the square root of the normalized

power pattern pointed to 0◦. The square root of the power
pattern is also known as the amplitude pattern in the antenna
design field.

In general, the aperture size of the array antenna is related
to the physical angular solution and is always set according
to a specific application problem. At this point, the ampli-
tude pattern of the random sparse array can be seen as a
random process of the locations of the element. For the STCS
array, the probability that the normalized pattern sidelobe
level (NPSL) of the amplitude pattern is less than the expected
maximum sidelobe level α is

P (NPSL < α) =
[
1− exp(−Mα2)

]
· exp

(
−
2D
λ

√
πM
3
α exp(−Mα2)

)
(20)

FIGURE 5. Probability that the normalized pattern sidelobe level (NPSL)
of the amplitude pattern less than the expected maximum sidelobe
level α.

Figure. 5 shows the curves about P (NPSL < α) and Mα2

when the aperture size D is 50 λ, 90 λ, 128 λ, 180 λ, 256 λ,
400λ, and 800λ, respectively. It can be seen that under the
same aperture size and probability, the number of elements of
STCS arrayM is inversely proportional to NPSL. The greater
the number of array elements, the lower the coherencewill be.
It should be noted that the locations of the elements of (20)
is arbitrary, which means that the spacing of the adjacent
elements may be less than 0.5 λ. This construction method
will increase the mutual coupling and the design complexity.
To overcome these problems, the array construction method
described in Section II.A is used. Figure 6 shows the max-
imum sidelobe level α as a function of the number of array
elements M when P (NPSL < α) = 0.9. For different aper-
ture sizes, the mean of maximum sidelobe levels of 1000 ran-
domly generated STCS array are also given. This showed
that the maximum sidelobe levels of the arbitrary distribution
array were all higher than those of the sparse distribution
array and the trend was the same. Therefore, Equation (20)
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FIGURE 6. Maximum sidelobe level α as a function of the number of
array elements M when P

(
NPSL < α

)
= 0.9. ‘‘Arbitrary’’ denotes the

theory result of arbitrary distribution array according to Equation (20).
‘‘Sparse’’ denotes the empirical results of the sparse distribution array.

can be used to give a crude estimation of the coherence.When
M →2D/λ + 1, the transform matrix AS (2) tends to be an
orthogonal matrix and the coherence µ (AS (2)) → 0. For
a fixed number of elements, increasing the aperture size will
also increase the coherence, which will certainly degrade the
recovery performance [36].

Finally, we provide a summary of this section. The STCS
array was based on the compressed sensing theory with the
support of the TSPW array hardware. For a given aperture
size D, when the number of single channel samples L and
sparse array elementsM satisfied certain conditions, the orig-
inal array signal xF was correctly recovered by the STCS
array with any sparse signal recovery algorithms. The condi-
tions that the number of elementsM should satisfy are given
by (20). The constraint of L is given by (16).It should be
pointed out that the theoretic boundaries for correct recon-
struction based on the coherence are very loose. The empiri-
cal performance is usually much better than the theoretical
bound. Similar phenomenon has been found in [37]–[40]
when solving different problems. The details of the analysis
of this phenomenon can be referred from the corresponding
literature. Therefore, we did not expect the theoretical bounds
to give exact parameters for obtaining a very tight bound.
However, the relative constraint relations of these parameters
given by the theoretical models can be used to guide the
analysis and design.

IV. NUMERICAL SIMULATION
The goal of the STCS array is to correctly obtain the original
array signal xF with fewer single channel samples and sensors
than those of a conventional TSPW array. Thus, we first
evaluated whether the signal xF could be obtained correctly
by the STCS array before examining the conditions for suc-
cessful reconstruction. Finally, the direction of arrival (DOA)

estimation problem was used to compare the performance of
the STCS array with that of the other arrays.

A. ARRAY SIGNAL SAMPLING AND RECOVERY
Consider that the original array signal xF come from
an x-band fully filled array antenna with aperture size
D = 128 λ. The adjacent element spacing was 0.5 λ.
The number of elements of the fully filled array N = 257.
The sparse array was generated by randomly selecting
M = 100 elements from the fully filled array. The number of
targets K = 4. The input SNR was 15 dB. Figure 7 shows
the true and reconstructed array signals, respectively. The
original array signal was correctly obtained with L = 50
single channel samples. If we used L = 10 single channel
samples, the information of the original array signal was lost.

FIGURE 7. Original and recovery array signals. (a) and (b) come from
the same trial where all of the information of the target was correctly
recovered. (a) shows the signals and (b) shows the sparse projection
vector. (c) and (d) came from the same trial that the information of
target was not correctly recovered.

Figure 8 shows an example of the planar array to demon-
strate that the proposed array and signal processing method
had no relation to the antenna structure. The recovered array
signal will be used to perform digital beamforming. If the
recovered array signal is correct, then a peak will appear
at the direction of the target when we scan the beam in
digital domain. However, if the signal is incorrect, the beam
will not be formed or will point to the wrong direction.
In the experiment, the original array signal xF came from
a fully filled planar antenna which had 33 × 33 elements.
The azimuth angle and the elevation angle of the target are
10.5◦ and −21.3◦, respectively. It is shown that the DBF
radiation pattern of the STCS array is correct. To obtain the
original array signal, the conventional TSPW array requires
1089 elements and 1280 single channel samples. However,
for the STCS array, only 60 single channel samples and
300 elements are used.
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FIGURE 8. Digital beamforming with the planar array. (a) Locations of the
sensors of the TSPW array. (b) Locations of the sensors of the STCS array.
(c) Baseband DBF radiation pattern of the TSPW array. (d) Baseband DBF
radiation pattern of the STCS array.

B. PERFORMANCE ANALYSIS
In this section, the Monte Carlo method was used to eval-
uate the performance of the STCS array. In one trial, if the
reconstruction array signal x̃′F contained the correct target
information, then this trial was considered to be successful,
otherwise failed. The successful reconstruction probability
was defined as

PA = Qs/QA (21)

where QA is the number of total trials; and Qs is the number
of successful trials.

In the first experiment, the original array signal xF was
assumed to be come from the same array as that used in
Section IV.A. According to the relations of the number of
sensors and the expected maximum sidelobe level shown
in Figure 5, we usedM = 100 elements to achieve a random
sparse array to constrain the coherence to no greater than 0.2.
The curves about the relation of PA and the number of single
channel samples L are shown in Figure 9.

It was found that for a fixed number of targets, the num-
ber of single-channel samples L had a positive proportional
relationship with the correct reconstruction probability PA.
The greater the number of targets contained in the original
array signal, the greater the number of samples needed to
correctly recover the original signals with high probabil-
ity. Figure 10 shows the required single channel samples L
as a function of the number of targets K when the cor-
rect reconstruction probability was greater than 95%. The
black dotted line is the linear regression curve drawn based
on the experimental results. The curve equation is L =
1.7K ln(N /K ) + 4.51. It was found that the equation of the

FIGURE 9. Successful reconstruction probability PA as a function of the
number of single channel samples.

FIGURE 10. Required single channel samples L as a function of the
number of targets K when the correct reconstruction probability is
greater than 95%.

regression line was consistent with the theoretical model
description in (16).

According to the analyses of Section III, for a fixed number
of antenna elements, the increase in aperture size degrades
the performance of the STCS array. Figure 11 shows the
reconstruction results when the aperture of the array was
enlarged from 128 λ to 256 λ.

As seen from the figure that if the number of target was
16 and the aperture size was 128, PA = 90% can be achieved
with 50 single channel samples. Under the same conditions,
with the exception of increasing the aperture size to 256 λ, the
PA significantly decreased to 42.7%. It reached 92% again
when L = 60, which increased by 20% when compared
with 50.

Next, we fixed the number of targets to eight to examine the
impact of noise on the array performance. Figure 12 shows
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FIGURE 11. Successful reconstruction probability PA as a function of
number of single channel samples L when two STCS array have the same
number of sensors and different aperture size.

FIGURE 12. Successful reconstruction probability PA as a function of
signal to noise ratio (SNR).

the PA as a function of signal-to-noise-ratio (SNR) when
the number of single channel samples was 30, 45, and 50,
respectively. It can be seen that the STCS array was sensi-
tive to the noise. When the SNR was at a reasonable level
such as SNR ≥ 5 dB, the original array signal could be
correctly reconstructed with high probability. However, when
the SNR was at a low level, for example, SNR < −5 dB,
the signal could not be effectively recovered. The successful
reconstruction probability may go to zero, which means that
the STCS array becomes invalid. This was quite different
from the conventional TSPW array where SNR did not affect
the recovery. This was mainly because the sparse projec-
tion vector V will be severely contaminated by the noise
in the low SNR scenario. The increment of the nonzero
entries inVwill significantly decrease the performance of the
sparse signal recovery algorithm that the STCS array adopted.

FIGURE 13. Root mean square error (RMSE) as a function of signal to
noise ratio (SNR).

With the improvement of SNR, PA gradually rises to an
acceptable level.

Finally, we compared the signal obtaining performance
of the STCS array with the classical TSPW array and the
multichannel array. Obtaining the array signals with different
types of arrays can be considered as a problem of estimating
the array signal with a different operator. One snapshot of
the classical multichannel array obtained by a parallel sam-
ple was able to be an estimator. However, the one snapshot
estimator is not good since it only used one set of data. The
variance of this estimator was equal to the variance of noise.
A good estimator was the sample mean of multiple data.
It was easy to demonstrate that the sample mean estimator
attained the Cramer-Rao lower bound (CRLB). Compared to
multichannel systems, single channel systems require multi-
ple observations to obtain a signal equivalent to one snapshot.
Therefore, within the same sampling time, the estimation
performance of the single channel arrays will certainly be
weaker than the ample mean estimator of the multichannel
arrays. However, due to the use of multiple snapshot data,
the noise has been smoothed and the performance will be
better than that of the one snapshot estimator. Since the STCS
array requires fewer samples than that of the TSPW array to
obtain the signals, the estimation performance of the STCS
array is expected to be better than the TSPW array within the
same sampling time. Assume the aperture size is 80 λ and
number of the target is 1. The number of the sensors of the
classical TSPWarray,multichannel array, and the STCS array
was 161, 161, and 80, respectively. To guarantee the signals
were correctly reconstructed with high probability, the num-
ber of single channel sampleswas set at 40. According to [13],
since the number of sensors of the TSPW array was not equal
to the dimension of the Walsh-Hadamard matrix, the TSPW
array required at least 192 single channel samples to obtain
the original array signal. Thus, for purposes of comparison,
we set the total sampling time as equal to the time needed
for 192 single channel samples. Figure 13 illustrates the
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root-mean-square error (RMSE) of these estimators as a func-
tion of SNR. The RMSE is defined as

RMSEX =

√√√√ 1
N

N∑
n=1

∣∣x̃′ − xF
∣∣2 (22)

For each parameter setting, 500 Monte Carlo simulations
were performed.

It was seen that the results were consistent with the anal-
ysis. The performance was better than that of the TSPW
array and worse than that of the sample mean estimator of
the multichannel array. It should be noted that if the number
of targets was prior information, then the sparse projection
vector was filtered by retaining the K largest entries and
setting the other entries to zero. It was seen that the estimation
performance was improved significantly.

TABLE 1. Cost comparison among several array schemes.

C. COST COMPARISON WITH OTHER SCHEMES
Since the main advantage of the proposed array when
compared with the TSPW array is the sampling time
saving and the hardware cost reduction, Table 1 shows
a comparison between the conventional multichannel
array antenna (MAA), the Spatial MultIplexing of Local
Elements (SMILE) array [10], the conventional TSPW
array (TSPW) [11], the multichannel STCS array
(mSTCS) [21], the single channel time sequence CS
array (TSCS) [23], and the STCS array. Let all these arrays
have the same aperture size of 80λ. The number of targets was
chosen to be four and the SNRwas 15 dB. For each parameter
setting, 500 Monte Carlo simulations were performed. As the
array required signal recovery operation to obtain the original
array signal, the parameters were considered to be effective
when the probability of successful recovery was greater
than 95%.

It can be seen from Table 1 that the proposed array had
the minimum number of sensors, RF channels, and the ADCs
when compared with other array schemes. When the number
of targets was less than or equal to four, the number of
elements and the number of single channel samples that can
be saved was 63.1% and 84.4%, respectively, when com-
pared with that of the TSPW array. Although the required
number of samples of the proposed array was greater than
that of MAA, it was much lower than that of the TSPW
array. Since the recovery algorithm adopted in this paper

was a kind of greedy algorithm and the time complexity was
roughly equal to that of the conventional TSPW array which
uses the Walsh-Hadamard transform operator to recover the
original array signal, the saving of the number of samples was
approximately equivalent to the saving of system real-time
processing time.

FIGURE 14. DOA estimation result with STCS array. Two targets, which
were located closer than the Rayleigh resolution limit, were successfully
resolved.

D. ANGULAR SUPER RESOLUTION
In this section, the angular super resolution estimation of
the proposed array is evaluated. The aperture size was 80 λ.
The corresponding Rayleigh angular resolution was 0.72◦.
Assume that there are three targets in front of the array. The
directions are −15.12◦, −14.75◦, and −7.14◦, respectively.
The minimum angle interval is 0.37◦. The SNR is 15 dB. The
STCS array uses 60 elements and 30 single channel samples
to obtain the original array signal. The angular super resolu-
tion is realized by the multiresolution grid refinement tech-
nology proposed in [17]. It can be seen from Figure 14 that
these two targets, whichwere located closer than the Rayleigh
resolution limit, were successfully resolved.

Next, the Monte Carlo simulation method was used to
analyze the root mean square error (RMSE) of the estimated
angle. The RMSE is defined as

RMSE =

√√√√E(
1
K

K∑
k=1

(θ̂k − θk )2) (23)

where θ̂k and θk are the estimated value of the kth target;
and E(·) denotes the statistical expectation. The aperture size
was 80 λ. Since the multichannel array cannot use the mul-
tiresolution grid refinement technology, we applied the mul-
tiple signal classification (MUSIC) algorithm to both the
classical multichannel array and STCS array for comparison
purposes. Consider three narrowband uncorrelated sources in
front of the array. The directions of the targets are randomly
distributed between −60◦ and 60◦ in each trial. The STCS
array used 60 elements and 30 single channel samples to
obtain the original array signal. The number of snapshots of
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the multichannel array was 100. To obtain the same amount
of data for angle estimation, the total single channel samples
was set as 3000. Figure 15 illustrates the RMSE as a function
of the SNR.

FIGURE 15. RMSE as a function of the SNR.

It can be seen that the estimation results of the STCS array
approached the Cramer-Rao lower bound (CRLB) at high
SNR levels, whereas the performance was poor at low SNR
levels. The reason is that the signal could not be correctly
recovered in the low SNR scenario. Therefore, improving the
recovery performance of the signal reconstruction algorithm
at low SNR scenario is a future research topic.

V. CONCLUSIONS
In this paper, a cost-effective antenna array scheme based
on time sequence phase weighting (TSPW) technology and
compressed sensing theory was proposed to reduce the hard-
ware costs, power consumption, and design complexity for
large-scale antenna systems. The array exploits the sparse
property of array signals in both the spatial domain and time
domain with the help of a random sparse array and pseudo-
random phase shifter circuit. Structure and signal processing
flows have been proposed so that they can work properly
with less hardware cost and observation times than those
of the conventional TSPW array under some situations. The
simulation results, which conform to the theoretical analyses,
demonstrate the effectiveness of the proposed array. However,
the array cannot work properly when the array signal is
severely contaminated by noise.
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