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ABSTRACT This paper handles the optimal supervisory control problem of Petri nets (PNs) via two
PN structures, namely, weighted and data inhibitor arcs. It is a two-stage method. In the first stage, for
each transition that may lead to illegal markings, a set of observer places with weighted inhibitor arcs is
used to optimally control the maximal number of marking/transition separation instances (MTSIs) through
the proposed integer linear program. Then, the controlled MTSIs are removed from the set of MTSIs.
In the second stage, at each iteration, for anMTSI that cannot be controlled at the first control stage, we design
an optimal observer place with a data inhibitor arc. This process terminates after all theMTSIs are controlled.
The first-stage can sharply lower the computational burden compared with the method by using data inhibitor
arcs alone. Finally, a typical example is presented to shed light on this technique. The proposed control
strategy can definitely yield an optimal supervisor for any bounded PN on the premise that such a supervisor
exists.

INDEX TERMS Petri net, weighted inhibitor arc, data inhibitor arc, observer place, supervisory control.

I. INTRODUCTION
A discrete event system (DES) is a dynamic system with
discrete states and its transitions are triggered by events. The
DES is said to be controlled if its evolution is supervised
to satisfy a set of required specifications such as deadlock
avoidance and liveness enforcement. The most significant
and comprehensive control theory for discrete event system
is referred as to supervisory control theory (SCT) [37], [38]
that is extensively used in the synthesis of controllers of
DESs [15], [28], [45], [49], [51].

In general, according to SCT, given some qualitative con-
trol specifications and objectives, the behavior of a system
cannot violate them by adding suitable controllers to the
system. Since deadlock or blockingness can cause disastrous
results, maximal permissiveness or non-blockingness is usu-
ally selected as a significantly safe property for many DESs.
In this paper, maximal permissiveness is considered as the

supervisory control specifications of a system. Moreover,
the proposed work not only achieves the optimal deadlock
control requirement for a given system but also satisfies any
supervisory control requirement to a system. In the following,
when we say ‘‘optimal supervisor’’, it means ‘‘maximally
permissive supervisor’’.

In a DES, the utilization of limited system resources by
different processes can yield deadlocks [10]. It can be usu-
ally solved by three crucial mathematical tools such as Petri
nets (PNs) [5], [39], [40], [46], [50], automata [16], [17], and
graph theory [14], [53]. Among them, PNs are compact in
structure and widely used for modeling, analysis, fault diag-
nosis and scheduling [12], [46], [54]–[61]. Hence, a number
ofmethods have been developed to handle deadlocks by using
PNs [9], [13], [22], [23], [25], [29], [34], [35], [47].

There are three important criteria to evaluate a liveness-
enforcing PN supervisor, namely, behavioral permissive-
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ness, structural complexity, and computational complex-
ity in synthesizing a supervisor. An optimal supervisor
ensures the highest utilization of system resources. There-
fore, a lot of work focuses on designing optimal PN super-
visors [4], [8], [27], [36], [41]. Reachability graph (RG)
analysis is usually taken as an effective technique to achieve
such a control purpose in PNs [19], [24]. However, it is
subject to the notorious state explosion problem. Feng
[16], [17], and Nazeem [31]–[33] have made contribu-
tions to solve deadlock problems by using automata and
the obtained optimal deadlock avoidance strategies are opti-
mal. Different from their work, in this paper, the deadlock
problem is addressed in the PN framework by using RG
analysis.

An RG can be divided into two zones: a live-zone (LZ)
which contains all legal markings (LMs) and a deadlock-
zone (DZ) which includes all illegal markings. The theory of
regions [19], [41] that can derive PNs from a transition system
is a useful methodology to find an optimal pure net supervi-
sor. A pair of a markingM and a transition t forms a marking/
transition separation instance (MTSI) denoted by (M , t),
where M is an LM and t’s firing at M yields an ille-
gal marking. In an MTSI (M , t), M is called a danger-
ous marking and t is called a dangerous transition. The
main idea of the approach in [19] and [41] is to sepa-
rate transitions from dangerous markings. However, in this
case, the final supervisor may have too many control places
(monitors).

Uzam and Zhou [42], [43] present a representative iterative
deadlock prevention approach by prohibiting first-met bad
markings (FBMs). Specifically, let M1 be a marking in the
LZ, once a transition t fires at M1 and it yields an illegal
markingM2, thenM2 is called an FBM. This method is com-
putationally efficient since there is no need to compute mon-
itors by solving integer linear program (ILP). However, this
method cannot ensure the optimality of the final supervisor.
Inspired by [42] and [43], Chen et al. [1] propose an efficient
iterative approach to avoid deadlocks, which has two advan-
tages compared with the work in [42] and [43]. One is that it
can obtain an optimal supervisor if such a supervisor exists
by solving an ILP at each iteration. The other is that only a
subset of FBMs and LMs are considered, which is achieved
by employing a vector covering approach which can sharply
decrease the number of constraints in an ILP. In [2], a non-
iteration method is presented to obtain a compressed control
structure, namely minimal number of monitors, by solving
only one ILP. However, it cannot be applied to large-scale
systems because of too many constraints in the ILP. Later,
Huang et al. [21] alleviate the computational burden by elim-
inating redundant constraints of the ILP in [2] while preserv-
ing the behavioral optimality and the compressed structure of
the controlled net.

Actually, there exist net systems such that no pure net
supervisor can optimally control them. To solve this problem,
self-loops are introduced in [3] to design optimal supervisors
by solving ILPs. It needs to solve an ILP to derive an optimal

monitor with a self-loop connected to a dangerous transition
at each iteration. An MTSI (M , t) is said to be controlled
if t is disabled at M . The proposed ILP named MMP (the
maximal number of MTSI problem) can control the maximal
number of t-dangerous MTSIs associated with a dangerous
transition t . However, the work cannot guarantee that MMP
always has a solution with a positive objective value. When
there is no solution with a positive objective value for MMP,
it cannot obtain an optimal net supervisor for a system.
Chen et al. [6] improve their previouswork in [3] by assuming
that a monitor can associate with multiple self-loops. Com-
pared with [3], the work in [6] can find optimal supervisors
with fewer monitors and even the fewest monitors through
two proposed ILPs, namely the implementation of maximal
number of MTSIs (IMNM) and the minimization of the
number of control places (MNCP), respectively. However,
the ILPs may have no solution with a positive objective value
for some net models as the case in [3]. In [4], a novel net struc-
ture named interval inhibitor arcs is proposed for the design
of optimal monitors. Via such arcs, the method can derive an
optimal net supervisor that is structurally simple. Similarly,
this method needs to solve an ILP to obtain a monitor too,
and it does not ensure that the ILP can obtain a solution with
a positive objective value for any bounded net model either.
To solve this problem, in [7], a more general net structure
named data inhibitor arcs is developed to design an optimal
supervisor for any bounded net model if such a supervisor
exists. More importantly, each formed ILP has a solution for
any bounded net model [7], in other words, it can definitely
obtain an optimal supervisor for any bounded net model.
However, the drawback of this method is that it is inapplicable
for complex systems due to too many constraints in the ILPs.
Our previous work [11] proposes a novel optimal supervisor
structure composed of a set of observer places with weighted
inhibitor arcs, which can sharply reduce the number of con-
straints and variables in the ILPs compared with the work
in [3], [4], and [6]. The drawback of the work in [11] is that
there is no guarantee for finding an optimal supervisor for any
bounded PN.

This work presents a two-stage method for designing an
optimal supervisor. Although it does not lead to the simplest
supervisory structure, it is an efficient method to lower the
computational burden of the approach in [7]. In summary,
the main contributions of this work are as follows:

1) A two-stage method is presented to obtain an optimal
supervisor via both weighted and data inhibitor arcs.
The presented control strategy is applicable to any
bounded net system.

2) In the first stage, an ILP, namely the maximal number
of t-dangerous MTSIs problem (MNMP(t)), is pro-
posed to design an observer place with a weighted
inhibitor arc associated with t to control as many
t-dangerous MTSIs as possible. This process termi-
nates after all t-dangerous MTSIs are controlled or the
ILP has no optimal solution with a positive objective
value.
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3) In the second stage, another ILP, namely the controlled
t-dangerous MTSI problem (CTMP), is proposed to
find an observer place with a data inhibitor arc for each
t-dangerous MTSI that cannot be optimally controlled
in the first stage. It is significant that CTMP has a
solution for any bounded PN. Since we deal with one
MTSI at each iteration only, the computational burden
is greatly alleviated compared with the approach in [7].

The rest of the paper is organized as follows. Section II
exposes the preliminaries of PNs. Weighted inhibitor arcs are
formally defined in Section III. The computation of optimal
observer places with weighted inhibitor arcs is reported in
Section IV. In Section V, an ILP-based method is developed
as the first control stage to simplify the supervisory structures.
Section VI presents another ILP-based method as the second
control stage to ensure that an optimal supervisor can be
definitely obtained for any bounded PN model. A control
strategy is presented in Section VII. Experimental results
show the performance of the proposed control strategy in
Section VIII. Finally, Section IX concludes this paper.

II. PRELIMINARIES
For the sake of simplicity, the reader is referred to [30] for
some basics of PNs.

A. ANALYSIS OF RGs
Given deadlock-free control specifications, all of the mark-
ings in RG of a net (N ,M0) are partitioned into two cate-
gories: legal and illegal. In general, the set of LMs is defined
as

ML = {M |M ∈ R(N ,M0) ∧M0 ∈ R(N ,M )}. (1)

The set of illegal markings is denoted by ML defined as
ML = R(N ,M0)\ML . An MTSI is a pair of a marking
M and a transition t where t’s firing at M yields an illegal
marking. Thus, the set of MTSIs can be defined as

� = {(M , t)|M [t〉M ′ ∧M ∈ML ∧M ′ ∈ML} (2)

whereM is called a dangerous marking, whose set is denoted
byMD. Deleting all dangerous markings inML , the remain-
ing ones are good markings, whose set is defined as

MG =ML\MD. (3)

Let us consider a net example in Fig. 1(a) and its RG
in Fig. 1(b), where we have MG = {M0,M4,M7,M8,M11,

M12,M14}, MD = {M1,M2,M3,M6}, and � =

{(M1, t4), (M2, t1), (M3, t4), (M6, t1)}.
According to the definition of MTSIs, transitions can be

divided into two categories: dangerous and good ones, whose
sets are denoted by TD and TD, respectively, as follows:

TD = {t ∈ T |∃M ∈ R(N ,M0), s.t. (M , t) ∈ �} (4)

TD = {t ∈ T |@M ∈ R(N ,M0), s.t. (M , t) ∈ �}. (5)

In Fig. 1(a), the net has two dangerous transitions and four
good transitions, i.e., TD = {t1, t4} and TD = {t2, t3, t5, t6}.

FIGURE 1. (a) PN model and (b) its RG.

For a transition t , it can be enabled at some LMs and its
firing may yield legal or illegal ones. Hence, all LMs are
divided into two groups in [3].
Definition 1 [3]: Let M be an LM and t be a transition.

M is called a t-good marking if t is disabled at M or if M ′

in M [t〉M ′ is legal. M is called a t-dangerous marking if M ′

in M [t〉M ′ is illegal, whose sets are denoted by Gt and Dt ,
respectively.

For a set Gt , t can be fired at some t-good markings. Thus,
all of these markings can be divided into two categories:
t-enabled and t-disabled ones [3].
Definition 2 [3]: Let t be a transition and M be a t-good

marking. M is called a t-enabled good marking if M [t〉;
otherwise, it is a t-disabled one, whose sets are denoted by
Et and Et , respectively.

It is obvious that Gt = Et ∪ Et and ML = Gt ∪Dt .
Definition 3 [3]: Let t be a dangerous transition andDt be

the set of t-dangerousmarkings. (M , t) is called a t-dangerous
MTSI. The set of t-dangerous MTSIs is denoted by �t .

B. OBSERVER PLACE COMPUTATION
VIA PLACE INVARIANT
In [48], a computationally efficient control place technique
by place invariant (PI) is presented. Motivated by [48], our
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previous work [11] introduces a method to compute an
observer place which can be used to present the weighted sum
of tokens in some places at a specific marking. This section
recalls the synthesis of an observer place via PI.

Let [Np] be the incidence matrix of a plant with n places
and m transitions. The observer places can be described as a
matrix [No] that includes the arcs connecting observer places
and transitions of the plant. The net model with incidence
matrix [N ] contains both plant and observer places can be
shown as follows:

[N ] =
[
Np
No

]
.

Suppose that the following constraint is added to the plant:

n∑
i=1

li · µi ≥ 0 (6)

where µi denotes the marking of place pi and li is a nonneg-
ative integer.

Obviously, this inequality constraint can bemodified as the
following equation:

n∑
i=1

li · µi − µo = 0 (7)

where µo is a nonnegative variable and can represent the
marking of an observer place po. In general, the set of con-
straints in Eq. (6) can be combined into the following matrix
format:

[L] · −→µp ≥ 0 (8)

where −→µp is the marking vector of the PN model, [L] is an
no × n nonnegative integer matrix, and no is the number of
constraints and can also represent the number of the observer
places which are different from control places since they do
not prevent any marking from being reached. Generally, all
PIs of Eq. (7) can be combined into the following matrix
format:

[L] · −→µp −
−→µo = 0 (9)

where −→µo is an no × 1 vector that can represent the marking
of the observer places. Based on PI equation IT [N ] = 0T ,
we have

[No] = [L] · [Np]. (10)

Eq. (9) can also be satisfied at the initial marking −→µ0 of a
net. Hence, the initial marking −→µo0 of the observer places is
as follows:

−→µo0 = [L] · −→µp0 (11)

where −→µp0 is the initial marking of the plant.
In particular, when we compute only one of the observer

places, we have:

[Npo ] = [l1, l2, . . . , ln] · [Np]. (12)

According to Eq. (11), its initial marking is as follows:

µo0 = [l1, l2, . . . , ln] ·
−→µp0 . (13)

Here an example is used to show the computation of the
observer place. Assume that the total number of tokens in p2
and p3 in Fig. 1(a) is expected to be known. We have l2 =
l3 = 1. Then, an observer place po can be designed for PI:
µ2 + µ3 − µo = 0 by the aforementioned method. Hence,
we have M0(po) = 0, •po = {t1}, and p•o = {t3}.
Definition 4 [11]: An observer place po is said to be opti-

mal if it does not prevent the reachability of any LM.

III. WEIGHTED INHIBITOR ARC
In this section, we review some basics of the weighted
inhibitor arcs. Due to that a weighted inhibitor arc is more
general than an inhibitor arc, it is more powerful to control a
net model.
Definition 5 [18]: A weighted inhibitor arc is an arc from

a place p to a transition t labeled by an integer γ , denoted by
H (p, t) = γ , where γ is a nonnegative integer with γ ≥ 1.
It can be graphically described as an inhibitor arc from p to t
with a label γ on it, as shown in Fig. 2.

FIGURE 2. Weighted inhibitor arc.

The transition enabling and firing rules of a net with
weighted inhibitor arcs are defined below.
Definition 6 [18]: Let p be a place and t be a transition

with H (p, t) = γ . Transition t is enabled by H (p, t) at
marking M if M (p) < γ ; otherwise, it is disabled. Once t is
enabled, its firing does not remove the tokens in p.
For a PN model with weighted inhibitor arcs, a transition

can be inhibited from firing by a weighted inhibitor arc or a
normal (regular) arc. Hence, we have the following transition
enabling and firing rules to complement Definition 6.
Definition 7 [11]: Let N = (P,T ,F,W , I) be a PN with

weighted inhibitor arcs, where I represents a set of weighted
inhibitor arcs. A transition t is enabled at marking M if
∀p′ ∈ •t , M (p′) ≥ W (p′, t) and ∀H (p, t) ∈ I, such that
M (p) < γ ; otherwise, it is disabled. Once a transition t
is enabled at M , its firing leads to M ′ such that M ′(p) =
M (p)−W (p, t)+W (t, p), ∀p ∈ P.

An inhibitor arc from a place p to a transition t can be
regarded as a specific case of a weighted inhibitor arc with
H (p, t) = 1.
Property 1 [11]: Suppose that the marking of a place is

upper bounded by d (d ∈ N+), a weighted inhibitor arc from
this place with a weight γ > d is redundant.

A transition t can be associated with both a normal
(regular) arc W (p, t) = w or W (t, p) = w and a weighted
inhibitor arc H (p, t) = γ , as shown in Fig. 3. We have:

1) Fig. 3(a): a) t is enabled if M (p) ≥ w and M (p) < γ .
Once t is enabled and fires, it leads to M ′ with
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FIGURE 3. (a) W (p, t) = w and H(p, t) = γ , and (b) W (t,p) = w and
H(p, t) = γ .

M ′(p) = M (p) − w. b) t is disabled if M (p) <

w or M (p) ≥ γ ; and
2) Fig. 3(b): a) t is enabled ifM (p) < γ . Once t is enabled

and fires, it leads to M ′ with M ′ = M (p) + w. b) t is
disabled if M (p) ≥ γ .

IV. OPTIMAL OBSERVER PLACES WITH WEIGHTED
INHIBITOR ARCS
This section first recalls the technique proposed in [11] to
compute observer places with weighted inhibitor arcs for the
design of an optimal supervisor. In this section, an MTSI
(M , t) is said to be controlled by an observer place po if its
transition is disabled by po with H (po, t).
Let G(N ,M0) be the RG of a PN model, ML the set of

LMs, and� the set of MTSIs. In the following, we show how
to find optimal supervisors by designing observer places with
weighted inhibitor arcs in order to ensure that, ∀(M , t) ∈ �,
t can be inhibited from firing at M while all LMs are reach-
able. Let (M , t) be an MTSI, po be an observer place satis-
fying Eq. (7), and H (po, t) be a weighted inhibitor arc with
H (po, t) = γ . Then, a technique is developed to compute po
that can optimally control this MTSI, i.e., obtain the values
of li’s and γ such that the derived po withH (po, t) can inhibit
the firing of t atM with all LMs preserved. First, po does not
prevent any LM, i.e.,

n∑
i=1

li ·Ml(pi) ≥ 0, ∀Ml ∈ML . (14)

Eq. (14) is said to be the reachability condition. Then, from
Proposition 1 in [11], we do not need to consider Eq. (14) to
guarantee that all LMs are remained after adding an observer
place.
Proposition 1 [11]: Eq. (14) is always true and it does not

give any restriction on li’s.
Proof: Since ∀Ml ∈ ML , Ml(pi) ≥ 0 and li’s (i =

1, 2, . . . , n) are nonnegative integers.
For an MTSI (M , t), t should be disabled by po with

H (po, t) at M . Hence, we have M (po) < W (po, t) or
M (po) ≥ γ . According to Eq. (7), we haveM (po) =

∑n
i=1 li ·

M (pi) andW (po, t) = −
∑n

i=1 li · [N ](pi, t). Next, we show
that only the weighted inhibitor arc H (po, t) can make sense
in disabling t at marking M .
Since t is enabled at M in a plant net, we have, ∀p ∈ •t ,

M (p) ≥ W (p, t), i.e., ∀p ∈ •t , M (p) ≥ −[N ](p, t). Conse-
quently, ∀pi ∈ •t , M (pi) ≥ −[N ](pi, t) > 0, and ∀pi /∈ •t ,
M (pi) ≥ 0 ≥ −[N ](pi, t). Hence, we have

∑n
i=1 li ·M (pi) ≥

−
∑n

i=1 li · [N ](pi, t), i.e., M (po) ≥ W (po, t).

In this case, the disabling condition can be shown as
n∑
i=1

li ·M (pi) ≥ γ. (15)

At any t-enabled good marking Mj ∈ Et , the weighted
inhibitor arc H (po, t) associated with po should enable t , i.e.,
Mj(po) ≤ γ − 1. By Eq. (7), we have Mj(po) =

∑n
i=1 li ·

Mj(pi), i.e.,
n∑
i=1

li ·Mj(pi) ≤ γ − 1, ∀Mj ∈ Et . (16)

Eq. (16) is called the enabling condition.
We can group Eqs. (15) and (16) into an ILP to obtain

li’s and γ . Accordingly, po can be designed by Eq. (7) with
a weighted inhibitor arc H (po, t) = γ . On this occasion,
(M , t) can be optimally controlled by the derived observer
place po with H (po, t), i.e., t is disabled at M with all LMs
remained. If we optimally control all MTSIs by a number of
observer places with weighted inhibitor arcs, then an optimal
supervisor can be derived.

V. REDUCTION OF SUPERVISORY STRUCTURES
This section presents an ILP-based method for the synthesis
of an observer place po with a weighted inhibitor arcH (po, t),
which is used to control as many t-dangerous MTSIs as
possible for any bounded net model. Therefore, the resulting
supervisor can have fewer observer places.

For a transition t and the set of its related dangerous
MTSIs �t , let Nt = {k|(Mk , t) ∈ �t }. A set of binary
variables qk ’s is used to indicate whether an MTSI (Mk , t)
is controlled or not by po with H (po, t). Then, the following
constriant can replace Eq. (15) as a disabling condition.

n∑
i=1

li ·Mk (pi) ≥ −Q · (1− qk )+ γ (17)

where Q is a big enough positive integer constant. In Eq. (17),
qk = 1 implies that (Mk , t) is controlled by po with
H (po, t), and qk = 0 otherwise. Then, by combining
Eqs. (16) and (17), we formulate an ILP for the design of
po with H (po, t), which is denoted as the maximal number of
t-dangerous MTSIs problem (MNMP(t)):

MNMP(t) :

max q =
∑
k∈Nt

qk

subject to
n∑
i=1

li ·Mj(pi) ≤ γ − 1, ∀Mj ∈ Et

(18)
n∑
i=1

li ·Mk (pi) ≥ −Q · (1−qk )+γ,

∀(Mk , t) ∈ �t

li ∈ {0, 1, 2, . . .}, i ∈ {1, 2, . . . , n}
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γ ∈ {1, 2, 3, . . .}

qk ∈ {0, 1}, k ∈ Nt . (19)

The objective function q is used to maximize the number
of MTSIs in �t that can be controlled by an observer place
po with H (po, t). Let q∗ denote its optimal value. If q∗ = 0,
it means that no MTSI in�t can be controlled by po with any
weighted inhibitor arc.

As is well known, an ILP is NP-hard. The complexity of
solving an ILP is dependent on the number of constraints and
variables in it. On this occasion, the number of constraints and
variables ofMNMP(t) is presented in Table 1. Comparedwith
the work in [11], in Eqs. (18) and (19), we need to consider
all the places, all the t-enabled good markings and all the
t-dangerous MTSIs, since the application scope of this work
is extended to any bounded net system.

TABLE 1. Number of constraints and variables in MNMP(t).

Theorem 1: The observer place po with H (po, t) derived
by MNMP(t) is optimal and can control some MTSIs in �t ,
if q∗ > 0.

Proof: ByProposition 1, an observer place cannot forbid
any LM. Eq. (18) guarantees that the additional weighted
inhibitor arc can enable t at any marking in Et . Hence, po
is optimal. Since q∗ > 0, we can confirm that there exists
at least a (M , t) in �t such that qk = 1. Then, Eq. (19)
implies that MTSI (M , t) is controlled by po with H (po, t).
The conclusion holds.

VI. AN OPTIMAL OBSERVER PLACE WITH
A DATA INHIBITOR ARC
In this section, an ILP-based method is proposed for the
computation of an observer place with a data inhibitor arc to
optimally control an MTSI of a net model.

A data inhibitor arc [7] is an arc from a place p to a
transition t with a set of nonnegative integers A(p, t) =
{a1, a2, . . . , ak} labeled on it, which is denoted as Å(p, t) and
can be graphically shown in Fig. 4.

FIGURE 4. Data inhibitor arc.

In a data inhibitor arc, t is disabled by p at a marking
M if M (p) ∈ {a1, a2, . . . , ak}. Once t is enabled and fires,
it does not change the number of tokens in p. In this paper,
a transition t can be associated with both a normal (regular)
arc W (p, t) = w or W (t, p) = w and a data inhibitor

FIGURE 5. (a) W (p, t) = w and A(p, t) = {a1,a2, . . . ,ak }, and
(b) W (t,p) = w and A(p, t) = {a1,a2, . . . ,ak }.

arcÅ(p, t), which can be graphically represented in a compact
way as shown in Fig 5.

In the following, two transition firing rules are demon-
strated for the case in Fig. 5.

1) For the case in Fig. 5(a), t is enabled by p atM ifM (p) ≥
w andM (p) /∈ {a1, a2, . . . , ak}, otherwise t is disabled. Once
t is enabled and fires, it leads toM ′ withM ′(p) = M (p)−w.

2) For the case in Fig. 5(b), t is enabled by p atM ifM (p) /∈
{a1, a2, . . . , ak}, otherwise t is disabled. Once t is enabled
and fires, it leads to M ′ with M ′(p) = M (p)+ w.
In this section, an MTSI (M , t) is said to be controlled

by an observer place po if its transition is disabled by po
with Å(p, t).
First, po should not prohibit any LM as we have described

in Section IV, we can use Eq. (14) as the reachability condi-
tion and it does not pose any restriction on the plant. Thus,
we do not need to consider the reachability condition for all
the LMs as the case in [7], which can greatly reduce the
number of constraints in the ILP problem.

At any t-enabled good markingMj ∈ Et , the data inhibitor
arc associated with po should enable t , i.e.,Mj(po) 6= a. Then,
we can modify Mj(po) 6= a as Mj(po) ≤ a − 1 or Mj(po) ≥
a + 1. According to Eq. (7), we have M (po) =

∑n
i=1 li ·

M (pi). In this case, we formulate another enabling condition
as follows:
n∑
i=1

li ·Mj(pi) ≤ a− 1 or
n∑
i=1

li ·Mj(pi) ≥ a+ 1,

∀Mj ∈ Et . (20)

It is obvious that Eq. (20) cannot be selected as constraints
in ILPs directly. Thus, a set of binary variables rj’s ∈ {0, 1}
is introduced. Accordingly, Eq. (20) is modified as

n∑
i=1

li ·Mj(pi) ≤ Q · rj + a− 1, ∀Mj ∈ Et (21)

and
n∑
i=1

li ·Mj(pi) ≥ −Q · (1− rj)+ a+ 1, ∀Mj ∈ Et (22)

where Q is a positive integer constant that is big enough.
Eqs. (21) and (22) can guarantee that

∑n
i=1 li ·Mj(pi) ≤ a−1
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if rj = 0 and
∑n

i=1 li ·Mj(pi) ≥ a+ 1 if rj = 1. Hence, they
can replace the enabling condition Eq. (20).

For a (M , t), t should be disabled by po atM . Thus, we have
M (po) < W (po, t) orM (po) = a. Next, we show that we need
to consider M (po) = a only to control (M , t).
Theorem 2: Let po be an observer place satisfying Eq. (14)

and (M , t) be an MTSI. If M (po) < W (po, t), then the data
inhibitor arc withA(po, t) = {a} and a =

∑n
i=1 li ·M (pi) does

not disable t at any marking in Et .
Proof: Let Mj be a marking in Et . By Definition 2, if t

fires at M , it leads to an LM M ′. According to Eq. (14),
we have Mj(po) ≥ W (po, t). Since a =

∑n
i=1 li · M (pi) =

M (po) < W (po, t), Mj(po) > a is true. Hence, the data
inhibitor arc with A(po, t) = {a} does not disable t at Mj.
The conclusion holds.
Theorem 2 implies that once (M , t) is optimally controlled

by an observer place with M (po) < W (po, t), there exists a
data inhibitor arc withA(p, t) = {a} and a = M (po) such that
t is disabled atM and enabled at any t-enabled good marking.
On this occasion, we do not need to consider the condition
M (po) < W (po, t) to control (M , t), i.e., we need to consider
M (po) = a only to control (M , t). Accordingly, the condition
M (po) = a can be written as

n∑
i=1

li ·M (pi) = a. (23)

By combining Eqs. (21), (22), and (23), we formulate an
ILP to design an optimal observer place with Å(po, t) to
control a t-dangerous MTSI (M , t), which can be denoted as
the controlled t-dangerous MTSI problem (CTMP):

CTMP :
min a

subject to
n∑
i=1

li ·M (pi) = a (24)

n∑
i=1

li ·Mj(pi) ≥ −Q · (1−rj)+ a+1,

∀(Mj, t) ∈ Et (25)
n∑
i=1

li ·Mj(pi) ≤ Q · rj + a− 1,

∀(Mj, t) ∈ Et
li ∈ {0, 1, 2, . . .}, i ∈ {1, 2, . . . , n}
a ∈ {0, 1, 2, 3, . . .}
rj ∈ {0, 1}, j ∈ NEt . (26)

Actually, it is not necessary to choose an objective function
for CTMP since any feasible solution of CTMP can be used
to design an optimal observer place with Å(po, t). In order
to restrict the value of a in A(po, t) as small as possible,
we select the objective function min a in practice.
Theorem 3: CTMP has a solution for any bounded PN.
Proof: Let (N ,M0) be a net model with n places and po

an observer place satisfying
∑n

i=1 li ·µi−µo = 0. We prove

the theorem by constructing li’s (i = {1, 2, . . . , n}) such that
M1(po) 6= M2(po) for any two reachable markings M1 and
M2 with M1 6= M2 and proving that the constructed li’s (i =
{1, 2, . . . , n}) are a solution of CTMP.
1) Suppose that n = 1, i.e., we need to consider one

place p1 only in a net model. Let l1 = 1, then po is computed
to satisfy the constraint: µ1−µo = 0. In this case,M1(po) =
M1(p1) and M2(po) = M2(p1). Since M1 6= M2, we have
M1(po) 6= M2(po).
2) Suppose that n = 2, i.e., we need to consider two places

p1 and p2 in a net model. Let l1 = 1 and l2 = kp1 + 1, where
kp1 is the bound of p1. Then, po is computed to satisfy the
constraint:µ1+(kp1+1)·µ2−µo = 0. In this case,M1(po) =
M1(p1)+ (kp1 + 1) ·M1(p2) and M2(po) = M2(p1)+ (kp1 +
1) ·M2(p2). By contradiction, suppose thatM1(po) = M2(po).
Then, we haveM1(p1)+ (kp1+1) ·M1(p2) = M2(p1)+ (kp1+
1) · M2(p2), i.e., M1(p1) − M2(p1) = (kp1 + 1) · (M2(p2) −
M1(p2)). By considering that −kp1 ≤ M1(p1) − M2(p1) ≤
kp1 and M2(p2) − M1(p2) is an integer, we have M1(p1) =
M2(p1) andM2(p2) = M1(p2), i.e.,M1 = M2 that contradicts
M1 6= M2. Consequently, we have M1(po) 6= M2(po).
3) Suppose that n = 3, i.e., we need to consider three places

p1, p2, and p3 in a net model. Let l1 = 1, l2 = kp1 + 1, and
l3 = k2+1, where k2 = l1 ·kp1+l2 ·kp2 and kpi is the bound of
pi (i = 1, 2). Then, po is computed to satisfy the constraint:
µ1 + (kp1 + 1) · µ2 + (k2 + 1) · µ3 − µo = 0. In this case,
M1(po) = M1(p1) + (kp1 + 1) · M1(p2) + (k2 + 1) · M1(p3)
and M2(po) = M2(p1) + (kp1 + 1) · M2(p2) + (k2 + 1) ·
M2(p3). By contradiction, suppose that M1(po) = M2(po).
Then, we have M1(p1) + (kp1 + 1) · M1(p2) + (k2 + 1) ·
M1(p3) = M2(p1) + (kp1 + 1) ·M2(p2) + (k2 + 1) ·M2(p3),
i.e., M1(p1) + (kp1 + 1) · M1(p2) − M2(p1) − (kp1 + 1) ·
M2(p2) = (k2 + 1) · (M2(p3)−M1(p3)). By considering that
−k2 ≤ M1(p1) + (kp1 + 1) · M1(p2) − M2(p1) − (kp1 + 1) ·
M2(p2) ≤ k2 and M2(p3) − M1(p3) is an integer, we have
M1(p1)+ (kp1+1) ·M1(p2)−M2(p1)− (kp1+1) ·M2(p2) = 0
andM2(p3)−M1(p3) = 0. By considering case 2),M1(p1)+
(kp1 + 1) ·M1(p2)−M2(p1)− (kp1 + 1) ·M2(p2) = 0 implies
that M1(p1) = M2(p1) and M2(p2) = M1(p2). Consequently,
we haveM1 = M2 that contradictsM1 6= M2. Thus, we have
M1(po) 6= M2(po).
4) We consider that there are n places p1, p2, . . . , and pn

in a net model. Let l1 = k0+1, l2 = k1+1, . . ., ln = kn−1+1,
where k0 = 0, k1 = kp1+1, ki = ki−1+(ki−1+1)·kpi , and kpi
is the bound of pi (i = 1, 2, . . . , n). Then, po is computed to
satisfy the constraint:

∑n
i=1(ki−1+1) ·µi+ (kn−1+1) ·µn−

µo = 0. In this case, M1(po) =
∑n−1

i=1 (ki−1 + 1) ·M1(p1) +
(kn−1+1) ·M1(pn) andM2(po) =

∑n−1
i=1 (ki−1+1) ·M2(p1)+

(kn−1+1) ·M2(pn). By contradiction, suppose thatM1(po) =
M2(po). Then, we have

∑n−1
i=1 (ki−1 + 1) ·M1(p1) + (kn−1 +

1) · M1(pn) = (ki−1 + 1) · M2(p1) + (kn−1 + 1) · M2(pn),
i.e.,

∑n−1
i=1 (ki−1+1)·(M1(pi)−M2(pi)) = (kn−1+1)·(M2(pn)−

M1(pn)). Similarly to case 3), we can obtain that M1(pi) =
M2(pi) (i = 1, 2, . . . , n). Consequently, we have M1 = M2
that contradicts M1 6= M2. Thus, we have M1(po) 6= M2(po).
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TABLE 2. Number of constraints and variables in CTMP.

Since M1(po) 6= M2(po) for any two reachable marking
M1 and M2 with M1 6= M2, Eqs. (24), (25), and (26) are
satisfied and a can be computed by Eq. (24).

Finally, we can conclude that the obtained li’s (i =
1, 2, . . . , n) and a are a feasible solution of CTMP.
Theorem 4: The observer place po obtained by CTMP is

optimal and can control a t-dangerous MTSI in �t .
Proof: By Proposition 1, an observer place does not

forbid any LM. Eqs. (25) and (26) can gurarantee that the
additional data inhibitor arc does not disable a transition
t ∈ TD at any marking in Et . Thus, po is optimal. Eq. (24)
indicates that a t-dangerous MTSI is controlled by po. The
conclusion holds.
Remark 1: From the proof of Theorem 3, it can be seen

that an observer place with Å(po, t) can be derived by con-
structing the coefficients li’s (i = ({1, 2, . . . , n}) and a
without solving CTMP. In this case, it will yield too many
regular (normal) arcs connected with an observer place (since
all li’s (i = ({1, 2, . . . , n}) are greater than zero), and a big
value of a. Thus, we need to solve CTMP in practice and the
experimental results show that it can derive an observer place
with less regular (normal) arcs and a small a in A(po, t). �

Table 2 shows the number of constraints and variables in
CTMP, which can sharply affect the computational cost of
solving an ILP.
Definition 8: Let �t be a set of t-dangerous MTSIs. If an

optimal observer place with Å(po, t) satisfies constraints∑n
i=1 li · µi − a = 0, then the set of t-dangerous MTSIs

that can be controlled by the observer place with Å(po, t) is
denoted as �d

po = {(M , t) ∈ �t |
∑n

i=1 li ·M (pi) = a}.
Definition 8 implies that an optimal observer place with

a data inhibitor arc may control more than one t-dangerous
MTSI. Thus, the structure of supervisor can be simpler and
we can solve fewer times of ILPs.

VII. DEADLOCK PREVENTION STRATEGY
In this section, we present a two-stage deadlock prevention
strategy according to the contents in the above sections, which
can achieve the optimal control purpose for any bounded
PN model. Let po be an observer place with H (po, t) and
the set of MTSIs that are controlled by po with H (po, t)
be �w

po . Now, Algorithm 1 shows the proposed control
strategy.

The computational cost of Algorithm 1 is discussed below.
First, we should compute the RG of a net, which is subject
to the state explosion problem since the number of reach-
able markings increases exponentially wrt the size of a net.

Algorithm 1 Design of Optimal Observer Places With
Weighted and Data Inhibitor Arcs via MNMP(t) and
CTMP
Input: a PN model (N ,M0) suffering from deadlocks.
Output: an optimally controlled PN model (Nc,Mc).
1. Generate the RG of the given PN (N ,M0).
2. Compute the set TD.
3. O := ∅. /*O represents the set of observer places with
weighted and data inhibitor arcs to be designed.*/
4. foreach t ∈ TD do

Derive the set Gt and the set Dt from the setML .
Derive the set Et from Gt .
Compute the set �t according to the set Dt .

4.1.while {�t 6= ∅} do
Solve MNMP(t).
If there is no optimal solution with q∗ > 0, then

go to Step 4.2.
else Obtain the solution li (i ∈ {1, 2, . . . , n})

and γ .
endif
Design observer place po with a weighted

inhibitor arc H (po, t) using the approach in Section IV.
O := O ∪ {po} ∪ {H (po, t)} and �t = �t\�

w
po .

endwhile
4.2 while {�t 6= ∅} do

foreach (M , t) ∈ �t
Solve CTMP.
Obtain the solution li (i ∈ {1, 2, . . . , n}) and a.
Design observer place po with a data inhibitor

arc Å(po, t) using the approach in Section VI.
O := O ∪ {po} ∪ {Å(po, t)} and �t = �t\�

d
po .

endwhile
5. Add all observer places with weighted and data
inhibitor arcs to (N ,M0) and denote the resulting system
as (Nc,Mc).
6. Output (Nc,Mc).
7. End.

Second, we need to solve ILPs, which are NP-hard. When
we solve an ILP, the computational time is mainly dependent
on the number of constraints and variables. Therefore, a two-
stage control method is proposed to decrease the computa-
tional burden of solving ILPs compared with the work in [7].
Theorem 5: Algorithm 1 can find an optimal PN supervi-

sor for any bounded PN model.
Proof: If MNMP(t) has a solution with q∗ > 0,

according to Theorem 1, the obtained observer place is opti-
mal and can control some MTSIs. Then, we remove all
the MTSIs controlled by the derived observer place with
weighted inhibitor arc. The process in this stage cannot ter-
minate until all t-dangerous MTSIs are controlled or the ILP
MNMP(t) has no solution with q∗ > 0. If MNMP(t) has no
solution with q∗ > 0 and there still exist some t-dangerous
MTSIs in �t , in the second control stage, at each iteration,
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for a t-dangerous MTSI that cannot be controlled at the first
control stage, we design an optimal observer place with a
data inhibitor arc. By Theorem 3, we know that CTMP has
a solution for any bounded net model. Then, according to
Theorem 3 and Definition 8, we can definitely obtain an
optimal observer place with a data inhibitor arc to control
one or more t-dangerous MTSIs for any bounded PN. This
stage terminates after all t-dangerous MTSIs are controlled.
Finally, for each t ∈ TD, its dangerous MTSIs are controlled.
Thus, all MTSIs are controlled. The resulting controlled net
is live and all LMs are kept.
Remark 2: Now, we discuss the details of Algorithm 1.

Step 1 computes the RG of the given PN (N ,M0) and Step 2
derives the set of t-dangerous transitions TD from the RG.
Step 3 initializes the set of observer places with weighted
and data inhibitor arcs as O. In Step 4, for each t-dangerous
transition t ∈ TD, the algorithm first obtains the set of
t-enabled good markings Et and the set of t-dangerous
MTSIs �t . Then, in Step 4.1, at each iteration, an optimal
observer place with a weighted inhibitor arc is designed
by solving an ILP named MNMP(t) to control as many
t-dangerous MTSIs as possible and the controlled MTSIs are
removed from the set �t . This process terminates after all
t-dangerous MTSIs are controlled or MNMP(t) has no opti-
mal solution with a positive objective value q∗. If MNMP(t)
has no optimal solution with q∗ > 0 and there still exist some
uncontrolled t-dangerous MTSIs, then Step 4.2 designs an
optimal observer place with a data inhibitor arc by solving an
ILP named CTMP to control an MTSI at each iteration. And
the controlled MTSIs are removed from the set �t . The sec-
ond control stage terminates after all MTSIs are controlled.
Finally, Step 5 adds all observer places with weighted and
data inhibitor arcs to the plant and the resulting net system
is live with all LMs kept according to Theorem 5. Moreover,
since the proposed algorithm introduces weighted and data
inhibitor arcs to the plant, the resulting net is no longer a PN
and thus the conventional net analysis cannot be done on it.

In Algorithm 1, an observer place with a weighted inhibitor
arc can optimally control the MTSIs for one dangerous tran-
sition. Thus, the controlled results are independent of the
selected order of dangerous transitions in the first stage and
they do not impact on CTMP in the second stage. �
Remark 3: According to Theorem 5, given a net (N ,M0),

for each t ∈ TD, if all the t-dangerous MTSIs are controlled
by MNMP(t), then we can use the observer places with
weighted inhibitor arcs to optimally control this net only. �

VIII. EXPERIMENTAL RESULTS
In this section, we show the performance of the proposed
control strategy for the example in Fig. 6 from [52] in detail.
In practice, the proposed method and the methods in the
related literature are implemented in a notebook computer
under the Windows 7 operating system with an Intel Core
2.6 GHz CPU and 8 GB memory. Lingo [26] is selected as
an ILP solver to obtain optimal solution for each ILP in this
section.

FIGURE 6. A PN model in [52].

The net has 3982 markings in its RG and 2888 LMs.
It has six dangerous transitions t1, t5, t6, t7, t10, and t12, i.e.,
TD = {t1, t5, t6, t7, t10, t12}. For these dangerous transitions,
we obtain |�t1 | = 33, |�t5 | = 197, |�t6 | = 54, |�t7 | = 206,
|�t10 | = 390, and |�t12 | = 68; |Et1 | = 1552, |Et5 | = 419,
|Et6 | = 428, |Et7 | = 336, |Et10 | = 1078, and |Et12 | = 676.
For dangerous transition t1, we first use MNMP(t1) to

design observer places with weighted inhibitor arcs to opti-
mally control as many MTSIs in �t1 as possible. The results
are shown in Table 3.

TABLE 3. The results of MNMP(t1) for Fig. 6.

In the first control stage, we can optimally control
30MTSIs in�t1 . For the rest of threeMTSIs (M1, t1), (M2, t1)
and (M3, t1) in �t1 , where M1 = 6p1 + p2 + p3 + p4 +
p6 + 6p9 + p10 + p11 + p12 + p13 + p15 + p17 + p18, M2 =

7p1+p2+p3+p4+5p9+2p10+p11+p12+p13+p15+p16+p18,
andM3 = 7p1+p2+p3+p4+59+p10+p11+2p12+p13+
p15+ p17+ p18, we solve CTMP to design an observer place
with a data inhibitor arc to optimally control each of them,
respectively. Actually, by Algorithm 1, we need to solve two
ILPs only to optimally control the threeMTSIs. The results of
the second stage to controlMTSIs in�t1 are shown in Table 4.

For dangerous transition t10, we first use MNMP(t10)
to design observer places with weighted inhibitor arcs to
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TABLE 4. The results of CTMP to control MTSIs in �t1
for Fig. 6.

optimally control as many MTSIs in �t10 as possible. The
results are shown in Table 5.

In the first control stage, we can optimally control
388 MTSIs in �t10 . For the rest of two MTSIs (M4, t10) and
(M5, t10), whereM4 = 6p1+p2+2p3+p4+6p9+p10+p11+
p12+p13+p15+p16+p17 andM5 = 6p1+2p2+p3+p4+
6p9+p10+p11+p12+p13+p16+p17+p18, we solve CTMP to
design an observer place with a data inhibitor arc to optimally
control each of them, respectively. The results of the second
stage to control MTSIs in �t10 are shown in Table 6.

TABLE 5. The results of MNMP(t10) for Fig. 6.

TABLE 6. The results of CTMP to control MTSIs in �t10
for Fig. 6.

TABLE 7. The results of MNMP(t5) for Fig. 6.

For dangerous transitions t5, t6, t7, and t12, after the imple-
mentation of the first control stage, all the MTSIs in �t5 ,
�t6 , �t7 , and �t12 are optimally controlled, respectively. The
experimental results are shown in Tables 7, 8, 9, and 10.
Specifically, for dangerous transition t7, since •po = {t10}
and p•o = {t11}, we can use p10 in the plant as the observer
place, i.e., no additional observer place is needed.

Finally, the optimal net supervisor is obtained with all
2888 LMs reachable. The final net supervisor consists
of 15 observer places with weighted inhibitor arcs and
four observer places with data inhibitor arcs, i.e., 19 observer
places in total. Table 11 shows the results.

TABLE 8. The results of MNMP(t6) for Fig. 6.

TABLE 9. The results of MNMP(t7) for Fig. 6.

TABLE 10. The results of MNMP(t12) for Fig. 6.

TABLE 11. The performance of Algorithm 1 for Fig. 6.

It can be seen that after the first stage control (by using
observer places with weighted inhibitor arcs), the number of
t-dangerous MTSIs is sharply reduced, which can reduce the
computational cost at the second stage (by using observer
places with data inhibitor arcs).

In fact, due to the non-convexity of its LM space, there
exists no pure net supervisor to optimally control the sys-
tem, e.g., the work in [1], [2], [19]–[21], and [41]–[44]
cannot yield an optimal supervisor for this example. Then,
we show that nonpure net supervisors obtained by the self-
loop-based methods in [3] and [6] cannot optimally control
the net for this example either. Let Et and Dt be the sets of
t-enabled good and t-dangerous markings of the net, respec-
tively. We have three markings (only the tokens in operation
places1 are considered in [3] and [6]):M1 = p2+ 2p3+ p4+
p6 + p8 + p11 + p12 + p13, M2 = p2 + p4 + p6 + 2p10 +
p11 + p12 + p13, and M3 = p2 + p3 + p4 + p6 + p10 +
p11 + p12 + p13, where M1 and M2 ∈ Et1 , and M3 ∈ Dt1 .
Also, we have

∑
i∈NA li · [N ](pi, t1) = l2.2 In [3], t1 should be

enabled at everymarking in Et1 while disabled at themarkings
in Dt1 . Thus, the ILP MMP(t1) in [3] has the following three
constraints:

2l2 + 2l3 + l4 + l6 + l8 + l11 + l12 + l13 ≤ β − ω (27)

2l2 + l4 + l6 + 2l10 + l11 + l12 + l13 ≤ β − ω (28)

2l2 + l3 + l4 + l6 + l10 + l11 + l12 + l13 ≥ −Q · (1− f3)

+β − ω + 1

li ∈ {0, 1, 2, . . .} ∀i ∈ NA

β, ω ∈ {1, 2, 3, . . .}

f3 ∈ {0, 1} (29)

where Q is a big enough positive integer.

1An operation place represents an operation to be processed for a part in
a production sequence, whose set is denoted as PA.

2NA denotes {i|pi ∈ PA}.
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Then, we prove that f3 = 1 is not a feasible solution for the
aforementioned constraints. By contradiction, suppose that
f3 = 1. Then, Eq. (29) is modified as

2l2 + l3 + l4 + l6 + l10 + l11 + l12 + l13 ≥ β − ω + 1.

(30)

Further, it can be rewritten as

−4l2 − 2l3 − 2l4 − 2l6 − 2l10 − 2l11 − 2l12 − 2l13
≤ −2β + 2ω − 2. (31)

By adding Eqs. (27) and (28), we have the following
constraint:

4l2 + 2l3 + 2l4 + 2l6 + l8 + 2l10 + 2l11 + 2l12 + 2l13
≤ 2β − 2ω. (32)

By adding Eqs. (31) and (32), we have l8 ≤ −2, which
contradicts l8 ∈ {0, 1, 2, . . .}. Thus, we can conclude that
f3 = 0. In this case, we cannot obtain an optimal monitor
with a self-loop for the MTSI (M3, t1), i.e., the method in [3]
cannot lead to an optimal supervisor for this net. Similarly,
the method in [6] cannot obtain an optimal supervisor for
the net either, since the two proposed ILPs, namely IMNM
and MNCP have no solution with a positive objective value,
respectively.

TABLE 12. The comparison of the experimental results for the net shown
in Fig. 6 by MNTMP(t) [4], PTMP(t) [7], and MNMP(t).

Another approach for nonpure net supervisor is proposed
in [4]. However, there is no formal proof given to demon-
strate that the strategy definitely yields an optimal supervi-
sor for any bounded net model. Moreover, when we apply
MNTMP(t) in [4] to this net, the number of variables and
constraints, and the computation time are shown in Table 12.
From Table 12, we can see that MNTMP(t10) cannot be
solved within 72 hours and ‘‘o.t.’’ denotes that the compu-
tation is out of time. In this case, the method in [4] cannot
lead to an optimal supervisor for the net.

In [7], the proposed technique can definitely yield an
optimal supervisor for any bounded PN in theory. However,
it is inapplicable for complex system caused by the heavy
computational cost in solving the proposed ILPs.

When the ILP PTMP(t) in [7] is applied to this net,
the number of constraints and variables, and the computation
time are shown in Table 12. FromTable 12, we can see that the
set of ILPs cannot be solved in a reasonable time. Moreover,
another ILP PAMT [7] for this net has 1295438 constraints

and 649185 variables, which cannot be solved in a reasonable
time either. Therefore, in this case, we cannot derive an
optimal supervisor by using the method in [7].

IX. CONCLUSIONS
This work presents a two-stage method to obtain an optimal
liveness-enforcing supervisor for any bounded PN. Com-
pared with the work in [1], [2], [19], [41], the proposed
method can optimally control a net system that cannot be
optimally controlled by any pure net supervisor. Compared
with the work in [3], [4], [6], [11], the proposed method can
definitely lead to an optimal net supervisor for any bounded
PN on the premise that such a supervisor exists. Moreover,
compared with the work in [7], the work can significantly
reduce the computational cost in total, i.e., the proposed
method is much more efficient than that in [7].

However, the developed approach is still subject to the
computational complexity problem caused by the compu-
tation of the full RG and the process for solving ILPs.
Another problem of the developed approach is that it cannot
lead to a supervisor with the minimal number of observer
places. Future work is needed to avoid generating the full
RG and make the structure of the supervisor more simpler.
To reduce computational cost, we will explore the learning-
based method [62] to construct a liveness-enforcing supervi-
sor when a plant model is not fully known.
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