
Received December 11, 2017, accepted January 16, 2018, date of publication January 30, 2018, date of current version March 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2799852

R-Codesign: Codesign Methodology for
Real-Time Reconfigurable Embedded
Systems Under Energy Constraints
INES GHRIBI1,2,3, RIADH BEN ABDALLAH2,4, MOHAMED KHALGUI 1,2,
ZHIWU LI 5,6, (Fellow, IEEE), KHALID ALNOWIBET7, AND MARCO PLATZNER8
1School of Electrical and Information Engineering, Jinan University, Zhuhai 519070, China
2National Institute of Applied Sciences and Technology, University of Carthage, Tunis 1080, Tunisia
3Faculty of Mathematical, Physical and Natural Sciences, University of Tunis-El Manar, Tunis 2092, Tunisia
4Higher Institute of Applied Sciences and Technology, 7050 Mateur, Tunisia
5Institute of Systems Engineering, Macau University of Science and Technology, Taipa 999078, Macau
6School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
7Department of Statistics and Operations Research, King Saud University, Riyadh 11451, Saudi Arabia
8Department of Computer Science, University of Paderborn, 33098 Paderborn, Germany

Corresponding authors: Mohamed Khalgui (khalgui.mohamed@gmail.com) and Zhiwu Li (systemscontrol@gmail.com)

This work was supported in part by the Science and Technology Development Fund under Grant 078/2015/A3 and in part by the Deanship
of Scientific Research at King Saud University under GrantRGP-1436-040.

ABSTRACT Hardware/software codesign involves various design problems, including system specification,
design space exploration, hardware/software co-verification, and system synthesis. An effective codesign
process requires accurately predicting the performance, cost and power consequence of any design trade-off
in algorithms and hardware configuration. This paper presents a new co-design methodology called
R-codesign. Based on new modeling and partitioning techniques for reconfigurable embedded systems,
R-codesign creates a task allocation of SW functions and HW behaviors based on the user constraints and
using heuristics. The modeling approach relies basically on probabilistic estimations of the executions of
system tasks. Hardware and software specifications are the inputs of R-codesign which constructs partitions
(clusters of tasks) and maps them to a specified heterogeneous multiprocessor system-on-chip execution
platform with field-programmable gate array. Several design constraints are evaluated and tested during the
partitioning and mapping process. We have developed a visual environment called SPEX that implements
this methodology. SPEX computes a control matrix which is a pre-computation of validated mappings that
will occur in a case of a system reconfiguration. SPEX is an open source, fast and provides efficient results
for the codesign of reconfigurable embedded systems.

INDEX TERMS Embedded system, reconfiguration, real-time, co-design, MPSoC, FPGA.

I. INTRODUCTION
The complexity of designing embedded systems is constantly
increasing which motivates the need for using more efficient
tools and design methodologies. Methodologies that employ
modeling techniques at a low level abstraction are no more
applicable due to this complexity. We propose in this work
a new codesign methodology, based on high level abstrac-
tion modeling techniques, which deal with coarse grain
components that increase productivity. We remember that
hardware/software co-design is the technique of designing
concurrent hardware and software components of an embed-

ded system. Generally, hardware/software co-design starts
with a specification step followed by amodeling step inwhich
designers have to decide which part of the system should be
mapped on hardware and which part on software. The hard-
ware/software partitioning step follows. It is a combinational
optimization problem that assigns the system functions to
the target architecture on the software and hardware domain
under the condition of meeting the design constraints. This
is a key task in the system level design since the decisions
made during this step directly impact the performance and
cost of the final implementation. Another aspect of hardware/

14078
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-6311-3588
https://orcid.org/0000-0003-1547-5503


I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

software design methodologies is their incapability to roll
back hardware/software partitioning decisions. This flexi-
bility is an important aspect allowing to early discover the
consequences of a particular hardware/software partitioning
decision and, if deemed inappropriate, exploring another [2].
One way of achieving this goal is to develop abstract hard-
ware/software models during the partitioning process which
can be used to assess these decisions.

Another main performance issues in embedded systems
design is to guarantee the results within a given time. Such
systems that have to fulfill posed constraints are called real-
time systems [3]. Most of these real-time embedded sys-
tems interact with the external environment, which means
that task executions are triggered by external events [4].
The system response should be modulated according to the
stimulus from outside. Designers of such systems make use
of reconfigurable components and the system implemen-
tation becomes a kind of building blocks game [5], [6].
These systems undergo unpredictable events that require ade-
quate online decisions so as to maintain the desired per-
formance and schedulability [7]. A reconfiguration event is
defined as an internal/external event that leads to add/remove
tasks [8]. Consequently, any reconfiguration scenario may
increase the energy consumption and/or make some tasks
to violate their deadlines. Thus, this flexibility adds more
complexity in their design process [9], [10]. Moreover,
in real-time systems, tasks scheduling is critical and depends
on previous mapping steps among the system processing
elements [11], [12].

In the present paper, we propose a methodology called
R-codesign for reconfigurable co-design. It aims to find
solutions for modeling and partitioning probabilistic real-
time systems having multiple reconfiguration scenarios.
R-codesign creates a task allocation of SW functions and HW
behaviors based on the user constraints and using heuristics.
Guaranteed available resources, feasible scheduling and a
generation of a reconfiguration controller are the main con-
cern. The gain of the methodology resides in two aspects:
(i) the estimation of the execution flow allows tomap themost
probabilistic functions to be executed, to be stored together,
and hence the communication costs will be reduced and the
overall performance will be enhanced, (ii) the precomputed
mapping of the possible execution scenarios allows to recon-
figure the system at run-timewith aminimum reconfiguration
overhead.

Firstly, R-codesign presents an abstract model for
hardware/software systems allowing early exploration of
hardware/software executions and evaluation of design alter-
natives. This model supports incremental refinement and
evaluation at multiple abstraction levels. The separation
between software and hardware tasks is supposed to be
manually done by users. The decision is made by an expert
after a complexity study of each module (node in the DAG)
who knows the computational requirements of the system
processing flow. Hardware is limited to specifically designed
tasks that are, taken independently, very simple. Software

implements algorithms that allow to complete much more
complex tasks. The entry point for R-codesign is a hard-
ware/software specification modeled by a DAG (Directed
Acyclic Graph) where nodes are software functions or hard-
ware behaviors. The edges of these DAGs are valued with a
probabilistic estimation of their connecting nodes execution
along with the communication cost of the communicating
nodes. The goal of the methodology is to partition and map
all predefined possible configuration scenarios off-line into
a hardware target architecture that is mainly an MPSoC
and implement a controller that will supervise and recon-
figure the system on-line [13]. All the important and more
likely configuration scenarios are pre-computed and given
as input to the methodology. Each possible configuration
is composed of a set of periodic tasks modeled according
to the proposed DAGs presentation. Thus, we developed
adequate partitioning and mapping techniques for the pro-
posed hardware/software model. This partitioning/mapping
approach is called I-codesign. Several design constraints
are considered in this work such as the inclusion/exclusion
constraint which is related to the functional specification of
processors. An optimization phase is applied at the end of the
I-codesign using the Kernighan-Lin algorithm [14] in attempt
to find an optimal series of interchange operations between
communicating elements in the DAGs. I-codesign treats the
software functions and the hardware behaviors separately and
then a co-simulation step decides whether or not the mapping
results satisfy the design constraints. If I-codesign fails to
map the specification, then R-codesign reports the issues to
the user in order to tune the input parameters. Otherwise,
the results are stored in a controller matrix which will be
used by the reconfiguration controller at run-time. In case
of large systems, the global mapping matrix could be broken-
down into small matrices controlled by multiple controllers
in a distributed fashion which avoids reconfiguration fetch
overhead.

At last, R-codesign is a codesign methodology that allows
to rapidly evaluate hardware/software systems using abstract
models. The partitioning and mapping results reveal its
efficiency. Indeed, it guarantees a feasible solution and
enhances the overall performance compared with existing
methodologies.

The paper proceeds as follows. The next section describes
useful background. Section III presents the system formal-
ization and the notations used in this paper. In Section IV
the R-codesignmethodology is developed. Section V exposes
the experimental results and finally we conclude this paper
in Section VI.

II. STATE OF THE ART
Hardware/software codesign can be considered as the pro-
cess of concurrent and coordinated design of an electronic
system comprising hardware as well as software compo-
nents based on a system description that is implementation-
independent [15], [16]. One of the key problems in
hardware/software codesign is hardware/software partition-

VOLUME 6, 2018 14079



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

ing [17]. One of the most relevant works dealing with par-
titioning is presented in [18]: A very sophisticated integer
linear programming model for the joint partitioning and
scheduling problem for a wide range of target architectures.
This integer program is part of a 2-phase heuristic optimiza-
tion scheme which aims at gaining better timing estimates
using repeated scheduling phases, and using the estimations
in the partitioning phases. The work in [19] presents a method
for allocation of hardware/software resources for optimal
partitioning. During the allocation algorithm, an estimated
hardware/software partition is also built. The algorithm for
this is basically a greedy algorithm: It takes the components
one by one, and allocates the most critical building block of
the current component to hardware. The study in [20] shows
an algorithm to solve the joint problem of partitioning and
scheduling. It consists of basically two local search heuris-
tics: one for partitioning and one for scheduling. The two
algorithms operate on the same graph, at the same time. The
work in [21] considers partitioning in the design of ASIPs
(application-specific integrated processors). It presents a for-
mal frame work and proposes a partitioning algorithm based
on branch and bound. The research in [22] presents an
approach that is largely orthogonal to other partitioningmeth-
ods: it deals with the problem of hierarchically matching
tasks to resources. It also shows a method for weighting
partially defined user preferences, which can be very useful
for multiple-objective optimization problems [23].

Along with the partitioning and mapping problem,
co-simulation becomes an important area of research
for the early validation of design decisions [24], [25].
In co-simulation, the execution of software on CPUs is
simulated using a virtual model of the processor hardware
or with simulation models as ISS (Instruction Set Simula-
tor). ISS reduces the complexity of the system design com-
pared with performing a pure gate level or register transfer
level (RTL) hardware simulation, which is typically too much
slow. The co-simulation problem lies in coupling different
models to make the hardware simulation sufficiently accu-
rate [26]. Nowadays, we already live in a third generation of
co-design technology with cross-level design environments
for the synthesis of complex electronic systems [27], [28].
During the last decade, many important milestones of
progress with respect to the initial findings have been
achieved [29], [30]. Several design environments have been
developed: SARA [31], ADAS [32], PTOLEMY [33], and
PML [34].

In the present work, we introduce a new co-design method-
ology based on constructive and iterative partitioning phases.
The originality of this work compared with the previously
proposed approaches in the literature resides in multiple
aspects including:
• A probabilistic estimation of the software models
aiming to predict the execution flow which leads
to an improvement in the codesign results and a
noticeable enhancement in the performance of the
system,

• A codesign methodology based on multiple constraints
and feasibility analysis that shows good performance
enhancements especially in terms of execution time and
communication cost,

• A visual tool that implements the methodology and
generates the controller table providing tasks mapping
to anticipate all reconfiguration scenarios,

III. FORMALIZATION
This section presents the formalization of a hardware/
software system specification. We also explain the partition-
ing techniques used in R-codesign.

A. SYSTEM MODEL
In this study we target an MPSoC hardware architecture as
an executing platform [35]. It is composed of a single master
tile controlling multiple slave tiles. Each tile is composed
of a CPU (Central Processing Unit), a local memory and
a reconfigurable hardware allowing the implementation of
custom hardware used for acceleration purpose. The master
tile includes I/O interfaces. In a classic use case, the master
tile receives through these interfaces external data events
from sensors and reconfigure the system tasks and hardware
behaviors accordingly. The tiles communicate through a com-
munication medium which can be a bus, a NoC (Network
on Chip), a crossbar or a shared memory. A hybrid memory
model is adopted i.e., each tile has its own private mem-
ory. The considered tiles can communicate through a global
shared memory where an upper bound on the time required to
access the shared resource is considered.We assume that soft-
ware tasks are those executed by programmable processors
(e.g., GPP (General Purpose Processor) and DSP (Digital
Signal Processor)).

FIGURE 1. Proposed Hardware Model.

Their implementation is an executable code while hard-
ware tasks are those implemented by a specific programmable
integrated circuit. Hardware tasks are generally provided as
IPs (Intellectual Property) written in a hardware descrip-
tion language (e.g., VHDL, verilog) and implemented by
FPGAs or dedicated ASICs (Application Specific Integrated
Circuit). We assume that all processors are homogeneous and
same for FPGAs in order to simplify the understanding of our
methodology through the exposed examples. The proposed

14080 VOLUME 6, 2018



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

methodology remains valid evenwith heterogeneous process-
ing elements. Figure 1 presents an example of the hardware
model. A tile Hwi, i ∈ [1..L], is characterized by the quadru-
plet (SCPU , SFPGA, PwFPGA, PwCPU , Freq), where (i) SCPU
is the available memory size in case of CPU, (ii) SFPGA is
the FPGA area in term of gates number, (iii) PwFPGA is the
produced electrical power of an PFGA, and (iv) PwCPU is the
produced electrical power of a CPU, and (v) Freq is the range
of the available operating frequency. The Bandwidth BWi,j is
defined in case of two communicating tilesHwi andHwj. The
memory and power parameters are common to all tiles.

The system model is divided into γ configurations. A con-
figuration ζl , l ∈ [1..γ ], is a set of tasks to be executed when
the configuration is initiated. Each task in a configuration
is considered as a graph of elementary functions/behaviors
with their intrinsic proprieties and constraints. A task Ti ∈ ζl ,
i ∈ [1..R] is represented by a directed acyclic graph
Ti = (Vi, Ei), where (i) Vi is a set of nodes that correspond
to behaviors or functions, and (ii) Ei is a set of arcs which
describe the connections between functions/behaviors. Each
task Ti is composed of ni,1 behaviors and ni,2 functions.
A hardware behavior denoted by Bj,i is described as a 5-tuple
Bj,i = (Ehwj , Mhw

j , Chw
j , Dhwj , Phwj ), where Ehwj represents

the execution time of the hardware behavior on FPGA, Mhw
j

stands for the number of gates necessary for implementing
Bj,i, Chw

j denotes the power consumption of the hardware
behavior, and Dhwj and Phwj are respectively its relative dead-
line and period. A software function Fk,i is described as
a 5-tuple Fk,i = (Eswk , M sw

k , Csw
k , Dswk , Pswk ), where Eswk

stands for the execution time of Fk,i on CPU, M sw
k denotes

the memory size in byte required by Fk,i, Csw
k represents the

power consumption of the software function, andDswk andPswk
denote respectively its relative deadline and period.

We also consider inclusion/exclusion constraints. They are
used to impose at a couple of functions and/or behaviors to
be executed either on the same computing unit or on differ-
ent ones. These constraints are expressed by the following
functions:
• Exclu(Fk,i) is a set that groups functions which have not
to be executed on the same processor with the function
Fk,i. This constraint is modeled within the task repre-
sentation by marking the symbol 6⊂ on the function Fk,i
which means that Fk,i should not be executed with its
predecessors on the same computing unit.

• Inclu(Fk,i) is a set that groups functions which have
to be executed on the same processor with Fk,i. This
constraint is modeled by marking the symbol ⊂ on
Fk,i which means that Fk,i should be executed with its
predecessors on the same computing unit.

The edges are weighted with a couple ≺Prk , Cck� where
Prk is the probability of executing this edge and Cck is the
communication cost of data transfer between the two nodes.
We consider that the data are always fetched by software
functions and propagated to the hardware behaviors where it
is attached to. Figure 2 presents an example of the proposed

FIGURE 2. A task example.

specification. The system is composed of ni,1 = 8 hardware
behaviors and ni,2 = 5 software functions connected with
valued edges. Inclusion constraints are visible on F2,i, F5,i,
B3,i and B8,i while the exclusion constraints are present on
F4,i and B6,i. The design constraints are user-defined param-
eters in the system model which are set according to a prior
performance study. The goal of the current paper is to provide
a solution that places the tasks in the related devices under
real-time, energy and memory constraints.

The aim of the design formalization is to generate a con-
troller allowing an efficient system reconfiguration.
Problem Statement: Given target hardware following the

previously described tile based execution model and our
R-codesign System model (DAG of tasks comprising soft-
ware functions and hardware behaviors with a set of con-
straints along with their execution estimated probabilities),
find an appropriate mapping for each possible configuration
that respects available hardware resources while satisfying
real time and energy constraints.

B. I-CODESIGN METHODOLOGY
The R-codesign partitioning reuses I-codesign partitioning
algorithms [36] and extends them to hardware behaviors. The
goal of I-codesign is to achieve a concurrent design between
the probabilistic task model and the hardware architecture
previously described in a manner that fulfills all the system
requirements and respects the design constraints. Each phase
of the I-codesign has its own constraint(s) and terminates
when all the nodes characterized with the specified con-
straint(s) aremapped. Firstly, we apply I-codesign to software
functions ignoring the hardware behaviors. Then in a second
step we perform the same steps to hardware behaviors.

1) FUNCTIONAL PARTITIONING
Evaluates the inclusion/exclusion constraints between graph
nodes. Then, this phase creates clusters depending on
these constraints. The inclusion/exclusion constraint decides
the number of the physical components when placing the
functions/behaviors.

We place the rest of the functions/behaviors in the already
used physical components within the limits of available
resources. In the case of resource shortage, other physical
components are allocated. If there are available memory and
energy on a created cluster, then sub-tasks from different

VOLUME 6, 2018 14081



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

Algorithm 1 Functional Partitioning Algorithm
1: procedure Functional-partition(ttask: tab-task, var tc:

tab-Cluster, var tf: tab-function)
2: for i = 1 to length(ttask) do
3: for j = 1 to length(ttask[i]) do
4: if inclusion(ttask[i][j]) then
5: Cluster_T (Cluster1, ttask[i][j],
Pred(ttask[i][j]))

6: if OK_Memory(cluster1)&
OK_Energy(cluster1) then

7: Add_C(cluster1, tc)
8: empty(cluster1)
9: end if
10: else if exclusion(ttask[i][j]) then
11: Cluster(cluster1, ttask[i][j])
12: Cluster(cluster2,Pred(ttask[i][j]))
13: if OK_Memory(cluster1) &

OK_Energy(cluster_1) then
14: Add_C(cluster1, tc)
15: empty(cluster1)
16: end if
17: if OK_Memory(cluster2) &

OK_Energy(cluster2) then
18: Add_C(cluster2, tc)
19: empty(cluster2)
20: end if
21: else Add_F(ttask[i][j], tf )
22: end if
23: end for
24: end for
25: if cluster1 6= 0 then ‘
26: Add_C(cluster1, tc)
27: end if
28: if cluster2 6= 0 then ‘
29: Add_C(cluster2, tc)
30: end if
31: end procedure

tasks can be associated to the cluster. The main rules applied
at this level are:
• Rule 1: ∀ ζl , l ∈ [1..γ ], ∀ Ti ∈ ζl i ∈ [1..R], for each pair
of functions Fk,i and Fh,i / Fk,i ∈ Inclu(Fh,i), group Fk,i
and Fh,i on the same cluster,

• Rule 2: ∀ ζl , l ∈ [1..γ ], ∀ Ti ∈ ζl , i ∈ [1..R], for each
pair of functions Fk,i and Fh,i / Fk,i ∈ Exclu(Fh,i), put
Fk,i and Fh,i on different clusters.

Algorithm 1 describes this partitioning phase where (i) ttask
is a table containing tasks of a configuration, (ii) tc is a
table that will hold the constructed clusters, (iii) tf is a table
that will hold the functions that are not affected with the
inclusion/exclusion constraints, (iv) Cluster_T (c, F, tab) is
a function that stores a function F and all the elements of a
table tab into a cluster c, (v) Cluster(c, F) is a function that
stores a function F into a cluster c, (vi) OK_Memory(c) is

a function that indicates memory availability in a cluster c,
(vii) OK_Energy(c) is a function that indicates energy avail-
ability in a cluster c, (viii) Add_C(c, tab) is a function that
adds a cluster c to a table tab, and (ix) Add_F(F, ta) is a
function that adds a function F to a table ta.

Inclusion/exclusion is a hard constraint, thus clustered ele-
ments are locked and they will not be moved to other clusters
during the remaining process.

2) HIERARCHICAL PARTITIONING
Clusters the remaining functions that have no inclu-
sion/exclusion constraints. The functions are evaluated by
their connecting edges probabilities and high probability val-
ues are treated first. For each remained function Fk,i, all its
predecessors are assessed to determine the highest probability
value of their connecting edges. Fk,i is associated to the clus-
ter where the predecessor having the highest edge probability
value is located.

Algorithm 2 Hierarchical Partitioning Algorithm
1: procedure Hierarchical-partition(var tc: tab-cluster, tf:

tab-function, ttask: tab-task)
2: for k = 1 to length(tf ) do
3: PT ← FetchTask(ttask, tf [i])
4: Pred(ttask[PT ], tf [k],Tpred)
5: ok ← false
6: repeat
7: max ← maxProba(tf [k],Tpred)
8: PC ← FetchCluster(tc,Tpred[max])
9: if OK_Memory(tc[PC]) & OK_Energy

(tc[PC]) then
10: tc[PC]← tf [k]
11: ok ← true
12: else Tpred[max]← 0
13: end if
14: until ok
15: end for
16: end procedure

Algorithm 2 describes this partitioning phase where
(i) ttask is a table containing tasks of a configuration,
(ii) tc is a table that will hold the constructed clusters, and
(iii) tf is a table that will hold the functions that are not
affected with the inclusion/execution constraint, (iv) Fetch-
Task(ttask, F) is a function that fetches a table of tasks ttask
in order to determine the index of the task that includes the
function F, (v)maxProba(F, Tpred) determines the maximum
probability value of edges connected to a function F using
the table of its predecessors Tpred, (vi) OK_Memory(c, F)
is a boolean function that returns true if there is enough
memory on a cluster c for a function F, (vii)OK_Energy(c) is
a boolean function that returns true if there is enough energy
on a cluster c for a function F, (viii) Pred(ta, func, Tpred) is a
function that returns the predecessors of a function func using
its corresponding task ta and stores them into a table Tpred,

14082 VOLUME 6, 2018



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

and (ix) FetchCluster(tc, F) is a function that fetches a table
of clusters tc in order to determine the index of the cluster
storing the function F.
The rules to be applied are:
• Rule 3: for any remaining un-clustered Fk,i ∈ Ti, deter-
mines its predecessors Fk−1,i in the DAG of Ti,

• Rule 4: For any Fk,i, extracts the highest edge’s prob-
ability couples ≺ Fk,i,Fk−1,i � and cluster Fk,i with
its related clustered functions having the highest edge
probability.

3) Kernighan-Lin
Optimizes the generated clusters. This phase evaluates both
probability and communication cost on the edges connecting
functions by gain calculation. If the gain is positive, then the
function is moved to another cluster.

This step applies the following rules:
• Rule 5: starts with choosing an unlocked function Fk,i,
• Rule 6: calculates the gain GF of moving Fk,i from
a partition to another, GF = ((Cce × Pre) − (Cch
× Prh)) where (i) Cce is the communication cost of
edges connecting Fk,i with Fe,i placed in another cluster,
(ii) Cch is the communication cost of edges connecting
Fk,i with Fh,i placed in its own cluster, (iii) Pre is the
probability of edges connecting Fk,i with Fe,i placed in
another cluster, and (iv) Prh is the probability of edges
connecting Fk,i with Fh,i placed in its own cluster.

• Rule 7: If GF ≥ 0 then we move Fk,i to another
cluster.

Algorithm 3 Kernighan-Lin Optimizationg Algorithm
1: procedure Kernighan-Lin Optimization(ttask: tab-task,
tf: tab-function, tc: tab-cluster)

2: for h = 1 to length(tf ) do
3: PT ← FetchTask(ttask, tf [h])
4: Pred(ttask[PT ], tf [h],Tpred)
5: Func← maxGain(tf [h],Tpred)
6: if Func 6= NULL then
7: PC ← FetchCluster(tc,Func)
8: if OK_Memory(tc[PC]) & OK_Energy

(tc[PC]) then
9: tc[PC]← tf [h]
10: P← FetchCluster(tc, tf [h])
11: Remove(tc[P], tf [h])
12: end if
13: end if
14: end for
15: end procedure

The kernighan-lin optimization algorithm is described with
Algorithm 3 where (i) ttask is a table containing tasks of a
configuration, (ii) tc is a table that will hold the constructed
clusters, (iii) tf is a table that will hold the functions that
are not affected with the inclusion/execution constraints, (iv)
maxGain(F, tab) is a function that returns a function having a

maximum gain value when stored with the function F on the
same cluster from a table tab storing F predecessors, and (v)
Remove(c, F) is a function that removes a function F from a
cluster c.

IV. R-CODESIGN
In this section, we present the R-codesign methodology.
A system specification according to the proposed proba-
bilistic modeling DAGs is the input of R-codesign. From
these DAGs, hardware and software tasks are extracted and
processed through the I-codesign engine. A mapping process
follows the I-codesign algorithms and a mapping matrix is
generated in order to be used further by the co-simulation
module. A validation strategy is then applied. If the perfor-
mance results from the validation module are not convenient,
then the I-codesignmodule is called again and a newmapping
is recalculated. There is no upper bound on the created allo-
cation by the I-codesign module. The designed system should
be capable of running different configurations. By applying
the proposed methodology, an allocation for each specified
configuration is created.

Algorithm 4 R-Codesign Algorithm
1: procedure R-codesign(Tconf:tab-configuration,
length[Tconf]:integer)

2: if length(Tconf ) > 0 then
3: NbT ← Number(Tconf [length(Tconf )])
4: for k = 1 to NbT do
5: TaskExtraction(Tk ,DAGsw,DAGhw)
6: repeat
7: Mapping_Table ← Icodesign

(DAGhw,HW )
8: Mapping_Table ← Icodesign

(DAGsw, SW )
9: PerformanceResults ← CoSimulation

(Mapping_Table)
10: until PerformaceResults == ‘‘ok ′′

11: end for
12: R− codesgin(Tconf , length[Tconf ]− 1)
13: end if
14: GenerateController()
15: end procedure

Algorithm 4 implements the R-codesignmethodology. The
input specification can be composed of multiple configura-
tions scenarios where each scenario executes a set of tasks.
Thus we define Tconf as the configuration table that will be
the main input of Algorithm 4 and Number(conf) is a func-
tion that returns the number of tasks per configuration conf.
Figure 3 represents the flow diagram of the methodology.
R-codesign steps are stated as follows:

A. TASK EXTRACTION
R-codesign starts with extracting software functions and
hardware behaviors from the system specification DAGs.

VOLUME 6, 2018 14083



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

FIGURE 3. R-codesign flow.

It constructs a sub-DAG for each type of task elements. The
task extraction is performed as follows.
• ∀ ζl , l ∈ [1..γ ], ∀ Ti ∈ ζl , i ∈ [1..R], ∀ Fk,i/Bj,i ∈
Ti, add ≺Fk,i,Fk−1,i� to the software sub-DAG and
≺Bj,i,Bj−1,i� to the hardware sub-DAG.

During the extraction phase, we adjust the communication
cost and the probability estimation of behaviors edges that
are separated with function(s) or functions edges separated
with behavior(s). As for the transfer cost, it is the sum
of the individual communication cost of edges separating
the communicating functions/behaviors. Regarding the edge
probability, it is the product of the individual edge probability
separating communicating functions/behaviors. For example,
in Figure 2, the probability on the edge connecting F1,i to
F2,i is equal to 0.6×0.8 while the communication cost is
10 + 12. If there are more than one functions/behaviors that
communicates with another function/behavior, i.e., more than
one incoming edge in the nodes of the graph, then we adjust
the communication cost related to the edge that will bind the
two behaviors by summing the communication cost on each
communicating path and considering the highest value of the
communication cost. As to the adjusted probability, it is the
sum of probability of the multiple paths (its value is 1 when
the sum exceeds 1). Asmentioned earlier, the path probability
is the product of all the individual edges probability consti-
tuting the path.

B. I-CODESIGN FOR HARDWARE BEHAVIORS
The inclusion/exclusion constraints are hard constraints that
generally decide the number of clusters to be created and
lock the behaviors that are concerned in term of placement.
If behaviors share the control of the same components, then
they are deployed on the same FPGA. Since each behavior
has its own design, FPGAs can have several implementations.
Multiplexers can be used in order to switch from an imple-
mentation to another. The assignment of the behaviors based
on this constraint is formalized as follows.

∀Bp,i,Bj,i ∈Assign(Cl), p, j∈ [1..ni,1],
Bp,i 6∈Exclu(Bj,i) (1)

∀Bp,i,Bj,i/Bp,i ∈ Inclu(Bj,i), Then Bp,i,Bj,i∈Assign(Cl)
(2)

where Cl is a cluster created based on the exclusion/inclusion
constraint. The number of the created clusters depends on
the number of behaviors on the hardware DAG. Inclu(Bj,i)
designates the behaviors that are related with inclusion to Bj,i.
Exclu(Bj,i) designates the behaviors that are related with
exclusion to Bj,i. Assign(Cl) groups the set of behaviors
affected to the cluster Cl. We define NCl as the number of
elements associated to a cluster Cl.
Each cluster created for hardware tasks Cl = {B1,i,

B2,i, . . . ,BNCl ,i} is composed of behaviors and will be imple-
mented on a single FPGA unit. The reconfigurable hardware

14084 VOLUME 6, 2018



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

device offers a certain amount of computational resources,
e.g., the configurable logic blocks of a FPGA, which is also
referred to as the SFPGA parameter of the device. At each
iteration of the I-codesign methodology, a placement deci-
sion can affect the hardware units. Hence, the available area
on the FPGA must be sufficient in order to execute the
affected behaviors. Thus, we propose to apply the following
constraint:

6Bj,i∈ClM
hw
j (Bj,i) ∧ SFPGA (3)

The third constraint concerns the bandwidth which is cor-
related to the transmission data rate and expressed in Bytes
per seconds. The bandwidth affects the transmission capacity
between the linked components (CPUs, FPGAs, IPs) and
particularly when there are data dependencies between two
tasks located in different hardware units. This dependency
constraint is defined as follows: a behavior Bp,i placed in a
cluster Clu depends on a behavior Bj,i placed in a cluster Clv:

∀Bp,i ↔ Bj,i, Bp,i ∈ Clv,Bj,i ∈ Clu (4)

Bandwidth(Clv,Clu)

=

∑
Bp,i∈Clv,Bj,i∈Clu

Bandwidth(Bp,i,Bj,i) ≤ BWv,l (5)

where BWv,l stands for an available bandwidth between two
tiles Hwv and Hwl . Bp,i ↔ Bj,i means that Bp,i and Bj,i
are placed on different clusters Clu and Clv and that they
have a data dependency. The expression Bandwidth(Bp,i,Bj,i)
corresponds to the bandwidth between Bp,i and Bj,i. The
verification step includes also the energy consumed by a
given FPGA. Indeed, the energy consumption of a partition
Cl depends on the selected operating frequency Freq based
on the current configuration and the number of available
gates SFPGA of the corresponding tile. The electrical power
constraint is given by

SFPGA.[Freq]3 ∧ PwFPGA (6)

In case of unavailable area or energy insufficiency,
the problem is reported to the I-codesign methodology and
another FPGA is allocated. When all these constraints are
satisfied, the real-time feasibility is evaluated.

Uk =
∑
Bj,i∈Cl

Ehw(Bj,i)/Phw(Bj,i) ≤ 1 (7)

According to EDF scheduling algorithm, the feasibility is
tested using the following Eq. (7) where Uk is the utilization
of the cluster Cl. The summary of the constraints that has to
be respected at each step of the co-design for the hardware
behaviors are given by

6Bj,i∈ClM
hw
j (Bj,i) ∧ SFPGA∑

Bp,i∈Clv,Bj,i∈Clu
Bandwidth(Bp,i,Bj,i) ≤ BW

SFPGA.[Freq]3 ∧ PwFPGA
Uk =

∑
Bj,i∈Cl

Ehw(Bj,i)/Phw(Bj,i) ≤ 1

(8)

C. I-CODESIGN FOR SOFTWARE FUNCTIONS
Previously described equations (1) and (2) are also
applicable to the software functions when dealing with the
inclusion/exclusion constraints. Each created cluster Cl for
software tasks resulting from I-codesign algorithms will be
mapped to a CPU unit and is composed of NCl functions.
We assume that all the target MPSoC CPUs are homoge-
neous. Thus, they have common characteristics (SCPU ,..). For
a given software sub-DAG of Ti composed of ni,2 functions,
the following constraints should be verified: The available
memory on the designed CPUs at an iteration must be suffi-
cient in order to place the affected functions. An extra CPU
is designated in case of resource shortage. We define the
memory space constraint as follows.

6Fk,i∈ClM
sw
k (Fk,i) ∧ SCPU (9)

The bandwidth constraint is applied by following the equa-
tions (4) and (5) using functions Fk,i instead of behaviors Bj,i.
The energy constraint is verified using equation (10) where V
is the voltage and Ca is the capacitance of the corresponding
processor.

Freq× V 2
× Ca ∧ PwCPU (10)

Real-time feasibility is verified according to the EDF algo-
rithm following the equation below.

Uk =
∑

Fk,i∈Cl

Esw(Fk,i)/Psw(Fk,i) ≤ 1 (11)

whereUk is the utilization of a clusterCl, Esw is the execution
time of Fk,i and Psw is the period of Fk,i. The summary of
the constraints that have to be respected at each step of the
co-design for the software functions are given by

6Fk,i∈ClM
sw
k (Fk,i) ∧ SCPU∑

Fk,i∈Clv,Fv,i∈Clu
Bandwidth(Fk,i,Fv,i) ≤ BW

Freq× V 2
× C ∧ PwCPU

Uk =
∑

Fk,i∈Cl
Esw(Fk,i)/Psw(Fk,i) ≤ 1

(12)

D. HARDWARE SOFTWARE CO-SIMULATION
Hardware/software co-simulation allows to verify the fea-
sibility of mixed hardware/software descriptions in term of
timing constraints. Implementing the co-simulation consists
in writing a set of HW components in VHDL and a set of
SW components (C programs) and linking them together with
communication interfaces. Finally, running co-simulation
will lead to two important results: (i) the execution status
whether it is a success or a failure. (ii) execution trace which
can be used for further analysis. The concept of correctness
of this verification is defined as follows: The system fails
when it reaches an undefined state or its predefined time
frame is violated and no time-out action is defined [37]. If the
co-simulation fails, then a remapping scheme is calculated
using the I-codesign module.

VOLUME 6, 2018 14085



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

E. CONTROLLER GENERATION
The software specification is divided into configurations.
Each configuration has a set of tasks to be executed when
initiated. Initially, a boot configuration is loaded. However,
a reconfiguration can occur at run-time which requires to
reconfigure (replace, re-parameter, change the functionality,
etc) of the system tasks. Therefore, a pre-calculated mapping
of all the possible configuration scenarios is necessary and
will lead to better performance. Thus, we propose to build
a controller module that manages the reconfiguration. It acts
following internal or external events that induce reconfigu-
rations. When executing the R-codesign process, a matrix is
constructed based on the output of each partitioned configu-
ration (task set). In fact, the task mapping to the execution
platform is stored in the controller matrix along with its
corresponding execution scenario. Hence, when the system
is executing and a reconfiguration occurs, the constructed
table is consulted and the proper partitioning according to the
I-codesign scheme is applied.

FIGURE 4. The controller State Diagram.

FIGURE 5. The controller Matrix.

The controller receives internal or external events and ini-
tiates a necessary reconfiguration. Figure 4 shows the state
diagram of the controller. An example of the controller matrix
is presented in Figure 5 where the specification is composed
of three tasks T1, T2 and T3 and two configurations conf1 =
{T1,T2,T3} and conf2 = {T1,T2}. The number of lines in this
matrix is equal to γ the number of possible configurations.
The number of columns is equal to

∑R
i ni,1 + ni,2. The

matrix associates each task function/behavior with a specified
PE (Processing Unit: CPU, FPGA) when the corresponding
configuration is selected.

V. EXPERIMENTAL RESULTS
A. R-CODESIGN ENVIRONMENT: SPEX
We develop a co-design execution environment that is
called SPEX. It provides a toolbox in order to create

a hardware/software system description according to the
proposed design models and implements the co-design algo-
rithms. It proposes a flexible task set generator for differ-
ent scenarios and purposes. The tool places the software
specification following several design constraints as inclu-
sion/exclusion parameters, probabilistic execution of the soft-
ware tasks, available memory and energy on the hardware
units and real-time parameters. At each iteration, it constructs
the controller table that stores all the possible execution sce-
narios. For simulation purposes the tool loads a specification
file, reads the software and hardware characteristics, applies
the co-design algorithms and generates the controller table
along with memory and energy estimation. Figure 6 summa-
rizes the general tool structure. The tool is composed of four
different parts: 1) Task set Generator (TSG), 2) Task Decom-
positioner (TD), 3) Task Partitioner (TP), 4) Execution Envi-
ronment (EE). TSG should be set with parameters such as
CPU utilization and the desired number of tasks, and then it
creates a task set that is called a configuration. The design
constraints (probability, inclusion/exclusion, communication
costs, and dependency) are randomly generated by the tool.
The generated configuration is passed as input to TD which
decomposes the tasks into elementary functions with design
constraints. TG produces the task graphs. Then, TP performs
the partitioning algorithms and generates optimized clusters.

Figure 7 summarizes the TP structure. Finally, EE executes
each cluster on the associated computing unit and collects
results for reporting energy and memory utilization and con-
troller status. The output results allow the assessment of using
static partitioning stored in the controller table (generated
by I-codesign) and permits us to compare the I-codesign
methodology with a legacy dynamic mapping scheme.

B. A CASE STUDY
We consider a system having two possible configurations
denoted by conf1 and conf2. This system is specified by a
task graph composed of three tasks T1, T2 and T3 according
to R-codesign modeling techniques. The required memory
size of the application is 2.3 MB where T1, T2 and T3 require
respectively 1.5MB, 0.5MB and 0.3MB. The composition of
each configuration is: conf1 = {T1,T2} and conf2 = {T1,T3}.
Figure 8 presents the DAG of the task T1. The target hardware
is an MPSoC composed of two identical tiles where each tile
has a CPU, a reconfigurable unit and a local memory. The
local memory’s size is of 1.2 MB.
The reconfigurable device includes one million gates. The

master and slave tiles are connected to a shared bus. Arbi-
tration is resolved by a bus arbiter. It periodically examines
pending requests from the master and grants access using
arbitration mechanisms specified by the bus protocol.
The maximum bandwidth of the communication links is

1 Mbps. Each CPU has a 10 Watt power consumption. The
operating frequency Freq range is [150..250] Mhz. Software
and hardware parameters used in R-codesign phases are listed
respectively in Tables 1 and 2. In this case study, the par-
titioning results as well as the controller generation are of

14086 VOLUME 6, 2018



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

FIGURE 6. The tool Architecture.

FIGURE 7. The partitioning flow graph of SPEX.

FIGURE 8. The DAG of T1.

main focus. Following are descriptions of SPEX steps applied
to this case study.

1) TASK EXTRACTION
The task extraction builds the software functions and the
hardware behaviors graphs.

TABLE 1. Software parameters of T1.

TABLE 2. Hardware parameters of T1.

The probability and the communication cost are recalcu-
lated according to the connections roots and leaves on the
original task’s DAG. Figures 9 and 10 present the extraction
of the software and hardware DAGs.

2) FUNCTIONAL PARTITIONING
This step evaluates the inclusion/exclusion constraints and
generates initial clusters with locked functions/behaviors.

Then it optimizes the number of generated clusters
since their creation depends on these inclusion/exclusion

VOLUME 6, 2018 14087



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

FIGURE 9. Task extraction: Hardware graph.

FIGURE 10. Task extraction: Software graph.

FIGURE 11. Resulted clusters after the Functional Partitioning.

FIGURE 12. Resulted Clusters after the Hierarchical Partitioning.

constraints. The verification phase applied on the created
clusters succeeds since the placements meet these constraints
(8) and (12). Figure 11 shows the initial clusters created
after applying the functional partitioning algorithm on the
hardware/software DAGs.

3) HIERARCHICAL PARTITIONING
This phase optimizes the communication costs on commu-
nication links since it stores the most probabilistic traffic on
the same processor. It also optimizes the processor occupa-
tions and assigns tasks to the maximum load of processors.
Figure 12 shows the resulted clusters after applying the hier-
archical partitioning algorithm.

The verification phase applied on the created clusters
succeeds since the placements respect (8) and (12).

FIGURE 13. Resulted Clusters after the Kernighan Lin Optimization.

4) Kernighan-Lin OPTIMIZATION
This phase aims to optimize the resulting clusters from
the hierarchical clustering phase by iterative improvements.
In our partitioning process, a combination of two metrics is
used in order to optimize the traffic circulation of the system:
the communication cost and the probabilistic estimations of
the executions. Figure 13 shows the optimized clusters after
applying the kernighan-Lin algorithm. The verification phase
applied to the optimized clusters succeeds since the place-
ments respect (8) and (12).

5) CONTROLLER GENERATION
For each configuration, SPEX runs R-codesign on the
hardware/software specification and constructs the con-
troller matrix. The generated matrix for this case study is
showed in Figure 14. The output of SPEX is also presented
in Figure 15.

FIGURE 14. Resulted Controller Matrix of task T1.

FIGURE 15. Output of SPEX.

C. EVALUATION
To evaluate the R-codesign methodology, several task sets
of different dimensions are generated. The generated tasks

14088 VOLUME 6, 2018



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

FIGURE 16. Simulation Results for Communication Costs.

FIGURE 17. Simulation Results for Energy Consumption.

are processed through SPEX and we obtain the generated
controller matrix along with the mapping scheme of each
execution scenario.

For performance simulation, we use ARTS framework
which is a simulation tool for user-driven abstract MPSoC
design explorations. Hence, The framework allows to:
(i) model processing elements (PE), memory units and
interconnect, (ii) investigate PE utilization, memory usage,
communication issues, and energy/power consumption, and
(iii) analyze the causality between MPSoC components
i.e., resource constrains and inter-dependencies [38]. The
application model is based on task graphs, where the exact
functionality of a task is abstracted away and expressed using
a set of timing constraints (execution time, deadline and
offset). Recording files are generated providing an overview
on the architecture-under-test, the profile of the application,
the PE utilization, the memory and communication costs.
ARTS model captures the impact of the dynamic and unpre-
dictable behavior on processor, memory and communication
performance. In particular, it focuses on analyzing the impact
of application mapping on the processor and memory utiliza-
tion taking the on-chip communication latency into account.

The evaluated performance parameters that are taken into
account are the total communication costs of the system
functions/behaviors, the total consumed energy during the
system execution, the total number of exchanged messages,
and the total execution time of the grouped task sets. The
generated results when varying the utilization on CPUs and

FPGAs are compared with two partitioning and scheduling
algorithms: the work reported in [27] which proposes a task
allocation algorithm based on clustering. This work that finds
a near optimal solution and tries to minimize the total system
cost by forming a cluster of tasks in such a way that the clus-
ter, having minimum execution cost, is allocated first. Then
comes the second work [28] which proposes an algorithm
to extend the battery life by partitioning and scheduling the
input task wisely. We also compare the performance results
from the traditional approach TA that during the run-time
reconfiguration calculates the appropriate mapping of tasks
into processors with R-codesign R-co.
Figures 16, 17, 18 and 19 present the performance result-

ing from randomly generated task sets. Figure 16 describes
the communication costs in term of delays of the transfer
through the communication medium while Figure 19 enu-
merates the transferred messages. The comparison between
the evaluated approaches has demonstrated that R-codesign
offers better performance results particularly with large uti-
lization factors and high number of nodes on the specification
DAGs. These enhancements are due to probabilistic esti-
mation of the communicated functions/behaviors that store
dependent tasks with high chances to be executed succes-
sively on same PEs. Another advantage of R-codesign is the
pre-calculated mapping of the possible reconfigurations at
run-time. This step helps significantly to minimize the recon-
figuration overhead which is made clear from the comparison
with TA. Due to these changes a reduction by 30% of the

VOLUME 6, 2018 14089



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

FIGURE 18. Simulation Results for Execution Time.

FIGURE 19. Simulation Results for the number of exchanged messages.

global execution time is observed. Since execution time is
a crucial performance parameter of the embedded system
design, adopting the proposed idea improves significantly the
response time. Compared with existing works, it is shown
from the graphs that R-codesign improves the communication
costs with an average of 10% and therefore the exchanged
messages are reduced by an average of 12%. Simulation
results show that this contribution has few benefits: (i) the
number of exchanged messages has been noticeably reduced,
and (ii) the global execution time has been minimized.
Hence, the energy consumption will be reduced as a result of
decreased execution time. Another advantage of R-codesign
is its validation tests (see equation systems (8) and (12)) that
avoid any issues related to a lack of resources.

VI. CONCLUSION
In this paper, we propose a complete methodology for mod-
eling, partitioning and validating reconfigurable embedded
system design. We expose in this paper probabilistic estima-
tion of the executions and amathematical formalization of the
design constraints. The obtained performance improvement
of the proposed techniques in terms of communication costs
(the number of exchanged messages), consumed energy and
required CPU time has been verified. Furthermore, the new
partitioning combination of iterative, constructive and func-
tional techniques allows efficient and optimized placements
of software/hardware specification while respecting the con-
strained resources. We proposed an execution model for

R-codesign methodology that relies on a controller module
that stores all the possible reconfiguration scenarios and
manages the system tasks whenever a reconfiguration event
occurs. Finally, we developed the SPEX tool which allows
to: (i) write a specification according to the R-codesign sys-
tem model, (ii) apply the new partitioning techniques and
(iii) generate the controller table. We are working on enhanc-
ing SPEX and from a future perspective we intend to explore
tasks migration mechanisms for an optimal reconfiguration
process [39]. Future work includes considering the exsitence
of faults [40] in a reconfigurable embedded system and the
case of partially known system models [41] using a Petri net
models or finite state automata.

REFERENCES
[1] M. Uzam, Z. Li, G. Gelen, and R. S. Zakariyya, ‘‘A divide-and-conquer-

method for the synthesis of liveness enforcing supervisors for flexible
manufacturing systems,’’ J. Intell. Manuf., vol. 27, no. 5, pp. 1111–1129,
Oct. 2016.

[2] Y. Chen, Z. Li, K. Barkaoui, andM. Uzam, ‘‘New Petri net structure and its
application to optimal supervisory control: Interval inhibitor arcs,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 44, no. 10, pp. 1384–1400, Oct. 2014.

[3] T. Kim and S. Tak, ‘‘Experience with hardware-software codesign of
network protocol stacks supporting real-time inter-task communication,’’
in Proc. IEEE 10th Int. Conf. Comput. Inf. Technol. (CIT), Bradford, U.K.,
Jun. 2010, pp. 26–32.

[4] S. Zhang, N. Wu, Z. Li, T. Qu, and C. Li, ‘‘Petri net-based approach to
short-term scheduling of crude oil operations with less tank requirement,’’
Inf. Sci., vol. 417, pp. 247–261, Nov. 2017.

[5] H. Grichi, O. Mosbahi, M. Khalgui, and Z. Li, ‘‘RWiN: New methodology
for the development of reconfigurable WSN,’’ IEEE Trans. Autom. Sci.
Eng., vol. 14, no. 1, pp. 109–125, Jan. 2017.

14090 VOLUME 6, 2018



I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

[6] M. Gasmi, O. Mosbahi, M. Khalgui, L. Gomes, and Z. Li, ‘‘R-node: New
pipelined approach for an effective reconfigurable wireless sensor node,’’
IEEE Trans. Syst., Man, Cybern., Syst., to be published.

[7] H. Grichi, O. Mosbahi, M. Khalgui, and Z. Li, ‘‘New power-oriented
methodology for dynamic resizing and mobility of reconfigurable wireless
sensor networks,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be published.

[8] M. O. Ben Salem, O. Mosbahi, M. Khalgui, Z. Jlalia, G. Frey, and
M. Smida, ‘‘BROMETH:Methodology to design safe reconfigurable med-
ical robotic systems,’’ Int. J. Med. Robot. Comput. Assist. Surg., vol. 13,
no. 3, p. e1786, 2017.

[9] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, ‘‘Ant colony
optimization for mapping, scheduling and placing in reconfigurable sys-
tems,’’ in Proc. NASA/ESA Conf. Adapt. Hardw. Syst. (AHS), Turin, Italy,
Jun. 2013, pp. 47–54.

[10] X. Wang, I. Khemaissia, M. Khalgui, Z. Li, O. Mosbahi, and M. Zhou,
‘‘Dynamic low-power reconfiguration of real-time systems with periodic
and probabilistic tasks,’’ IEEE Trans. Autom. Sci. Eng., vol. 12, no. 1,
pp. 258–271, Jan. 2015.

[11] T.-K. Liu, Y.-P. Chen, and J.-H. Chou, ‘‘Developing a multiob-
jective optimization scheduling system for a screw manufacturer:
A refined genetic algorithm approach,’’ IEEE Access, vol. 2, pp. 356–364,
2014.

[12] W. Housseyni, O. Mosbahi, M. Khalgui, Z. Li, and L. Yin, ‘‘Multiagent
architecture for distributed adaptive scheduling of reconfigurable real-time
tasks with energy harvesting constraints,’’ IEEE Access, to be published.

[13] S. Brandstätter and M. Huemer, ‘‘A novel MPSoC interface and control
architecture for multistandard RF transceivers,’’ IEEE Access, vol. 2,
pp. 771–787, 2014.

[14] S. Dutt, ‘‘New faster Kernighan-Lin-type graph-partitioning algorithms,’’
in Proc. Int. Conf. Comput. Aided Design (ICCAD), Nov. 1993,
pp. 370–377.

[15] D. W. Franke and M. K. Purvis, ‘‘Design automation technology for
codesign: Status and directions,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 1992, pp. 2669–2672.

[16] K. Li, X. Tang, B. Veeravalli, and K. Li, ‘‘Scheduling precedence con-
strained stochastic tasks on heterogeneous cluster systems,’’ IEEE Trans.
Comput., vol. 64, no. 1, pp. 191–204, Jan. 2015.

[17] C.-C. Kao, ‘‘Performance-oriented partitioning for task scheduling of
parallel reconfigurable architectures,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 3, pp. 858–867, Mar. 2015.

[18] R. Niemann and P. Marwedel, ‘‘An algorithm for hardware/software parti-
tioning using mixed integer linear programming,’’ Des. Autom. Embedded
Syst., vol. 2, no. 2, pp. 165–193, Mar. 1997.

[19] J. Grode, P. V. Knudsen, and J. Madsen, ‘‘Hardware resource allocation for
hardware/software partitioning in the LYCOS system,’’ in Proc. Design,
Autom. Test Europe, Feb. 1998, pp. 22–27.

[20] K. S. Chatha and R. Vemurl, ‘‘MAGELLAN:Multiway hardware-software
partitioning and scheduling for latency minimization of hierarchical
control-dataflow task graphs,’’ in Proc. 9th Int. Symp. Hardw./Softw.
Codesign (CODES), Apr. 2001, pp. 42–47.

[21] N. N. Binh,M. Imai, A. Shiomi, andN. Hikichi, ‘‘A hardware/software par-
titioning algorithm for designing pipelined ASIPs with least gate counts,’’
in Proc. 33rd Design Autom. Conf., Jun. 1996, pp. 527–532.

[22] G. Quan, X. Hu, and G. Greenwood, ‘‘Preference-driven hierarchical
hardware/software partitioning,’’ in Proc. IEEE Int. Conf. Comput. Design,
VLSI Comput. Process, Oct. 1999, pp. 652–657.

[23] P. Arató, S. Juhász, Z. Á. Mann, A. Orbán, and D. Papp, ‘‘Hardware-
software partitioning in embedded system design,’’ in Proc. IEEE Int.
Symp. Intell. Signal Process., Sep. 2003, pp. 197–202.

[24] C. Wang, A. Wang, Y. Chen, A. Al-Ahmari, and Z. Li, ‘‘On computa-
tion reduction of liveness-enforcing supervisors,’’ IEEE Access, vol. 5,
pp. 14775–14786, Aug. 2017.

[25] C. Li, Y. Chen, Z. Li, and K. Barkaoui, ‘‘Synthesis of liveness-enforcing
Petri net supervisors based on a think-globally-act-locally approach and
vector covering for flexible manufacturing systems,’’ IEEE Access, vol. 5,
pp. 16349–16358, Jun. 2017.

[26] J. Shi, W. Liu, M. Jiang, H. Che, and L. Chen, ‘‘Software hardware
co-simulation and co-verification in safety critical system design,’’ in
Proc. IEEE Int. Conf. Intell. Rail Transp. (ICIRT), Beijing, China,
Aug./Sep. 2013, pp. 71–74.

[27] P. Bhardwaj and V. Kumar, ‘‘An effective load balancing task allocation
algorithm using task clustering,’’ Int. J. Comput. Appl., vol. 77, no. 7,
pp. 32–39, Sep. 2013.

[28] R. Shi, S. Yin, C. Yin, L. Liu, and S. Wei, ‘‘Energy-aware task partitioning
and scheduling algorithm for reconfigurable processor,’’ in Proc. IEEE
11th Int. Conf. Solid-State Integr. Circuit Technol. (ICSICT), Beijing,
China, Oct. 2012, pp. 1–3.

[29] X. Wang, Z. Li, and W. M. Wonham, ‘‘Dynamic multiple-period reconfig-
uration of real-time scheduling based on timed des supervisory control,’’
IEEE Trans. Ind. Informat., vol. 12, no. 1, pp. 101–111, Feb. 2016.

[30] G. Yi, J. H. Park, and S. Choi, ‘‘Energy-efficient distributed topology
control algorithm for low-power IoT communication networks,’’ IEEE
Access, vol. 4, pp. 9193–9203, 2016.

[31] G. Estrin, R. S. Fenchel, R. R. Razouk, andM. K. Vernon, ‘‘SARA (System
ARchitects Apprentice): Modeling, analysis, and simulation support for
design of concurrent systems,’’ IEEE Trans. Softw. Eng., vol. SE-12, no. 2,
pp. 293–311, Feb. 1986.

[32] C. U. Smith, G. A. Frank, and J. L. Cuardrado, ‘‘An architecture design
and assessment system for software/hardware codesign,’’ in Proc. 22nd
ACM/IEEE Design Autom. Conf., Piscataway, NJ, USA, Jun. 1985,
pp. 417–424.

[33] A. Kalavade and E. A. Lee, ‘‘A hardware-software codesign methodology
for DSP applications,’’ IEEE Des. Test Comput., vol. 10, no. 3, pp. 16–28,
Sep. 1993.

[34] F. Rose, T. Carpenter, S. Kumar, J. Shackleton, and T. Honeywell,
‘‘A model for the coanalysis of hardware and software architectures,’’ in
Proc. 4th Int. Workshop Hardw./Softw. Co-Design, Washington, DC, USA,
Mar. 1996, pp. 94–103.

[35] V. Boppana, S. Ahmad, I. Ganusov, V. Kathail, V. Rajagopalan, and
R. Wittig, ‘‘Ultrascale+ Mpsoc and FPGA families,’’ in Proc. IEEE Hot
Chips Symp. (HCS), Cupertino, CA, USA, Aug. 2015, pp. 1–37.

[36] I. Ghribi, R. B. Abdallah, M. Khalgui, and M. Platzner, ‘‘New co-design
methodology for real-time embedded systems,’’ in Proc. 11th Int. Conf.
Softw. Eng. Appl., 2016, pp. 185–195.

[37] R. Gumzej and M. Colnaric, ‘‘An approach to modeling and verification
of real-time systems,’’ in Proc. 4th IEEE Int. Symp. Object-Oriented Real-
Time Distrib. Comput., 2001, pp. 283–290.

[38] P. Chandraiah and R. Doemer, ‘‘Designer-controlled generation of par-
allel and flexible heterogeneous MPSoC specification,’’ in Proc. 44th
ACM/IEEE Design Autom. Conf., San Diego, CA, USA, Jun. 2007,
pp. 787–790.

[39] A. R. Gaiduk andN. N. Prokopenko, ‘‘Design of nonlinear optimal systems
on basis of controlled Jordan form,’’ in Proc. IEEE East-West Design Test
Symp. (EWDTS), Sep./Oct. 2017, pp. 1–4.

[40] X. Y. Cong, M. P. Fanti, A. M. Mangini, and Z. W. Li, ‘‘Decentralized
diagnosis by Petri nets and integer linear programming,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., to be published, doi: 10.1109/TSMC.2017.2726108.

[41] H. M. Zhang, L. Feng, N. Q. Wu, and Z. W. Li, ‘‘Integration of learning-
based testing and supervisory control for requirements conformance of
black-box reactive systems,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 1,
pp. 2–15, Jan. 2018.

INES GHRIBI was born in Testour, Tunisia, in
1990. She received the Engineering degree in com-
puter network and telecommunication from the
National Institute of Applied Science and Tech-
nology, where she is currently pursuing the Ph.D.
degree with the Computer Laboratory of Indus-
trial Systems. Her main research interest is in
the design of reconfigurable real-time embedded
systems.

RIADH BEN ABDALLAH received the M.Sc. and
Ph.D. degrees in computer science from INSA of
Lyon, Lyon, France, in 2007 and 2010, respec-
tively. He is currently an Assistant Professor of
computer science with the University of Carthage,
Tunisia. His current research interests include high
performance computing, parallel programming,
and embedded software design.

VOLUME 6, 2018 14091

http://dx.doi.org/10.1109/TSMC.2017.2726108


I. Ghribi et al.: R-Codesign: Codesign Methodology for Real-Time Reconfigurable Embedded Systems

MOHAMED KHALGUI received the B.S. degree
in computer science from Tunis El Manar Uni-
versity, Tunis, Tunisia, in 2001, the M.S. degree
in telecommunication and services from Henri
Poincaré University, Nancy, France, in 2003, the
Ph.D. degree from the National Polytechnic Insti-
tute of Lorraine, Nancy, France, in 2007, and
the Habilitation Diploma degree in information
technology (computer science) from the Mar-
tin Luther University of Halle-Wittenberg, Halle,

Germany, in 2012, with a Humboldt grant. He was a Researcher of com-
puter science with the Institut National de Recherche en Informatique et
Automatique INRIA, France; ITIA-CNR Institute, Vigevano, Italy; Systems
Control Laboratory, XidianUniversity, Xi’an, China; and theKingAbdulaziz
City for Science and Technology, Riyadh, Saudi Arabia; a collaborator with
the SEG Research Group, Patras University, Patras, Greece; the Director
of RECS Project, O3NEIDA, Canada; the Director of RES Project, Syne-
sis Consortium, Lomazzo, Italy; the Manager of Cyna-RCS Project with
Cynapsys Consortium, France; and the Director of BROS and RWiN Projects
with ARDIA Corporation, Germany. He is currently a Professor with the
University of Carthage, Tunis. He has been involved in various international
projects and collaborations. He is a member of various TPC of conferences
and many journal boards.

ZHIWU LI (M’06–SM’07–F’16) received the B.S.
degree in mechanical engineering, the M.S. degree
in automatic control, and the Ph.D. degree in man-
ufacturing engineering from Xidian University,
Xi’an, China, in 1989, 1992, and 1995, respec-
tively. He joined Xidian University in 1992. He is
currently with the Institute of Systems Engineer-
ing, Macau University of Science and Technol-
ogy, Taipa, Macau. His current research interests
include Petri net theory and application, supervi-

sory control of discrete event systems, workflow modeling and analysis,
system reconfiguration, game theory, and data and process mining. He is
listed in Marquis Who’s Who in the World (27th Edition, 2010). He is
the Founding Chair of the Xi’an Chapter of the IEEE Systems, Man, and
Cybernetics Society.

KHALID ALNOWIBET received the Ph.D. degree
in operations research from the College of Engi-
neering, North Carolina State University, NC,
USA, in 2004. Since 2006, he has been with the
Department of Statistics and Operations Research,
King Saud University. His interests are queue-
ing theory and its applications, queuing networks,
communication networks, and networked embed-
ded system design.

MARCO PLATZNER received the Diploma and
Ph.D. degrees in telematics from Graz Univer-
sity of Technology, Graz, Austria, in 1991 and
1996, and the Habilitation degree in hardware-
software codesign from Eidgenn̈ossische Technis-
che Hochschule Zurich, Zurich, Switzerland, in
2002. He is currently a Professor of computer
engineering with the University of Paderborn,
Paderborn, Germany. He is a FacultyMember with
the International Graduate School Dynamic Intel-

ligent Systems, University of Paderborn, and the Advanced Learning and
Research Institute, Universita della Svizzera Italiana, Lugano, Switzerland.
His current research interests include reconfigurable computing, hardware-
software codesign, and parallel architectures. He was a Board Member of
the Advanced System Engineering Center, University of Paderborn. He is
a member of the ACM and serves on the program committees of several
international conferences, including FPL, FPT, RAW, ERSA, and DATE. He
is a Board Member of the Paderborn Center for Parallel Computing. He is an
Associate Editor of the International Journal of Reconfigurable Computing,
the EURASIP Journal on Embedded Systems, and the Journal of Electrical
and Computer Engineering.

14092 VOLUME 6, 2018


	INTRODUCTION
	STATE OF THE ART
	FORMALIZATION
	SYSTEM MODEL
	I-CODESIGN METHODOLOGY
	FUNCTIONAL PARTITIONING
	HIERARCHICAL PARTITIONING
	Kernighan-Lin


	R-CODESIGN
	TASK EXTRACTION
	I-CODESIGN FOR HARDWARE BEHAVIORS
	I-CODESIGN FOR SOFTWARE FUNCTIONS
	HARDWARE SOFTWARE CO-SIMULATION
	CONTROLLER GENERATION

	EXPERIMENTAL RESULTS
	R-CODESIGN ENVIRONMENT: SPEX
	A CASE STUDY
	TASK EXTRACTION
	FUNCTIONAL PARTITIONING
	HIERARCHICAL PARTITIONING
	Kernighan-Lin OPTIMIZATION
	CONTROLLER GENERATION

	EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	INES GHRIBI
	RIADH BEN ABDALLAH
	MOHAMED KHALGUI
	ZHIWU LI
	KHALID ALNOWIBET
	MARCO PLATZNER


