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ABSTRACT The data reduction capability of image compression schemes is limited by the underlying
compression technique. For applications withminor changes between consecutive frames, change coding can
be used to further reduce the data.We explored the efficiency of change coding for data reduction in awireless
visual sensor network (WVSN). This paper presents an analysis of the compression efficiency of change
coding for a variety of changes, such as different shapes, sizes, and locations of white objects in adjacent
sets of frames. Compressing change frame provides a better performance compared with compressing the
original frames for up to 95% changes in the number of objects in adjacent frames. Due to illumination noise,
the size of the objects increases at its boundaries, which negatively affects the performance of change coding.
We experimentally proved that the negative impact of illumination noise could be reduced by applying
morphology on the change frame. Communication energy consumption of the VSN is dependent on the
data that are transmitted to the server. Our results show that the communication energy consumption of
the VSN can be reduced by 27%, 29%, and 46% by applying change coding in combination with JBIG2,
Group4, and Gzip_pack, respectively. The findings presented in this paper will aid researchers in enhancing
the compression potential of image coding schemes in the energy-constrained applications of WVSNs.

INDEX TERMS Change coding, communication energy consumption, embedded systems, image compres-
sion, wireless visual sensor network.

I. INTRODUCTION
Extensive research has been performed on image compres-
sion and wireless communications. However, the remote
applications of Wireless Visual Sensor Networks (WVSNs)
for large area monitoring have created new challenges due
to the strict limitations on the storage, processing bandwidth,
and power consumption in the Visual Sensor Nodes (VSNs).
Many researchers have focused on various implementation
strategies for executing vision processing tasks locally or cen-
trally (Fig. 1). For example, in [1], images were captured
and compressed in the VSN, and then transmitted to the
server. In this case, communication energy consumption is
higher than computational energy consumption because only
image capturing and compression were executed at the VSN.

The researchers in [2] and [3] proposed executing all image
processing tasks at the VSN and transmitting only the labeled
features to the server. They reduced communication energy
consumption, but computational energy consumption

increased due to performing all tasks in the VSN. In [2],
a distributed vision processing system was implemented
for human pose interpretation. They accomplished real-time
monitoring by employing distributed processing. By per-
forming onboard processing, they extracted critical joints
from the subjects in real time. The results from multiple
cameras were transmitted to the server where the human pose
was reconstructed.

SensEye [3] is a heterogeneous multi-tier network,
in which the focus has been on low power, low latency detec-
tion, and low latency wakeup. SensEye can perform image
processing tasks such as object detection, recognition, and
tracking.

Both onboard processing and communication with a server
consume a substantial portion of the total energy budget
of each node. Communicating raw data to the server leads
to reduced processing energy consumption, but has the dis-
advantage of larger communication energy consumption.

37738
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-3647-8578
https://orcid.org/0000-0002-5538-6778


K. Aurangzeb et al.: Data Reduction Using Change Coding for Remote Applications of WVSNs

FIGURE 1. The two extremes of image processing tasks in WVSNs.

FIGURE 2. Energy efficient architecture for WVSNs.

FIGURE 3. Sequence of operations for change coding.

Performing all processing locally and communicating the
final object features to the server leads to reduced commu-
nication energy consumption, but has the drawback of larger
computational energy consumption.

We previously determined in [4] and [5] that selecting an
appropriate Intelligence Partitioning (IP) strategy between
the VSN and the server will help in reducing the overall
energy consumption of the VSN. In [6], we proposed a gen-
eral architecture for some applications of WVSNs in which
a binary image is compressed following pre-processing and
segmentation (this architecture is shown in Fig. 2.) Based
on this architecture, we explored the compression efficiency
of well-known binary image compression methods in [7].
We concluded that the compression efficiency of JBIG2 [8],
CCITT Group 4 [9], and Gzip_pack [10] is significantly
better compared to other methods. For Gzip_pack, we first
packed eight pixels of the bi-level image into one byte,
and then compressed it using the Gzip command in
Linux.

In some applications, adjacent frames are very similar,
such as meter reading, bird/bat detection, etc. In such applica-
tions, the differences in two adjacent frames are small (only
a part of the image is changing). Further data reduction can
be achieved by compressing change frames rather than the
original frames.

The goal of our current work is to explore the effective-
ness of change coding in combination with binary image
coding for data reduction in WVSNs (Fig. 3). Data reduction
will lead to reduced communication energy consumption for
the VSN. Change coding is a well-known concept in the
image processing community, but we are evaluating its per-
formance specifically for some applications of WVSNs.
Rather than proposing a new change coding scheme, we are
interested in achieving further data reduction by using change
coding for specific applications in WVSNs, such as meter
reading, bat/bird detection, etc.

We have explored the data reduction efficiency of
three suitable bi-level image compression standards
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(CCITT Group 4, JBIG2, and Gzip) in combination with
change coding for a variety of changes in adjacent frames.
We considered various types of changes in adjacent frames,
such as the number, size, location, and shape of white objects.

The remainder of this article is organized as follows.
Related work is presented in Section II. Section III presents
the basic concept and architecture for change coding. A sta-
tistical model for simulating different variations in a set of
frames is described in Section IV. Experimental results are
discussed in Section V. Finally, conclusions are provided
in Section VI.

II. RELATED WORK
In some applications ofWVSNs, images represent the objects
being monitored or the background. Few examples of such
applications are target tracking [11]–[13], bat/bird detec-
tion [14] and Automatic Meter Reading (AMR) [15]–[17].

Images can be segmented into binary images in such appli-
cations, which leads to a significant reduction in data size.
Binary image compression methods are extremely effective
and have been researched extensively. The communication
energy consumption of a VSN can be greatly reduced by
implementing a suitable binary image compression method
in combination with change coding.

Nandhini and Radha [11] developed a system that can
perform both object detection and trackingwith reduced com-
plexity. They tracked detected objects using a Kalman filter.
They extracted the centroids of objects from binary images
using contour tracing. The centroids were then used as inputs
for the Kalman filter to track the objects.

Another target tracking system for resource constrained
WSNs was proposed in [12]. The authors implemented sev-
eral specific signal processing algorithms for target detection,
classification, and tracking. They used 5,000 binary images of
humans and 4,000 binary images of non-humans for training.
Another 2,000 binary images of humans and 1,500 binary
images of non-humans were used for testing. The authors
in [13] explored the impact of compressive sensing for target
detection and tracking.

Wind energy plants have a severe impact on wildlife, with
significant fatality rates for various kinds of birds and bats.
The death of these birds and bats occurs due to their collision
with the rotor blades of wind turbines. Vision-based moni-
toring systems, such as the one proposed in [14], reduce the
mortality rate of birds and bats by using an optimized turbine
control strategy when a bird/bat is detected.

Another application for WVSNs and binary is the auto-
matic monitoring of energy meters. Ferrigno et al. [1],
Elrefaei et al. [15], Shinde and Kulkarni [16], and
Rodr_Iguez et al. [17] performed binary image processing for
meter reading applications of WVSNs.

The compression efficiency of binary image compression
methods was analyzed in [18]–[20]. The performance of
lossless still image compression was explored in [18]. The
authors analyzed the compression ratios of all the well-known
compression methods available at the time. However, one

issue with the investigation in [18] is the absence of the latest
standard, JBIG2. The other issue is the consideration of still
images only. The execution times and compression ratios of
various compression methods were explored in [19]. How-
ever, Kodituwakku and Amarasinghe [19] only considered
textual data and still images.

Another comparison of compression methods was pre-
sented in [20]. The authors evaluated many compression
schemes based on various medical images. They considered
both the compression ratios and execution times of the com-
pression methods. They concluded that compression effi-
ciency depends on the type of images, meaning their results
cannot be applied to machine vision applications.

Conventional video codecs such as JPEG2000, H.264 and
MPEG-x have a complex encoding and simple decoding
architecture, where raw video data is compressed by a pow-
erful computer which can perform computationally complex
operations. On the other hand, the resource-constraint VSN
need to compress the data onboard before transmitting it
to the server, which makes it essential for VSN to have a
computationally efficient compression method. However, the
conventional video coding methods are not appropriate for
WVSNs because of the resource constraints such as limited
onboard computational power, availability of limited energy
in battery and communication bandwidth.

The performance of three video codecs forWVSNs includ-
ing DISCOVER [21], H.264 Intra [22] and DCVS [23] was
explored in [24]. This study is based on parameters such as
computation complexity, total energy consumption, decoding
complexity at receiver side, lifetime of the VSN and the qual-
ity of reconstruction. These codecs have high computational
complexity which results in large energy consumption. In this
study, an energy consumption model based on TelosB mote
specifications was used.

Most recent work on encoding data in WVSN is based
on Distributed Video Coding (DVC) [25]. DVC uses com-
putationally less complex encoders at VSN, by shifting most
of the computationally complex tasks to the server. In other
words, in DVC, the computationally complex and energy
consuming tasks are moved to the server, which is expected
to be resourceful in both computational power and energy
resources. A comprehensive review of the state of the art
on DVC based codecs for WVSN was presented [26]. This
review comprises of a comparative discussion of several
well-known video codecs based on their functional aspects
and performance comparison. The DVC is based on dis-
crete cosine transformation (DCT), which is computationally
more complex compared to the binary image compression
methods.

There are many applications of WVSN but our evalua-
tion of data reduction is for those which are based on bi-
level images. The cyclist and human detection based on
binary images, for guaranteeing their safety, was explored
in [27]. The monitoring of birds which are flying towards
the wind turbines, to divert them away and avoid possible
accidents with the wind turbines has been presented in [28].
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FIGURE 4. Proposed architecture for change coding.

Other studies which were based on bi-level images include
the monitoring of meter readings [1], magnetic particle detec-
tion in hydraulics systems for failure prevention [29], human
detection [30] and robot localization [31].

Compared to conventional video codecs and DVC,
the computational complexity of binary image coding meth-
ods is very low. So, for the considered applications, further
data reduction can be achieved by applying change coding in
combination with binary image coding at the VSN, which is
the core of our current work. Unfortunately, we could not find
a relevant article in which the performance of change coding
in combination with binary image coding method is explored.
So, it will not be fair to present a comparison of algorithms
which are computationally complex and are evaluated on
different computing platforms.

In machine vision applications, images contain various
objects that are different from those found in scanned textual
and medical images. Thus, a thorough study on the effec-
tiveness of change coding for machine vision applications is
required.

III. CHANGE CODING
In some applications, the number of objects in the change
frame (frame obtained by performing an XOR operation on
two adjacent frames) is lower than the number of objects
in each of the original adjacent frames. By compressing
the change frame generated from two adjacent frames, we
expect higher compression performance compared to simply
compressing the original frames.

The additional cost of change coding is the memory
required for storing frames in the form of white and black
runs, and an XOR logic gate. The architecture for change
coding is presented in Fig. 4. Every incoming frame is stored
in the form of alternating runs of ones and zeros. Memory
usage can be reduced by storing frames using Run Length
Encoding (RLE). The change frame between two adjacent
frames can be computed by performing an XOR operation on
the respective segmented pixels of the current frame from the
camera and the pixels of the previous frame from memory.
The selected binary image compression algorithm is then
applied to compress the processed CFs. A morphological
operation (erosion, dotted lines in Fig. 4) is optional and may
be performed on the CFs for removing illumination noise
(illumination noise caused by segmentation errors).

VSNs have a strict memory size constraint. For storing a
segmented frame in memory, 32 KB of memory is required
(640 columns, 400 rows, 640×400 = 25, 600 bits = 32 KB).
Table 1 displays the memory requirements for saving an

TABLE 1. Memory requirements for saving a frame in the form of RLE.

FIGURE 5. Problem caused by morphology and its solution.

entire frame in the form of RLE for frames containing an aver-
age of 20 objects. The memory requirement remained nearly
constant for different standard deviations in the number of
objects in the original frames, and is approximately 2.1 KB
for the worst case. Therefore, more than 29 KB of memory
can be saved by storing a frame in memory using RLE.

The problems caused by change coding and the solutions
to those problems are presented in Fig. 5. Sections (a)-(e)
illustrate the concept of change coding, while
sections (f)-(o) illustrate the problems caused by change
coding due to illumination noise and morphology operations.

Specifically, Fig. 5(o) shows that if an object moves away
from the camera in the presence of illumination noise, then a
ring shaped object will exist in the reconstructed frame. This
ring shaped object in the reconstructed frame is unwanted
noise caused by the loss introduced when using morphologi-
cal erosion.

In order to resolve this problem, we propose the archi-
tecture presented in Fig. 6. Sections (p)-(t) in Fig. 5 are
the resulting images after applying the architecture pre-
sented in Fig. 6. It should be noted that the ring shaped
object is not present in the reconstructed image presented
in Fig. 5(t).
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FIGURE 6. Block diagram of change coding implementation.

IV. STATISTICAL MODEL FOR EVALUATION
OF CHANGE CODING
Objects are randomly located in the images in many machine
vision applications. The objects being monitored are typi-
cally moving. Thus, some objects may disappear/appear in
adjacent frames. There could be significant changes in the
shapes, sizes, and locations of the objects across a sequence
of frames. The size of the compressed image is dependent on
object shapes, object sizes, the number of objects, and their
locations in the images.

Thus, for analyzing the efficiency of change coding,
a mandatory requirement is to generate a rich set of frames.
There is a need for a statistical model that is capable of gener-
ating a sequence of frames with numerous attributes, such as
dissimilar locations, varying sizes, different shapes, and dif-
ferent numbers of objects. We have developed such a model
and generated a rich set of images with these desired object
characteristics. We used this set of images in combination
with the selected compression standards for the performance
evaluation of change coding.

Some objectsmay appear or disappear in continuous sets of
frames. For example, in one frame there could be ten objects,
out of which two (any number) may move out of the scene
and will not be present in the next frame. Similarly, a few
objects may move into the scene and the number of objects
in the next frame will increase.

In our statistical model, we assume that µ objects are
present in the frames on average. A standard deviation
of σ is used to simulate the effect of added/removed objects
in the sequence of frames. Additionally, we consider that the
size of some objects may grow due to illumination noise.

The performance of the binary image coding standards is
dependent on the changing of pixel values from one to zero
and vice versa. The trend of appearing/disappearing objects
was simulated in one set of frames. The increase/decrease
in the size of the objects due to illumination noise
was simulated in a second set. Both of the generated
sets have frames with different object shapes, such as
semi-ellipses, quarter-ellipses, ellipses, semi-circles, quarter-
circles, and circles. In our evaluation, we used frames of
size 640x400, with randomly placed objects in a black
background.

The purpose of developing the statistical model was to gen-
erate frames with the desired object characteristics. In doing
so, we are able to analyze the compression efficiency of
change coding. Real-world performance can be investigated
prior to actual system implementation by simulating real-
world situations in a statistical model.

FIGURE 7. Effect of adding/removing objects in the OFs on the CFs.

A. STATISTICAL MODEL FOR APPEARING/
DISAPPEARING OBJECTS
We generated 50 frames for each type of white object
(quarter-circles, semi-circles, circles, ellipses, etc.) using our
MATLAB model. In our MATLAB model, the number of
objects in each of the 50 frames is determined by using a ran-
dom number generator. The random number generator takes
three input values: the mean (µ), the standard deviation (σ ),
and number of samples in the population (N ).
In our analysis, the number of samples in the population

is 50 frames, the mean is 20 objects, and number of objects
varies from 2 to 22 (representing a 10-110% change in the
number of objects in the set of frames).

The variation between 2 and 22 is used to simulate the
effect of disappearing/appearing objects in a continuous set
of frames. For each standard deviation, 50 frames with
20 objects on average are generated. This means that in the
whole set of frames, the number of objects in various frames
will be about 20. The variation in the number of objects in
frames is based the standard deviation.

Five sample frames and the differences between adja-
cent frames are shown in Fig. 7. The placement of the
objects in the sequence of frames in Fig. 7 is fully random.
Fig. 7(a)-(e) represent the five Original Frames (OFs) with
20 objects on average and a standard deviation of 70%.
Fig. 7(f)-(j) represent the CFs, where some frames have a
higher number of objects compared to others.

We have graphed the number of objects in each of the
50 frames for the case where the standard deviation in
the number of objects is 10% in Fig. 8. The horizontal
axis represents the frame number in the sequence while
the vertical axis represents the number of objects in each
frame.

If there are 24 objects in the current frame, and the subse-
quent frame only contains 18 objects, then six objects will be
present in the CF. If we compress the frame with 24 objects,
the compressed image will be much larger than the size of the
compressed CF containing only 6 objects. Similarly, if there
are 16 objects in one frame and 5 more objects enter the
field of view in the next frame, then the number of objects
in the second frame is 21. However, the CF only contains
5 objects and its size will be smaller compared to compressing
the OF containing 21 objects. The performance of change
coding in relation to adding/removing objects is discussed in
the results section.
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FIGURE 8. Frames with different numbers of objects.

FIGURE 9. Effect of illumination noise on the CF.

B. STATISTICAL MODEL FOR SIMULATING
ILLUMINATION NOISE
Wegenerated 50 frames with different shapes of objects using
our MATLABmodel. The number of objects in all the frames
is fixed at 20 and there is a chance for the size of the objects
to increase by few pixels to simulate the effect of illumina-
tion noise. A sample frame and a CF between two adjacent
frames are presented in Fig. 9. The objects are randomly
placed in Fig. 9. Fig. 9(a) presents a frame containing exactly
20 objects with a possibility for the size of the objects to grow
by a few pixels across the continuous set of frames. Fig. 9(b)
presents the CF, where a few white pixels at the boundaries
of the objects are present. This means that the size of the
objects in the second frame increased by a few pixels at their
boundaries.

Due to illumination noise, some pixels in the immediate
surroundings of the objects may have a false value. We have
analyzed this problem for varying numbers of pixels in the
frames by assigning a false 1 value to a specified number of
pixels at the boundaries of the objects.

We analyzed the performance of the compression standards
for each object shape for both the OFs and CFs, where we
assigned a false value to various numbers of pixels at the
boundaries of the objects. Our aim is to find the intersection

FIGURE 10. Effect of illumination noise on the location of pixels at the
boundaries of objects.

between the file size of the OF coding and CF coding. The
results of this analysis are discussed in both graphical and
tabular form in the results section.

C. STATISTICAL MODEL FOR PLACEMENT
OF NEW OBJECTS/PIXELS
The number and size of objects in a sequence of frames
vary in real-world applications. Some objects may be
added/removed in the sequence of frames. Similarly, the size
of any of the objects may grow in the continuous set of frames
due to illumination noise. In order to simulate real-world
situations, the placement of new objects in the frame in our
statistical model is fully random. This means that new objects
can be placed anywhere in the frames. Similarly, some objects
may move out of the scene. The removal of objects from the
frame is also fully random in our model. This means that any
of the objects in the frame can be removed. Added/removed
objects can be observed in the frames in Fig. 7. It should be
noted that their placement is fully random.

Another issue is the effect of illumination noise on the
size of the objects. Illumination noise can affect some objects
more severely than others. Similarly, it can affect some frames
more severely than others. In order to simulate this effect,
a false value is assigned randomly to pixels at the bound-
aries of the objects in our statistical model. Fig. 9 presents
OF and CF. Only the changes are visible in the CF and
the exact placement of the pixels is not clearly visible. The
placement of the additional pixels due to illumination noise
is fully random and is shown in Fig. 10, which presents the
concept in a more intuitive format.

In Fig. 10, sections (a)-(c) show the growth in the radius
of the objects. Ideally, if the radius of a circular object is
increased by some integer value, then the CF will look like
Fig. 10(c). The situation is very different in the real world.
Illumination noise affects some objects more severely than
others. Similarly, it affects some parts of an object more
severely than others.

Any object may grow more on one side than the
other sides. Three scenarios are shown in Fig. 10(d)-(f).
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FIGURE 11. Histogram of illumination noise. (a): Histogram of frames
generated using the statistical model. (b): Histogram of images captured
in indoor environment.

Fig. 10(d) shows a situation where the radius of an object
is increased by 3 pixels and different sides of the objects
are affected randomly. Some parts of the object grow more
compared to the other parts. Fig. 10(e) and (f) contain two
more scenarios, where the radius of the object is increased by
2 pixels and 1 pixel, respectively, and the placement of the
pixels is random.

The size of an object may increase by 1, 2, or 3 pixels due to
illumination noise (it could be increased up to any number and
on any side of the object). It depends on the source of lighting
in the environment. In an outdoor environment, the sources of
the illumination noise are sun light, car light, etc. These may
have more severe effect than indoor environment lighting.
The statistical model is flexible, allowing the size of an
object to grow by any specified number of pixels, while the
placement of new pixels remains fully random.

In order to prove that our statistical model truly represents
the illumination noise caused by external lighting in the real
world (random noise), we must analyze a large number of
frames and present the analysis in a compact form. We gen-
erated two sets of 50 frames to accomplish this goal. One
set was generated by using our statistical model and the
other set was generated by capturing real images of a page
containing one circle. An image with only one white object of
radius 15 is used in both sets. The CFs for both sets are
detected and the average number of white pixels in the
CFs is displayed graphically in Fig. 11.

The horizontal and vertical axes in Fig. 11(a) and (b)
show the radius and the number of white pixels in the CFs
respectively. The behavior of the number of affected pixels

FIGURE 12. Compression for adding/removing objects.

at the boundary of the object is nearly identical in both
histograms.

This indicates that our statistical model is an accurate
approximation of illumination noise in the real world. Only
the no. of white pixels in both the histogram is different. There
is an option for increasing the number of affected pixels in our
statistical model. We used various affected pixels per object
in the images in our simulations.

V. RESULTS
We compressed the generated frames by using the aforemen-
tioned compression methods. The results are presented in this
section. We first discuss the implementation details of the
compression standards, followed by the experimental results.

We used the Libtiff library [33] for CCITT Group 4 com-
pression. The Ubuntu operating system has a gzip command,
which we used for evaluating gzip compression. The JBIG2
implementation in the Leptonica image processing library is
used for evaluating JBIG2 performance. We downloaded and
compiled the Leptonica image processing library from [33].

The OF and CF lines in Fig. 12 and Fig. 13 represent
the Original Frame and Change Frame, respectively. The
compressed file sizes for the three compression standards, for
both the OFs and CFs, are shown in Fig. 12. For each standard
deviation, an average of 20 objects are present in the OFs.
The CFs contain between 2 and 22 objects based on standard
deviations of 10-110% in the OFs.

Fig. 12 shows that for each of the three compression stan-
dards, the compressed file size of the OFs is nearly constant
for various standard deviations in the number of objects. The
reason for this is that on average 20 objects are present in each
of the 50 generated frames.

In Fig. 12, one can see that file sizes of the CFs increases
with the increase in the number of objects (10-110% standard
deviation creates 2-22 objects in the CFs). This is an intuitive
result because the size of the compressed file is dependent
on the number of objects in the frame. Specifically, it is
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FIGURE 13. Impact of illumination noise on compression efficiency.

dependent on the no. of transitions from zeros to ones and
vice versa.

The intersection between the size of OFs and CFs occurred
at a standard deviation of approximately 95-100% (Fig. 12).
Change coding has no benefit beyond this point. We deter-
mined this crossing point for all considered shapes of objects
and it always occurred at a standard deviation between
90% to 100%.

The performance of both OF coding and CF coding is
affected by illumination noise, which is presented in Fig. 13.
We considered frames containing exactly 20 objects with
several different numbers of affected pixels at the object
boundaries. In Fig. 13, the horizontal axes represent the num-
ber of affected pixels per object while the vertical axes show
the compressed file size.

Fig. 13 shows that the file size after compressing OFs
is nearly constant, whereas the file size after compressing
CFs increases from left to right. This increase is due to the
presence of illumination noise. The number of affected pixels
per object in the CFs increases from left to right, which
is the main reason for the increasing file size in Fig. 13.
Higher numbers of affected pixels per object cause additional
transitions from zeros to ones and vice versa, causing the rise
in compressed file size seen in Fig 13.

For CCITT Group 4 and JBIG2, the intersection between
OF coding and CF occurred in images where illumina-
tion noise affected 8 and 12 pixels per object respectively
(the shape used is quarter of circle). The intersection for
Gzip_pack occurred in images where illumination noise
affected 30 pixels per object. This indicates that CCITT
Group 4 and JBIG2 are more sensitive to illumination noise.

We determined the intersection points for various shapes
of objects. The results are presented in Table 2. For the
various shapes in Table 2, the intersection point is always the
highest for Gzip_pack. It should be noted that for all three
compression standards, the intersection point is different for
various shapes of white objects.

TABLE 2. The intersection point for various shapes of objects based on
illumination noise.

FIGURE 14. Effect of morphology operation on reducing the impact of
illumination noise.

Illumination noise causes the size of objects to grow by
varying amounts of pixels. This adversely affects the per-
formance of change coding. The intersection point for illu-
mination noise occurred very early compared to the case of
appearing/disappearing objects in the sequence of frames.
A morphology operation can be used to reduce the effect of
illumination noise. By applying a morphology (in this case an
erosion operation with diamond-shaped structure elements of
size 2×2), one to two false isolated pixels (due to illumination
noise) can be eliminated from the CFs. This will delay the
intersection point until a higher number of affected pixels per
object is reached (Fig. 14).

The performance of change coding depends on the appli-
cation. The changes in contiguous frames are high in some
applications, meaning high compression efficiency cannot
be expected from change coding. However, if the adjacent
frames in an application are highly similar, then excellent data
size reduction will be achieved by applying change coding.
For example, in meter reading applications, everything other
than a few digits in adjacent frames remains constant. Thus,
the CFs will contain very few digits and change coding will
result in excellent compression.

In our previous work in [7], we have determined the
communication energy consumption of various compression
methods. We used the same procedure in our current work
to determine the communication energy consumption for
image coding and change coding and presented the results
in Fig. 15. Fig. 15 shows that, by applying change coding in
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FIGURE 15. Communication energy for binary images with and without
change coding.

FIGURE 16. Life Time of the VSN with and without Change Coding.

combination with JBIG2, Group 4 and Gzip_pack, the com-
munication energy consumption is reduced by 27%, 29% and
46% respectively.

In our previous work in [4], we have predicted the lifetime
of the VSN based on the energy consumption of the various
image processing tasks. In the current work, we have adopted
the same procedure for predicting the life time of the VSN,
by applying change coding at the VSN (in addition to other
tasks) and the results are shown in Fig. 16.

Though the communication energy consumption of
JBIG2 is lowest, but due to its high processing time, its
total energy consumption is high, which resulted in lowest
(worst) lifetime curve for it in Fig. 16. On the other hand,
the computational complexity of Group 4 is low and its com-
pression ratio is also good, which resulted in highest lifetime
curve.

VI. CONCLUSION
We evaluated the performance of change coding in combi-
nation with three binary image coding methods: Gzip_pack,

JBIG2, and CCITT Group 4. Frames with various kinds of
changes, such as different sizes, various shapes, and dif-
ferent numbers of white objects were used in our evalua-
tion. We determined that image coding in combination with
change coding is better than image coding alone. Further-
more, the performance of image coding in combination with
change coding is better for up to 95% variance in terms of
the number of objects in the set of frames. No additional
saving is achieved beyond 95% changes in number of objects
in the frames. Object size may increase at boundaries by a
varying number of pixels due to illumination noise, which
negatively affect the performance of change coding. The
performance of change coding is inferior to image coding in
cases where more than four pixels per object were affected
by illumination noise. Our results also demonstrate that mor-
phology can be applied to minimize the impact of illumina-
tion noise. We applied change coding to real captured images
and verified the results that we obtained based on statistically
generated images. Thus, we conclude that change coding in
combination with CCITT Group 4 and morphology is an
effective novel approach for reducing the data that needs to be
communicated in WVSNs. The CCITT Group 4 is preferred
due to its good compression performance in combination
with less computational complexity. Reduced data size along
with less computational complexity leads to reduced total
energy consumption which will result in increased life time of
the VSN.

APPENDIX
Standard deviation: Standard deviation is used to simulate the
effect of added/removed objects in the sequence of frames.
10-110 % standard deviation represents 2-22 objects in the
change frame.

Communication Energy: The energy spent on transmitting
the compressed images from VSN to the server.

Illumination Noise: The noise in the captured images due
to the external light in the environment.

Morphology: The process of removing small unwanted
noise in the images.
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