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ABSTRACT In this paper, a multiscale sparse array, which is composed of spatially-spread electromagnetic-
vector-sensors (SS-EMVSs), is proposed to estimate the direction-of-arrivals (DOA) and polarizations of
multiple sources. The SS-EMVS is composed of three orthogonally oriented but spatially noncollocated
dipoles to measure the electric field and three orthogonally oriented but spatially noncollocated loops to
measure the magnetic field, simultaneously. In this paper, an array of SS-EMVSs is placed along the y-axis,
and this sparse array is composed of two sub-arrays, i.e., the first n1 SS-EMVSs with inter-sensor spacing
D1, and the last n2 SS-EMVSs with inter-sensor spacing D2, with D2 = mD1; m > 1 is an integer and
D1 is larger than a half-wavelength of the incident signal. Thereby, a multiscale sparse array is constructed,
which is capable of providing high accuracy estimates of DOA and polarizations of multiple sources. The
vector-cross-product algorithm is used to obtain the unambiguous but low-accuracy estimations of direction
cosines, and the different inter-sensor spacings are used to estimate high-accuracy but ambiguous estimations
of direction cosines. Following this, a multiscale disambiguation algorithm is developed to obtain high-
accuracy and unambiguous estimations of direction cosines, thus the elevation angles, azimuth angles, as
well as the polarization parameters of multiple sources. Simulation results verify the superior performance
of the proposed multiscale SS-EMVS array.

INDEX TERMS Sensor arrays, direction-of-arrival (DOA) estimation, polarization estimation, direction
finding, sparse array, nested array, electromagnetic-vector-sensor.

I. INTRODUCTION
The electromagnetic-vector-sensor (EMVS) has received
extensive attention in array signal processing due to the fact
that it can not only provide the direction-of-arrivals (DOA)
of the signal, but can also give the polarization informa-
tion. An electromagnetic vector-sensor usually consists of
three orthogonally oriented dipoles to measure the electric
field, plus three orthogonally oriented loops to measure the
magnetic filed of the source [1]. A unique DOA estima-
tion algorithm for the EMVS, the vector-cross-product algo-
rithm, has been proposed in [1] and been advanced in [2]
and [3] along with various eigenstructure-based direction-
finding schemes [4]–[6]. Unfortunately, the mutual coupling
between the EMVS components affects the performance of

the algorithm severely. In 2011, Wong and Yuan [7] pro-
posed a spatially-spread EMVS (SS-EMVS) which consists
of six orthogonally oriented but spatially non-collocating
dipoles and loops. This SS-EMVS reduces the mutual cou-
pling between antenna components, and the developed algo-
rithm retains the effectiveness of the vector-cross-product
algorithm. Following this, a flurry of spatially-spread polar-
ized antenna arrays have been proposed [8]–[14]. Vari-
ous compositions of sparsely polarized antenna array were
proposed in [10] for coherent source direction finding.
He and Liu [11] proposed a computationally efficient method
for DOA and polarization estimation using arbitrarily spaced
EMVSs at unknown locations. In [12], the way of how the
four/five spatially non-collocated dipoles/loops suffice for
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multi-source azimuth/elevation direction finding and polar-
ization estimation was developed. A nonuniform L-shaped
spatially spread loop and dipole array, whose inter-element
spacing is greater than a half wavelength was exploited
in [13]. In [14], a closed-form solution for DOA estimation
using the spatially stretched tripole by adopting a quasi-
vector-cross-product based scheme was presented.

FIGURE 1. Configuration of the SS-EMVS [7].

A. SPATIALLY-SPREAD ELECTROMAGNETIC-
VECTOR-SENSOR
Fig. 1 depicts the array configuration for the SS-EMVS pro-
posed in [7]. The three dipoles are placed on a straight line;
the three loops are placed on a parallel straight line in an
opposite order. In the following, we consider the case that
these two lines are parallel to the x-axis in the Cartesian
coordinate system with ex being located at the origin and hx
is located at (xh, yh, zh).
Considering a far-field source, located at elevation angle

θ ∈ [0, π] and azimuth angle φ ∈ [0, 2π ), with polarization
parameters (γ, η), where γ refers to the auxiliary polarization
angle, and η represents the polarization phase difference.
The array manifold a can be characterized by the electric-
field vector e = [ex , ey, ez]T and the magnetic-field vector
h = [hx , hy, hz]T by taking account of the inter-dipole/loop
spacings {1x,y,1y,z},

a =



1

e−j
2π
λ
1x,yu

e−j
2π
λ
(1x,y+1y,z)u

e−j
2π
λ
(xhu+yhv+zhw)

e−j
2π
λ
[(xhu+yhv+zhw)−1x,yu]

e−j
2π
λ
[(xhu+yhv+zhw)−(1x,y+1y,z)u]


︸ ︷︷ ︸

def
= ξ

�


ex
ey
ez
hx
hy
hz

, (1)

where
ex
ey
ez
hx
hy
hz


︸ ︷︷ ︸
def
= ao

=


cosφ cos θ − sinφ
sinφ cos θ cosφ
− sin θ 0
− sinφ − cosφ cos θ
cosφ − sinφ cos θ
0 sin θ


︸ ︷︷ ︸

def
= 2(θ,φ)

[
sin γ ejη

cos γ

]
︸ ︷︷ ︸

def
= β

, (2)

and λ represents the wavelength of the signal, the super-
script T is the transposition operator, � denotes Hadamard

(element-wise) product, j =
√
−1, and

u = sin θ cosφ
v = sin θ sinφ
w = cos θ

(3)

represents the direction cosines along the x-, y- and z-axis,
respectively.

B. SPARSE ARRAYS AND THE COMBINATION WITH
VECTOR SENSORS
The DOA estimation accuracy is proportional to the aperture
of the array, and therefore an array with a larger aperture
is desired. However, due to the phase ambiguity, the spac-
ing between adjacent antennas usually should not be greater
than λ/2. In this way, a large aperture array requires more
antennas and thus increasing the cost and also the mutual cou-
pling between antennas. In order to mitigate this limitation,
various sparse array configurations and the corresponding
DOA estimation algorithms have been proposed. One type
of sparse array is constructed by multiple widely separated
sub-arrays [15]–[17], and the corresponding rotational invari-
ance technique (ESPRIT)-based algorithms which used the
dual-size or multiple invariance within these arrays were
developed therein. Another type of sparse array is designed
to obtain as many as degree-of-freedom (DOF) to resolve
more sources than sensors, such as the minimum-redundancy
array [18], the nested array [19] and the co-prime array [20].
Their DOA estimation algorithms focused on using the high
order statistic characteristics of the sparse array data to
increase the number of DOF, and thereby required a large
computational workload. Furthermore, the antenna unit of
these sparse arrays is a single polarized antenna, and they
cannot measure the polarization information of the source.

Meanwhile, there are some research about the EMVS
array and the corresponding parameter estimation algo-
rithms. A distributed signals general model with electromag-
netic vector sensor array and the corresponding algorithm
based on the generalizationMUSIC algorithm were proposed
in [21]. Gong et al. [22] studied a new quad-quaternion
model established for an electromagnetic vector-sensor array.
And a multidimensional algebra-based (DOA) estimation
algorithm under this array configuration was proposed.
Diao and An [23] proposed a two-dimensional direction find-
ing method using an L-shape EMVS array. These EMVS
arrays can provide the DOA and polarization information
simultaneously. But these arrays are not sparse, and thus the
mutual coupling and the cost cannot be mitigated. Recently,
some sparse vector sensor arrays are proposed to overcome
the limitations. For example, Han andNehorai [24] developed
a nested vector sensor array and the processing via tensor
modeling, He proposed a nested cross dipole array in [25],
and Rao et al. [26] proposed a new class of sparse acoustic
vector sensor arrays. However, the EMVS unit in the above
arrays is not spatially spread, and thus the mutual coupling
between the components within a unit is still a concern.
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FIGURE 2. The proposed array configuration. The SS-EMVS in Fig. 1 is used as a unit in our multi-scale sparse array which contains two
sub-arrays. Every SS-EMVS is placed along the x-axis and the array is extended along y-axis. The inter-sensor (here sensor denoting the
SS-EMVS) spacing in sub-array 1 is D1 and the inter-sensor spacing in sub-array 2 is D2, respectively, where D2 = mD1 and D1 � λ/2.

C. CONTRIBUTIONS OF THIS WORK
In this paper, we propose a multiscale sparse SS-EMVS
array and the corresponding parameter estimation algo-
rithm. The proposed array is a linear sparse array composed
of SS-EMVSs which can be divided into two (uniform)
sub-arrays with different inter-sensor spacing. Owing
to the spatial spread of the SS-EMVS and different
inter-sensor spacings of the two sub-arrays, we can
obtain multiscale estimations of target parameters. From
a single SS-EMVS, we can obtain an unambiguous
but low-accuracy estimation of targets parameters using
the vector-cross-product algorithm. In addition, we can
obtain two high-accuracy but cyclically ambiguous esti-
mations of desired direction cosine by applying the
ESPRIT algorithm to the two sub-arrays, respectively.
Following this, we employ a two-order disambiguation
method to obtain the final high-accuracy and unambiguous
estimations of target directions. Furthermore, we can obtain
the corresponding polarization parameters with the help
of direction estimations. The proposed array integrates the
advantages of sparse array and SS-EMVS in reducing mutual
coupling and achieving high accuracy DOA estimation. Since
we use the approach of disambiguation instead of virtual
ULA as in the nested array, there is no need to utilize the
high order statistic characteristics of the sparse array data as
shown in [19]. Thus, the proposed algorithm enjoys a low
computational workload.

The rest of this paper is organized as follows. Section II
presents the proposed array geometry. Section III derives
the proposed algorithm for DOA and polarization estima-
tion. Section IV gives the derivation of the Cramér-Rao
bound (CRB). In section V, numerical examples are provided
to show the effectiveness and advantages of the proposed
array and algorithm. Section VI concludes the paper.

II. ARRAY GEOMETRY
Fig. 2 demonstrates the proposed array configuration of the
multiscale sparse SS-EMVS array. It can be seen that the unit
is an SS-EMVS as shown in Fig. 1 and the six noncollocated
dipoles/loops in the SS-EMVS are placed in parallel to the

x-axis. We set the SS-EMVS whose ex is located at the origin
being the reference. The sparse array is composed of two
sub-arrays. The first sub-array, which consists of the first n1
SS-EMVSs (close to the origin in Fig. 2), is placed with inter-
sensor spacing D1 � λ/2. The second sub-array, which
consists of the last n2 SS-EMVSs, is placed with an even
larger inter-sensor spacing D2 = mD1, where m is an integer.
Following this, the array manifold of the proposed sparse
SS-EMVS array is

b =



1

e−j
2π
λ
D1v

...

e−j
2π
λ
(n1−1)D1v

 n1

e−j
2π
λ
n1D1v

e−j
2π
λ
(n1D1+D2)v

...

e−j
2π
λ
[n1D1+(n2−1)D2]v

 n2


⊗ a, (4)

where ⊗ denotes the Kronecker product, a is defined in
Eq. (1), and thus b ∈ C6N×1 with N = n1 + n2.
In a multiple sources scenario with K incident signals,

the received data of the proposed sparse array at time t is

x(t) =
K∑
k=1

bksk (t)+ n(t) = Bs(t)+ n(t), (5)

where bk ∈ C6N×1 represents the array manifold of the
k-th signal and B = [b1, b2, . . . , bK ] ∈ C6N×K . s(t) =
[s1(t), s2(t), . . . , sK (t)]T denotes the incident signal vector,
and n(t) signifies the additive white noise.

Consider L time snapshots, we can form the received data
matrix

X = [x(t1), x(t2), . . . , x(tL)]. (6)

And the following step is to estimate the DOA and polariza-
tion parameters of the K sources from X ∈ C6N×L , which
will be described in detail below.
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III. DOA AND POLARIZATION ESTIMATION
The main steps of our algorithm are as follows:
1) Estimate the two sets of high-accuracy but cyclically

ambiguous y-axis direction cosine v by the two sub-
arrays using the ESPRIT algorithm [27], respectively.
It is worth noting that these two sets of v estimations
are paired automatically (see Section III-A).

2) Estimate the unambiguous but low-accuracy y-axis
direction cosine v as well as the high-accuracy and
unambiguous x-axis direction cosine u from the single
SS-EMVS as in [7]. Note that the unambiguous but
low-accuracy estimates of (u, v) are obtained from the
absolute values of the ‘‘vector-cross-product’’ algorithm
result, while the high-accuracy but cyclically ambiguous
estimate of u is from the phase of the ‘‘vector-cross-
product’’ algorithm result. Furthermore, the different
estimates of u are automatically paired.

3) Disambiguate the ambiguous v estimates and calculate
the final arriving angles and polarization parameters of
the sources.

A. ESPRIT BASED METHOD TO ESTIMATE THE TWO SETS
OF HIGH-ACCURACY BUT CYCLICALLY AMBIGUOUS v
The array covariance matrix can be calculated by the maxi-
mum likelihood estimation

R̂ = XXH , (7)

where the superscript H is the Hermitian operator. Follow-
ing [16], let Es ∈ C6N×K be the signal subspace matrix
composed of the K eigenvectors corresponding to the K
largest eigenvalues of R̂. Therefore, Es has the same signal
subspace with manifold matrix B and thus

Es = BT , (8)

whereT denotes an unknownK×K non-singular matrix. Due
to the multiple scales of the proposed sparse array, we divide
the manifold matrix B into two parts, i.e., B1 and B2, where
B1 ∈ C6n1×K is composed of the top n1 rows of B (with
inter-sensor spacing D1), and B2 ∈ C6n2×K is composed
of the bottom n2 rows of B (with inter-sensor spacing D2).
In this way, B1 and B2 are the manifold matrices of the sub-
array 1 and sub-array 2, respectively. Similarly, we can divide
the signal subspace matrix Es into two parts with the same
method, i.e., Es1 and Es2 , where Es1 ∈ C6n1×K is composed
of the top n1 rows of Es, and Es2 ∈ C6n2×K is composed of
the bottom n2 rows of Es. Thus, we have

Es1 = B1T , (9)

Es2 = B2T . (10)

After this, we perform the ESPRIT algorithm to both Es1
and Es2 to get the high-accuracy but cyclically ambiguous
estimates of v. Let us take Es1 as an example to demonstrate
the derivation. We form the matrix-pencil by the top (n1 − 1)
and bottom (n1−1) SS-EMVSs in the sub-array 1 (with inter-
sensor spacing D1). The manifold matrices corresponding to

these two sets of SS-EMVSs are denoted by B1,1 and B1,2,
respectively. Utilizing the spatial invariance property between
B1,1 and B1,2, we have

b1,2(k) = b1,1(k)e−j
2π
λ
D1vk , ∀k ∈ 1, . . . ,K , (11)

where b1,1(k) is the k-th column of B1,1. Specifically,
b1,1(k) =

[
ak , e−j

2π
λ
D1 vkak , . . . , e−j(n1−2)

2π
λ
D1 vkak

]
, and ak

denotes the array manifold of k-th source at the reference
SS-EMVS. Similarly, b1,2(k) =

[
e−j

2π
λ
D1 vkak , . . . ,

e−j(n1−1)
2π
λ
D1 vkak

]
.

In the matrix formulation, we have

B1,2 = B1,18v,1, (12)

where 8v,1 = diag
[
e−j

2π
λ
D1 v1 , . . . , e−j

2π
λ
D1 vK

]
, and diag[ ]

denotes a diagonal matrix with diagonal elements composed
of the vector inside [ ].

According to the corresponding relationship between the
signal subspace and the manifold matrix, we have

Es1,1 = B1,1T , (13)

Es1,2 = B1,2T , (14)

where Es1,1 and Es1,2 are the signal subspace matrices corre-
sponding to B1,1 and B1,2, respectively.
Recalling Eq. (12), we have [28]

Es1,2 = Es1,19v,1, (15)

9v,1 = T−18v,1T . (16)

Theoretically, the k-th eigenvalue of 9v,1 equals [8v,1]k,k =
e−j

2π
λ
D1 vk , where [ ]m,n extracts (m, n)-th element of the

matrix inside [ ]. Therefore, we perform eigenvalue decompo-
sition to 9v,1, and the eigenvalues constitutes the estimation
of 8v,1, denoted by 8̂v,1. Since the inter-sensor spacing D1
of the sub-array 1 is larger than λ/2, a high-accuracy but
cyclically ambiguous y-axis direction cosine estimation vfine,1k
can be derived by

vfine,1k = −
6 ([8̂v,1]k,k )
2πD1/λ

, (17)

where 6 denotes the angle of the ensuing entity.
Similarly, from the sub-array 2 with inter-sensor

spacing D2, we have

Es2,2 = Es2,19v,2, (18)

9v,2 = T−18v,2T . (19)

where Es2,2 , Es2,1 and 9v,2 are calculated from Es2 .
Similar to Eq. (17), we have

vfine,2k = −
6 ([8̂v,2]k,k )
2πD2/λ

. (20)

It’s worth noting that due to the same column permutation
of T , these two sets of high-accuracy but cyclically ambigu-
ous v estimations are paired automatically [29].
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B. VECTOR-CROSS-PRODUCT ALGORITHM TO ESTIMATE
U AND UNAMBIGUOUS BUT LOW-ACCURACY V
Based on the above derivation, and due to the relationship
between array manifold matrix and signal subspace, we can
estimate the manifold matrix of sub-array 1 with

B̂1 = Es1T
−1. (21)

Similarly, for the manifold matrix of sub-array 2, we have

B̂2 = Es2T
−1. (22)

In order to employ all the SS-EMVSs to perform the
vector-cross-product algorithm, we impose a phase com-
pensation and an averaging step to the estimated manifold
matrices of the two sub-arrays. According to the principle
of ESPRIT algorithm, we know the diagonal elements of
8̂v,1 are the principle phase differences of different sources
resulting from the inter-sensor spacing D1 of sub-array 1.
The sub-array 1 is a uniform linear array (ULA) of SS-
EMVS, and the displacement of the n-th (n = 2, 3, . . . , n1)
SS-EMVS unit from the first unit is (n − 1)D1. Therefore,
the phase difference of the n-th unit with the first unit is
8̂

(n−1)
v,1 . Then the phase difference of the n-th unit in the sub-

array 2 with the reference unit is ([8̂v,2])n−1([8̂v,1])n1 . Thus,
employing the diagonal elements of 8̂v,1 and 8̂v,2, we can
obtain two estimations of themanifoldmatrix of the reference
SS-EMVS, (23) and (24), as shown at the bottom of this page,
where the superscript ∗ denotes the conjugate operator, and
the ‘‘:’’ represents sequentially picking rows in the matrix.

In other words, for k-th source, we have

q̂1(k) = c1ak , q̂2(k) = c2ak , (25)

where c1 and c2 are two different complex constants [30].
The following is to apply the vector-cross-product algo-

rithm to q̂1(k) and q̂2(k). For convenience, we omit the source

index k , and recalling Eq. (1), where we have a =
[
ẽT , h̃

T
]T

with

ẽ =

 ex
e−j

2π
λ
1x,yuey

e−j
2π
λ
(1x,y+1y,z)uez

, (26)

h̃ =

 e−j
2π
λ
(xhu+yhv+zhw)hx

e−j
2π
λ
[(xhu+yhv+zhw)−1x,yu]hy

e−j
2π
λ
[(xhu+yhv+zhw)−(1x,y+1y,z)u]hz

 . (27)

According to the vector-cross product algorithm [7] of the
SS-EMVS, we have,

p1 =
(c1ẽ)× (c1h̃)∗

‖(c1ẽ)× (c1h̃)∗‖

= ej
2π
λ
(xhu+yhv+zhw)

 ue−j
2π
λ
(21x,y+1y,z)u

ve−j
2π
λ
(1x,y+1y,z)u

we−j
2π
λ
1x,yu


=

(c2ẽ)× (c2h̃)∗

‖(c2ẽ)× (c2h̃)∗‖
= p2, (28)

where × denotes the vector-cross product; p1 is calculated
from q̂1 and p2 is calculated from q̂2, respectively. Following
this, the final vector-cross-product result can be obtained by
taking the average, i.e.,

p =
p1 + p2

2
. (29)

From the Poynting vector of k-th source pk derived in
Eq. (29), we can obtain the unambiguous but low accuracy
estimations of {uk , vk ,wk} by

ucoarsek = |[pk ]1|,
vcoarsek = |[pk ]2|,
wcoarse
k = |[pk ]3|,

(30)

where [ ]i extracts i-th element of the vector inside [ ], and | |
denotes the absolute value of the entity inside | |. From [30],
we know that {vcoarsek }

K
k=1 and {vfine, 1k }

K
k=1 are paired auto-

matically. And {vfine, 1k }
K
k=1 and {v fine, 2

k }
K
k=1 have paired

automatically as mentioned above. So till now, {vcoarsek }
K
k=1,

{vfine, 1k }
K
k=1 and {v

fine, 2
k }

K
k=1 are paired.

In the following, we estimate the high-accuracy estimation
of u from the displacement of the dipoles/loops within a
single SS-EMVS, i.e.,1x,y and1y,z as in [7]. From p, we can
get

po = p� e−
6 [p]1 =

 uvej 2πλ 1x,yu

wej
2π
λ
(1x,y+1y,z)u

, (31)

where � denotes Hadamard (element-wise) product. Based
on Eq. (31), we have two sets of high-accuracy but cyclically
ambiguous estimations of u by

ufine, 1k =
λ

2π
1
1x,y

6

{
[pok ]2
vcoarsek

}
, (32)

ufine, 2k =
λ

2π
1

1x,y +1y,z
6

{
[pok ]3
wcoarse
k

}
. (33)

C. DISAMBIGUATE THE ESTIMATIONS OF U AND V
Due to the fact that there are two sets of high-accuracy
but ambiguous estimations for both u and v, a two-order

q̂1(k) =

∑n1
n=1 B̂1{[6(n− 1)+ 1] : [6n], k}([8̂v,1]∗k,k )

n−1

n1
, (23)

q̂2(k) =

∑n2
n=1 B̂2{[6(n− 1)+ 1] : [6n], k}([8̂v,2]∗k,k )

n−1([8̂v,1]∗k,k )
n1

n2
, (24)
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disambiguation method is utilized here. We take v as the
example to demonstrate the derivation and the process for u
is similar [31].

1) DISAMBIGUATE v fine,1
k WITH vcoarse

k
The first unambiguous and high-accuracy v estimation can be
obtained by

vnextk = vfine, 1k + m̂1
λ

D1
, (34)

m̂1 = argmin
m1

∣∣∣∣vcoarsek − vfine ,1k − m1
λ

D1

∣∣∣∣, (35)

where
⌈
(−1− vfine,1k )D1

λ

⌉
≤ m1 ≤

⌊
(1− vfine,1k )D1

λ

⌋
with

dεe denoting the smallest integer not less than ε and bεc
referring to the largest integer not more than ε.

2) DISAMBIGUATE v fine,2
k WITH vnext

k
Similarly, we can disambiguate vfine,2k with vnextk derived
above to estimate the final high-accuracy and unambiguous
estimation of v:

vfinalk = vfine, 2k + m̂2
λ

D2
, (36)

m̂2 = argmin
m2

∣∣∣∣vnextk − vfine ,2k − m2
λ

D2

∣∣∣∣, (37)

where
⌈
(−1− vfine,2k )D2

λ

⌉
≤ m2 ≤

⌊
(1− vfine,2k )D2

λ

⌋
.

Similar to v, we can obtain the final high-accuracy and
unambiguous estimation of ufinalk by replacing {D1,D2} with
{1x,y,1x,y +1y,z}, respectively.

D. ESTIMATING THE DOA AND
POLARIZATION PARAMETERS
After getting the unambiguous and high-accuracy estimation
of {u, v}, we can estimate the DOA of k-th source by

θ̂k = arcsin(
√
(ufinalk )2 + (vfinalk )2),

φ̂k = arctan

(
vfinalk

ufinalk

)
.

(38)

Following this, ξ k in Eq. (1) and2(θk , φk ) in Eq. (2) can be
estimated, respectively.

Recalling q̂1(k), q̂2(k) in Eq. (25) and ξ k in Eq. (1), a
o
k can

be estimated but with a complex constant in the front as

âok = q̂1(k)� e
(−6 ξ k ) + q̂2(k)� e

(−6 ξ k ). (39)

After this, we can get the estimation of βk [7]

β̂k =

[
β̂k,1

β̂k,2

]
=

[
2H (θ̂k , φ̂k )2(θ̂k , φ̂k )

]−1
2H (θ̂k , φ̂k )â

o
k . (40)

The corresponding polarization parameters {γk , ηk} can be
estimated by 

γ̂k = arctan |
β̂k,1

β̂k,2
|,

η̂k = 6
β̂k,1

β̂k,2
.

(41)

IV. CRAMÉR-RAO BOUND DERIVATION
A far-field pure-tone with unit-power is used in this section
to derive the Cramér-Rao bound (CRB). Given that s(t) =
ej(2π f0 t+ε) with a prior-known frequency f0 and a prior-
known initial phase ε, with L snapshots uniformly sampled
at time-slots {t = t1, t2, · · · , tL}, we have:

s =
[
ej(2π f0t1+ε), ej(2π f0t2+ε), · · · , ej(2π f0tL+ε)

]T
. (42)

The above sequence is received by the proposed multi-scale
SS-EMVS array, corrupted with additive noise n(t), which is
assumed to be zero-mean Gaussian, with its diagonal covari-
ance matrix 00 = diag[σ 2, . . . , σ 2], where σ 2 refers to
the prior-known noise variance at each constituent antenna,
z(t) = bs(t)+ n(t). The received dataset

ζ =
[
zT (t1), zT (t2), · · · , zT (tL)

]T
= s⊗ b︸ ︷︷ ︸

def
= τ

+

[
nT (t1),nT (t2), · · · ,nT (tL)

]T
︸ ︷︷ ︸

def
= υ

, (43)

where b is the array manifold defined in Eq. (4); υ is the noise
vector with a covariancematrix0 = 00⊗IL , with IL denoting
an L × L identity matrix. Hence, ζ is a complex Gaussian
distributed process with mean τ and a covariance matrix 0.
Let

ψ
def
= [θ, φ, γ, η]T (44)

refer to the vector comprising all the unknown parameters to
be estimated. We could derive all the elements of the 4 × 4
Fisher Information Matrix (FIM) by [32]:

J[ψ]i,[ψ]j = 2Re

[(
∂τ

∂[ψ]i

)H
0−1

(
∂τ

∂[ψ]j

)]
, (45)

where {J[ψ]i,[ψ]j}
4
i,j=1 refers to the (i, j)th entry of the FIM,

and Re[.] denotes the real-value part of the entry inside [ ].
Then the Cramér-Rao bounds of ψ equal:

CRB([ψ]i) =
[
J−1

]
i,i
, ∀i = 1, 2, 3, 4. (46)

The 4× 4 Fisher Information Matrix can be expressed as:

J =


Jθ,θ Jθ,φ Jθ,γ Jθ,η
Jφ,θ Jφ,φ Jφ,γ Jφ,η
Jγ,θ Jγ,φ Jγ,γ Jγ,η
Jη,θ Jη,φ Jη,γ Jη,η

. (47)

The Cramér-Rao bounds for each parameter can be obtained
straightforwardly from Eq. (46) after we get the values of J
by Eq. (45).1

1For the Gaussian source scenario, please refer to the derivation in [33].
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FIGURE 3. The estimation results of three incident sources: (a) spatial parameters, and (b) polarization parameters.

V. SIMULATION RESULTS
In this section, we conduct simulations to verify the effective-
ness and performance of the proposed array geometry and
algorithm. For simplicity, we set θ ∈ [0, π/2], φ ∈ [0, π).
The coordinate of the hx of the reference SS-EMVS, whose
ex is located at the origin, is (xh, yh, zh) = (7.5λ, 5λ, 10λ).
The root mean square error (RMSE) of parameter estimation
is defined as:

RMSE =

√√√√ 1
M

M∑
m=1

(α̂m − α)2, (48)

where α̂m is the estimation of m-th trial of parameter α,
and M is the number of Monte Carlo trials. We assume that
the number of sources is known a priori in the following
simulations.

A. PARAMETER ESTIMATION RESULTS
In the first example, we consider that there are N = 10
SS-EMVSs placed along the y-axis direction. The first five
SS-EMVSs compose the sub-array 1 with inter-sensor spac-
ing D1 = 6λ; the rest SS-EMVSs constitute the sub-array
2 with inter-sensor spacing D2 = 6D1 = 36λ. For every
SS-EMVS, 1x,y = 1y,z = 5λ. There are K = 3 single-
frequency incident sources with unit power, which have the
numerical frequency f = (0.537, 0.233, 0.277), elevation
θ = (20◦, 60◦, 45◦), azimuth φ = (42◦, 55◦, 28◦), the auxil-
iary polarization angle γ = (45◦, 60◦, 55◦), and the polariza-
tion phase difference η = (45◦, 70◦, 60◦) impinging on the
array. The number of snapshots is L = 200 and SNR=15dB.
The noise is complex Gaussian white noise vector with zero
mean and covariance matrix σ 2I . Fig. 3 shows the estimation
results of the proposed algorithmwith 200Monte Carlo trials.
We can see that the spatial and polarization parameters of all
targets are correctly paired and estimated.

B. PARAMETER ESTIMATION PERFORMANCE
In order to further exploit the performance of the proposed
array, we hereby conduct various simulations with different
parameters of the array and sources. Since our sparse array
in Fig. 2 extends the aperture along the y-axis, we focus on
the analysis of the v estimation below. Two similar arrays,
which extend the aperture along the x-axis and the z-axis
respectively, will be analyzed at the end of this section.

1) PERFORMANCE VERSUS SNR
In the second example, we consider the parameter estimation
performance versus SNR (signal-to-noise ratio). Fig. 4(a)
shows the RMSE of u final of the proposed array versus SNR
compared with ucoarse and the CRB. Fig. 4(b) shows the
RMSE of vnext and v final of the proposed array versus SNR
compared with vcoarse and the CRB. It can be observed that
both ufinal and vfinal improve significantly from their coarse
estimates, ucoarse and vcoarse, respectively; both of them are
getting close to their CRB.We can also see that the estimation
performance of vfinal is an order of magnitude better than that
of ufinal. The reason is that the proposed array only extends in
the y-axis (up to 174λ), while the accuracy of ufinal is limited
by the expansion of the single SS-EMVS in the x-axis, which
is only 10λ.

Next, we compare the proposed multiscale SS-EMVS
array with two uniform SS-EMVS arrays, and both of them
have the same number of SS-EMVSs, but with inter-sensor
spacing d1 = D1 = 6λ and d2 = D2 = 36λ, respectively.
These two arrays are one type of the sparse polarized antenna
arrays proposed in [10], for which only a single disam-
biguation step is required since it is a uniform array along
y-axis. By contrast, our proposed array is a multiscale array
and thus can provide better performance. Fig. 5 shows the
RMSE of u and v estimations versus SNR for all three sparse
arrays. We understand that there is a SNR threshold [34] in
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FIGURE 4. The RMSE of (a) ucoarse,ufinal compared with CRB, and (b) vcoarse,vnext and v final compared with CRB using the
proposed array.

FIGURE 5. RMSE of u and v estimations of the proposed array and two uniform SS-EMVS arrays (with inter-sensor
spacing 6λ and 36λ, respectively) versus SNR. (a) RMSE of u estimation, and (b) RMSE of v estimation.

the process of disambiguation. The parameter estimation per-
formance will be degraded significantly if the SNR is lower
than the threshold. When SNR is larger than this threshold,
the performance improves dramatically, and the performance
is getting better with the increase of SNR. We can observe
from Fig. 5(a) that the performances of these three arrays of
the u estimation are similar. This is because the three arrays
have the same extension in the x-axis. But the accuracy of the
proposed array of u estimation is merely a little better than the
two other arrays when SNR is large enough, i.e., > −6dB.
More importantly, from Fig. 5(b), we can observe that the
SNR threshold (−3dB) of v estimation of the proposed array
is close to the threshold (−4dB) of the uniform SS-EMVS
array whose inter-sensor spacing is d1 and is far less than
that (11dB) of the uniform SS-EMVS array whose inter-
sensor spacing is d2. Limited by the array aperture in the
y-axis, the accuracy of the proposed array of v estimation is
in between of these two uniform SS-EMVS arrays.

As the arriving angle estimation is determined by u and
v jointly, in Fig. 6, we plot the RMSE of the estimated θ
and φ of the three arrays versus SNR. It can be seen that

the estimation accuracies of θ or φ of the three arrays are
similar when SNR is large enough, i.e., > 10dB. But we still
can see that the accuracy of θ and φ of the proposed array
is a little (0.01o) better than the two other arrays. Compared
with the SS-EMVS array whose inter-sensor spacing is d1,
the proposed array has a larger aperture and a better accuracy
estimation. The inter-sensor spacing is larger than d1 in sub-
array 2 and thus the mutual coupling is reduced. Furthermore,
the threshold of the proposed array is far (11dB) smaller
than that of the SS-EMVS array with inter-sensor spacing d2.
Therefore, our proposed array is a good trade-off of mutual
coupling, estimation accuracy, and robustness (lower SNR
threshold) to noise.

2) PARAMETER v ESTIMATION PERFORMANCE VERSUS
SNAPSHOT NUMBER
In the next example, we consider the performance of v estima-
tion with the collected snapshot L, to verify the performance
of the proposed array in limited time. Fig. 7 shows the RMSE
of v estimation of the three arrays versus L at SNR = 10dB.
We can see that the v estimation performance of the proposed
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FIGURE 6. RMSE of θ and φ estimation of the three arrays versus SNR. (a) RMSE of θ estimation, and (b) RMSE of
φ estimation.

FIGURE 7. RMSE of v estimation of the three arrays versus snapshot.

array improves with the increase of snapshots. Limited by
the array aperture in the y-axis, the accuracy of the pro-
posed array of v estimation is in between of the two uniform
SS-EMVS arrays, when L is large enough, i.e.> 250. Unfor-
tunately, when the snapshot is small, i.e., < 230, the uniform
array with larger inter-sensor spacing d2 provides the worst
estimation performance of v. By contrast, our proposed array
consistently provides good estimations.

3) PARAMETER v ESTIMATION PERFORMANCE VERSUS D1
Besides, we consider the performance variation of v estima-
tionwith the first sub-array inter-sensor spacingD1, and again
we set D2 = 6D1, d1 = D1, d2 = D2. We know that larger
inter-sensor spacing will lead to larger aperture, and thus
better estimation performance. However, this will introduce
challenge to the disambiguation. Therefore, there is a baseline
length threshold [35] in the process of disambiguation. When
the inter-sensor spacing value becomes larger than threshold,
the disambiguation process will break down. Fig. 8 plots
the RMSE of v estimation of the three arrays versus D1 at

FIGURE 8. RMSE of v estimation of the three arrays versus D1.

SNR = 15dB. We can see that the baseline length threshold
of the proposed array (60λ) is larger than the two other arrays
(8λ, 55λ) because of the proposed two order disambiguation.
Moreover, the accuracy of the v estimation of the proposed
array is better than those of the two other arrays when the D1
value is smaller than the threshold.

C. PARAMETER ESTIMATION RESULTS
OF COHERENT SIGNALS
For coherent signals, the proposed algorithm is still effective
by adding an extra spatial-smoothing step [10] before the
ESPRIT based method developed in Section III-A. We con-
sider K = 3 unit power sources with the same numerical
frequency f = (0.537, 0.537, 0.537). Other source and sim-
ulation parameters keep the same as those in Section V-A.
Fig. 9 shows the estimation results with 200 Monte Carlo tri-
als. We can see that the spatial and polarization parameters of
all coherent sources are correctly paired and estimated. This
demonstrates the effectiveness of our estimation algorithm to
coherent signals.
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FIGURE 9. The estimation results of three coherent incident sources: (a) spatial parameters, and (b) polarization parameters.

FIGURE 10. The two other array geometries. (a) y-axis extension and each SS-EMVS is parallel to z-axis, and (b) z-axis extension and each SS-EMVS is
parallel to x-axis.

FIGURE 11. RMSE of θ and φ estimation of the three array geometries in Fig. 2 and Fig. 10. (a) RMSE of θ estimation, and (b) RMSE of φ
estimation.

D. DOA ESTIMATION PERFORMANCE OF DIFFERENT
ARRAY CONFIGURATIONS
As mentioned earlier, we now consider different arrange-
ments of the SS-EMVS array. Specifically, we discuss two
other array configurations. The first one is that the array
is extended along y-axis and every SS-EMVS is parallel to
z-axis direction; the second one is that the array is extended

along z-axis and every SS-EMVS is parallel to x-axis direc-
tion. Fig. 10 depicts these two array geometries. Using the
same simulation parameters as in Section V-A, we compare
the angle estimation performance of these two arrays and
the proposed array shown in Fig. 2. The results are given
in Fig. 11.We can observe that the second array configuration
has a better performance in θ estimation, which is reasonable
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as the estimation accuracy of the θ mainly depends on the
z-axis aperture and the second array has the largest z-
axis extension. Unfortunately, the SNR threshold of this
array (5dB) is significantly larger than two other arrays
(−6dB,−2dB) and the performance in azimuth dimension is
the worst. Therefore, taking a comprehensive consideration,
the array configuration, in which the array is parallel to y-
axis and each SS-EMVS is parallel to x-axis direction, is the
optimum choice for our applications.

VI. CONCLUSIONS
In this paper, a multiscale spatially-spread electromagnetic-
vector-sensor array is proposed, which enjoys the superiori-
ties of the spatially-spread electromagnetic-vector-sensor and
the sparse array. Based on this, a new algorithm for direction-
of-arrival and polarization parameters estimation has been
developed. The proposed algorithm utilizes the approach of
two order disambiguation. Via comparing with uniform linear
arrays composed of the same number of spatially spread
electromagnetic vector-sensors, we have demonstrated that
our proposed array geometries enjoy the optimal trade-off
on estimation accuracy, mutual coupling and robustness to
noise. Theoretically, our proposed array can have as many
scales i.e., sub-arrays, as possible, and the algorithm frame-
work can be used straightforwardly. More scales will lead
to better estimation performance, but with more sensors and
cost. Therefore, it is always a trade-off between cost and
performance. We believe that our proposed array geometries
give some new breath to engineers in array design.
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