
SPECIAL SECTION ON CONVERGENCE OF SENSOR NETWORKS, CLOUD COMPUTING,
AND BIG DATA IN INDUSTRIAL INTERNET OF THING

Received December 29, 2017, accepted January 25, 2018, date of publication January 30, 2018, date of current version March 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2799548

A Mobile Cloud Based Scheduling Strategy
for Industrial Internet of Things
CHAOGANG TANG 1, XIANGLIN WEI2, SHUO XIAO1, WEI CHEN1, WEIDONG FANG3,
WUXIONG ZHANG3, AND MINGYANG HAO1
1School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221000, China
2Nanjing Telecommunication Technology Research Institute, Nanjing 210000, China
3Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of
Sciences, Shanghai 200050, China

Corresponding author: Wei Chen (chenw@cumt.edu.cn)

This work was supported in part by the Jiangsu Province Natural Science Foundation of China under Grant BK20150201 and
Grant BK20150193, in part by the National Natural Science Foundation and Shanxi Provincial People’s Government Jointly Funded
Project of China for Coal Base and Low Carbon under Grant U1510115, and in part by the Qing Lan Project and China Postdoctoral
Science Foundation under Grant 2013T60574 and Grant 2016M601910.

ABSTRACT The Industrial Internet of Things is cited as the latest means for making manufacturing more
flexible, cost effective, and responsive to changes in customer demands. In this paper, we present a mobile
cloud based scheduling strategy for the industrial Internet of Things. Several computing paradigms, such as
mobile cloud computing, fog computing, and edge computing can be integrated to the industrial Internet of
Things, which allow to offload tasks to the cloud for execution. We model the task scheduling problem as an
energy consumption optimization problem, while taking into account task dependency, data transmission,
and some constraint conditions, such as response time deadline and cost, and further solve it by genetic
algorithms. A series of simulation experiments are conducted to evaluate the performance of the algorithm
and the results have shown that our proposal is more efficient than the baseline approach.

INDEX TERMS Industrial Internet of Things (IIoT), energy-efficient, mobile cloud computing, task
scheduling.

I. INTRODUCTION
Mobile cloud computing (MCC), which combines wireless
network and cloud computing and aims at improving the
performance of mobile applications hosted at mobile devices
such as PDAs and smartphones, has developed very fast in
the past few years. Due to some inherent defects of mobile
devices, e.g. low CPU speed, limited battery energy, insuf-
ficient storage space, and inadequate sensing capacities [3],
mobile applications are confronted with many challenges in
mobility management, quality of service (QoS) insurance,
energy management and security issues. As a solution to
these shortcomings, MCC succeeds in offloading some com-
puting modules to be executed on powerful nodes in the
cloud (e.g. cloudlet [19], [23]), which brings a few benefits
against the traditional mobile services [12]. For example,
with regards to some energy or resource-intensive mobile
applications hosted in the mobile devices, offloading some
parts of them to the remote cloud saves energy consumption
greatly for the devices. Many mobile applications such as
e-commerce, health-care, and computer games are developed
under mobile cloud computing concept.

However, task offloading is not always efficient, since it
depends on several factors, such as transmission bandwidth of
the wireless channel, the energy consumption on task offload-
ing at mobile devices, energy consumption on task execution
at the cloud and so on. For example, mobility as the inherent
attribute of the mobile devices may force mobile users to
change the access point (AP) frequently when users move
from one place to another. This kind of dynamics sometimes
makes the wireless connection unavailable, thus rendering the
waiting time longer than expected, which may degrade users
Quality of Experience (QoE), even leading to users refusal
to accept the response time especially for the urgent tasks.
Besides, energy consumption is another important factor,
which imposes great influence on offloading decision. For
example, if the energy consumption caused by task offloading
at mobile device and data transmission via wireless channel
were larger than task execution locally without offloading,
it would make no sense for tasks execution at cloud side
remotely, from the viewpoint of saving power consumption
for mobile devices. Most literatures about the task offloading
and task scheduling in MCC model it as a multi-objective

7262
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4471-9856


C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

(e.g. energy, cost, execution time) optimization problem,
considering some constraints such as execution deadline.
For example, for an urgent task, the total execution time
should not go beyond users’ specified deadline. However,
most works assume that the tasks derived from an application
are independent, which simplifies the uploading process, but
does not always hold in MCC environments. For example,
the tasks derived from partitioning the applications usually
need some interaction such as data transmission among each
other in order to perform their functions. In this paper,
we model task uploading and scheduling as a multi-objective
optimization problemwith dependency relationships between
tasks. We also take into account the data moving between
tasks, as well as some constraints such as execution cost and
execution time limitation imposed on performance metrics by
mobile users. Specifically, each task within the application
can be either uploaded to the mobile cloud or executed locally
on the mobile device. Instinctively, tasks which need frequent
interaction with mobile users are supposed to be performed
at the mobile device, and tasks which need complicated
computation and consume large energy on the other hand are
supposed to upload to the mobile cloud.

The rest of the paper is organized as follows. In Section II,
we review the related work on task scheduling in MCC.
Section III addresses systemmodel, formulates our optimiza-
tion problem and section IV further proposes algorithms to
solve this problem. Then, we conduct extensive experiments
to verify the effectiveness and efficiency of our approach in
Section V. Finally, the conclusion and future work are given
in Section VI.

II. RELATED WORK
In this section, we view some current works about task
scheduling problem in MCC. Usually, in order to reduce
power consumption, speed up the execution of an applica-
tion, or save storage space, the mobile application is parti-
tioned into several pieces, knows as tasks, and then these
tasks are partially scheduled onto the nodes for execution
in the mobile cloud. The optimization objective mainly falls
into two categories, either minimizing the total execution
time also called, makespan, or minimizing the energy con-
sumption [1], [2], [13], [17], [22], [38], [41]. Since the task
scheduling problem is NP-hard [6], most works adopt heuris-
tic approaches to solve this problem, which cannot guarantee
to find the optimal solution, but it can find almost optimal
solution.

Hung et al. [10], propose a task scheduling approach to
guarantee a better accessibility to cloud network and speed up
the processing time in MCC, taking into consideration some
constraints such as the network bandwidth and cost for cloud
usage. However, the details on how to obtain some metrics
such as earliest start time or earliest finish time of tasks
are not offered, and the algorithm complexity is unknown.
Some works [4], [21], [24], [40] pay attention to the kinds
of resources which the nodes in the MCC can provide, and
schedule the tasks to the nodes in MCC combining it and the

information on the amount and kinds of requested resources
tasks need for execution, so as to find the most appropriate
scheduling scheme.Wu et al. [22] proposed a task scheduling
algorithm based on the quality of service (QoS) metrics, such
as load balancing, average execution, and makespan. First,
according to the QoS, they calculate the priorities of the tasks,
and then tasks with higher priority are scheduled first on the
nodes. Razaque et al. [18] proposed an efficient task schedul-
ing algorithm for workflow allocation based on the availabil-
ity of network bandwidth. For other methods, authors adopted
Min-Min and Min-Max algorithms to assign tasks to each
node in the cloud based on a nonlinear programing model.
For the tasks obtained by partitioning the application, some
are appropriate to be uploaded to the MCC while some are
not. How to select suitable tasks to upload and guarantee
that the task-precedence requirements and the application
completion time constraint are satisfied has obtained a lot
of attention in the past few years. Lin et al. [14] presented
an algorithm, which started from a minimal-delay scheduling
solution and then performs energy reduction by applying the
dynamic voltage and frequency scaling technique.

Wang et al. [21], provided an energy-efficient dynamic
offloading and resource scheduling policy to reduce
energy consumption and shorten application execution time,
so as to achieve energy-efficient computation offloading
under the hard constraint for application completion time.
Mahmood and Khan [16], proposed a greedy and a genetic
algorithm (GA) with an adaptive selection of suitable
crossover and mutation operations to allocate and schedule
real-time tasks with precedence constraint on heterogamous
virtual machines. There are also a number of works which
deals with the task allocation and scheduling for real-time
works in a cloud environments such as [5], [11], [15], [37],
and [39]. Tsai et al. [20],proposed a differential evolution
algorithm to schedule a set of tasks to minimize makspan
and total cost, by embedding the Taguchi method within a
differential evolution algorithm framework to exploit better
solutions on the micro-space to be potential offspring.

In contrast to the aforementioned studies, we in this
paper focus on minimizing the power consumption of mobile
devices at the local side, while satisfying the task-precedence
requirements and the application completion time con-
straint by genetic algorithms. For the optimization function,
we describe it by mathematical model theoretically and then
adopt the genetic algorithms to solve this problem.

Standing out from these heuristic approaches, GA has
been applied to optimization problems in many fields,
such as machine learning, pattern recognition, job schedul-
ing and so on. Binary coding GAs (bAGs) dominate the
early period of GA research, in which the simple repre-
sentation, implementation and the outstanding theoretical
literature [27] form the main incentives for the utiliza-
tion of binary string chromosomes to represent the solu-
tion space. Additionally, more and more researches add
substantial robustness and efficiency to their performance,
such as gene expression GA [28], Linkage Learning

VOLUME 6, 2018 7263



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

GA [29] and the Bayesian Optimization Algorithm [30].
On the other hand, the increasing application of GAs to
continuous domain problems encourages the emergency and
development of real coded GAs (rGAs), which use vectors
of floating point numbers to represent and process the design
and search space [31]. Intuitively, utilizing the floating point
numbers to represent chromosomes is natural and easily
understandable for some continuous domain problems and
examples of applying rGAs to solve real world problems can
be found in [32]–[34].

Examples of applying GAs to task scheduling in cloud
computing and web service fields can be found in [4], [16],
and [24], [35], [36]. Deng et al. [4], focus on the problem
of service composition with temporal and QoS constraints
in mobile cloud computing and aim to form such a service
composition that not only satisfies both the time constraints
and QoS constraints in a mobile service composition, but
also ensures the composition to be executed successfully
to the greatest extent in the uncertain mobile environment.
Xu et al. [35], have proposed a multiple priority queueing
genetic algorithm for task scheduling on heterogeneous com-
puting system, of which the basic idea is to exploit the
advantages of both evolutionary and heuristic based algo-
rithms while avoiding their drawbacks. Lin and Chong [36]
presented a genetic algorithm (GA) based resource con-
straint project scheduling, incorporating a number of new
ideas (enhancements and local search) for solving comput-
ing resources allocation problems in a cloud manufacturing
system.

In order to improve resource utilization and task execution
efficiency, a scheduling algorithm based on resource attribute
selection (RAS) by sending a set of test tasks to an execution
node to determine its resource attributes before a task is
scheduled is proposed in [24], which selects the optimal node
to execute a task according to its resource requirements and
the fitness between the resource node and the task.

However, the approach proposed in this paper mainly has
two points which differs from the aforementioned works.
First, with regards to specific problems in different areas,
objective function usually has different forms and concrete
formulations. For example, we in this paper aim to minimize
the power consumption at the mobile device while satisfy a
series of constraints such as the tasks dependency relation-
ships, the deadline of the expected execution time and the cost
for executing the tasks in the mobile cloud. Second, the opti-
mization works in this paper involve both binary and real
variables, which gives rise to different chromosome represen-
tations, solution space and searching methods with concrete
crossover and mutation operators. In the next section, we will
detail our system model.

III. SYSTEM MODEL
A. SYSTEM DESCRIPTION
We consider a mobile cloud computing environment which
mainly includes two parts, i.e., the mobile users and the

FIGURE 1. The mobile cloud architecture.

mobile cloud, respectively. The mobile cloud architecture
is shown in Fig. 1, in which tasks from mobile users are
uploaded to the cloud via the wireless access point (AP).
Here, an AP provides radio resources (e.g. bandwidth) and
communication support. The incoming tasks are arranged for
execution by a module called broker as shown in Fig. 1,
which in the mobile cloud also performs an admission con-
trol by checking the availability of the computing resources
such as CPU, memory and storage of the computing nodes,
i.e., virtual machines (VMs).

FIGURE 2. An example of application with task precedence relationships.

Usually, a mobile application consist of a set of tasks in
different granularities, we denote the application by a directed
acyclic task graph G = (V,E), as shown in Fig.2. Each
node in G represents a task and an edge e(i, j) indicates the
precedence relationship between tasks i and j, which means
task j cannot start until the precedent task i completes.We add
a virtual entry node (resp. exiting node) with dashed lines
directed to the actual tasks (resp. by the actual tasks), so that
in the task graph there is only one starting node and ending
node, respectively. Note that, how to partition the application
into tasks is not our focus, we pay our attention to the tasks
uploading and task scheduling in this paper.

7264 VOLUME 6, 2018



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

TABLE 1. Notation description.

A task t can be defined as a 3-tuple t=〈tid,workload,1m〉
where tid denotes its identification in the application by
numerical values, workload represents its computation
amount when it is executed, and 1m denotes the amount
of data migration between two tasks with precedence
relationships.

If some tasks within an application are involved with
uploading for execution, there are mainly two kinds of energy
consumption at the mobile devices. For example, the mobile
device needs to spend energy in executing local tasks of the
application, denoted by computation consumption. Besides,
the mobile device also needs to spend energy to transmit
the remaining tasks to the MCC via the wireless channel
such as WIFI, 3G/4G, and so on. We denote this kind of
energy consumption by communication consumption. Obvi-
ously, if the sum of the two kinds of consumption is larger
than the energy consumption spent by the mobile device
when the entire application is executed locally, it makes no
sense to have tasks uploaded to the MCC. Note that the
energy consumption for mobile devices does not include the
energy consumption by the mobile cloud, for the reason that
we assume for each task uploaded to the mobile cloud for
execution, the MCC will charge the mobile users, which is
also the main distinction between cloud computing and grid
computing. However, if the costs go beyond the mobile users
budget, the mobile users may choose not to upload their
tasks to the mobile cloud. For some urgent application, users
usually specify a deadline, before which the result should
be returned. Next, we will detail and formulate two kinds
of energy consumptions and optimization function. To facil-
itate our further discussion, Table 1 lists the key notations
of different types of energy consumptions in the proposed
consumption model through the paper.

B. PROBLEM FORMULATION
Suppose the application consists of n tasks. For each task,
there are two options to execute it, i.e., locally or remotely.
Let ϕt be an execution indicator variable. ϕt = 1 if task t is
executed at themobile device and 0 otherwise. If it is executed

locally, the execution time T lt can be calculated as follows:

T lt =
S(t)
γl

(1)

The corresponding energy consumption of the mobile
device is

E lt =
S(t)
γl
· Pactive (2)

If t is executed remotely, the execution time can be calcu-
lated as follows:

T ct =
S(t)
γc

(3)

The corresponding energy consumption of the mobile
device is

Ect =
S(t)
γc
· Pidle +

S(t)
B
· Ptrans (4)

When the task is being executed in the cloud, the mobile
device is in the idle state and we utilize Pidle to calculate
the energy consumption of the mobile device. Accordingly,
the total energy consumption of mobile devices accordingly
can be written as follows:

E =
∑
t∈V

(ϕt · E lt + (1− ϕt ) · Ect )

+
Ptrans
B
·

∑
(u,v)∈V

|ϕu − ϕv| · 4m(u, v) (5)

Considering the dependence relationships between tasks,
we assume before a tasks t is about to be scheduled, all its
immediate predecessor tasks should have already finished the
execution, for the reason that t requires their output results as
input parameters. In order to calculate the total execution time
of the application, we introduce some definitions.
Definition 1 (Ready Time): The ready time of task t is

defined as the earliest start time when all its immediate
predecessor tasks have finished the execution. Thus, the ready
time of task t which is executed locally on the mobile device,
denoted by RT lt , is defined by

RT lt = max
s∈pred(m)

max{FT ls ,FT
r
s } (6)

VOLUME 6, 2018 7265



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

where pred(m) denotes the set of the immediate predeces-
sor tasks of task t. Note that for simplicity, we ignore the
time consumption of input and output parameters transmis-
sion between mobile device and the cloud like the existing
works [8], [14], due to the fact that the size of these param-
eters is much smaller than the task itself and the great
power of the 4G network and WIFI also makes the time
of data transmission neglected. If s is executed locally,
max{FT ls ,FT

r
s } = FT ls and max{FT ls ,FT

r
s } = FT cs if s is

scheduled to the cloud for execution. Thus,RT lt can be further
rewritten as follows:

RT lt = max
s∈pred(m)

{(1− ϕs)FT ls + ϕsFT
c
s } (7)

Similarly, the ready time of task t which is executed
remotely on the cloud is defined by

RT ct = max{FT transt , max
s∈pred(m)

FT cs } (8)

Definition 2 (Finish Time): The finish time of task t is
defined as the time of task t which completely finishes execu-
tion. Thus, the finish time of task t which is executed locally
on the mobile device, denoted by FT lt , is defined by

FT lt = RT lt + T
l
t (9)

Similarly, the finish time of task t which is executed
remotely on the cloud is defined by

FT ct = RT ct + T
c
t (10)

Besides, we use FT transt to represent the time when task t
is completely uploaded to the cloud through the 4G net-
work or WIFI. FT transt can be defined as follows:

FT transt = max
s∈pred(m)

{FT ls ,FT
trans
s } +

S(t)
B

(11)

By these definitions, we can calculate the execution time of
the entire application as follows

Tapp = max
t∈ending(app)

{FT ct ,FT
l
t } (12)

Where ending(app) denotes the ending nodes of the
application.

We assume that when two tasks with precedence relation-
ships are scheduled to the same place, the communication
energy consumption can be neglected. Intuitively, in order
to reduce the energy consumption of the mobile device,
the naive way is to offload the entire application to the cloud.
However, it is generally not advisable for mobile users to
follow this way for two reasons. Firstly, there are some appli-
cations which need frequent interactions with mobile users
such as human face recognition, which could render serious
communication energy consumptions and sometimes even
degrade the mobile users quality of experience. Secondly,
the difference between cloud computing and other comput-
ing patterns such as grid computing lies in that the cloud
computing can earn its own profits. Therefore, mobile users
are actually to enjoy the computing convenience by buying
the services provided by the mobile cloud. We assume that

the utilizing of mobile cloud resources is not free in this
paper. Usually, the expenditure increases as the number of
tasks uploaded to the cloud rises. Mobile users will not buy
it if the costs go beyond their expectation. So the energy
minimization problem can be formulated as follows:

(P) f = Minimize E

S.t.
∑
t∈V

ϕt · ρ · Size(t) ≤ Cost (13)

Tapp ≤ Tdeadline (14)

ϕt , ϕu ∈ {0, 1} (15)

Where, Tdeadline represents the maximal latency that
mobile users can tolerate. Inequation 13 means that the total
expenditures should not go beyond users budget and Inequa-
tion 14 represents users time constraint. The variables and
constants are listed in Table 1. Obviously, this scheduling
problem is NP-complete. Moreover, P is a special linear opti-
mization problem, since its objective function and constraint
conditions contain absolute value symbols. An instinctive
idea is to get rid of the absolute value in solving this opti-
mization problem, which will be detailed in the next.

In order to solve the optimization problem P, we first
transform this kind of problem to normal linear programming
problem. Therefore, we proposed a two-step approach to
solve problem P, i.e., normal linear programming transforma-
tion and constraint condition relaxation.

We introduce two other non-negative vectors θ =

(θ1, θ2, · · · , θ|E|) and µ = (µ1, µ2, · · · , µ|E|). Consider the
following optimization problem.

(Q) Minimize f

=

t=N∑
t=1

(ϕt · E lt + (1− ϕt ) · Ect )+
k=|E|∑
k=1

(θk + µk )

S.t.
∑
t∈V

ϕt · ρ · Size(t) ≤ Cost (16)

Tapp ≤ Tdeadline (17)

Ptrans
B
· (ϕu − ϕv) ·1m(u, v)+ θk − µk = 0

k = 1, 2, · · · , |E| , (u, v) ∈ E (18)

θk ≥ 0, µk ≥ 0 (19)

ϕt , ϕu ∈ {0, 1} (20)

For this optimization problem, the number of edges is
|E| and the number of tasks within the application is N
which is equivalent to the problem statement in optimization
problem P. For the constraint condition, we suppose that each
edge corresponds to a unique edge identification, denoted by
the edge number k(k = 1, 2, · · · , |E|), which is known in
advance.
Theorem 1: If (ϕ∗, θ∗, µ∗) is the best solution to prob-

lem Q, then we have θ∗(µ∗)T = 0, and the value of the best

7266 VOLUME 6, 2018



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

solution to optimization function is:

f ∗ =
t=N∑
t=1

(ϕ∗t · E
l
t + (1− ϕ∗t ) · E

c
t )

+
Ptrans
B
·

∑
(u,v)∈V

∣∣ϕ∗u − ϕ∗v ∣∣ · 4m(u, v)
Proof 1: Suppose that θ∗(µ∗)T 6= 0, then there must exist

at least one dimension j, such that θ∗j > 0, µ∗j > 0. When
θ∗j ≤ µ

∗
j , we can construct another solution as follows:

ϕ = ϕ∗

∧

θ :


∧

θ j = 0
∧

θk = θ
∗
k (k 6= j)

∧
µ :


∧
µj = µ

∗
j − θ

∗
j

∧
µk = µ

∗
k (k 6= j)

Obviously, the new resulting answer (ϕ∗,
∧

θ,
∧
µ) is different

from the best solution in the dimension j. For constraint
condition 18, when k is equal to j,

Ptrans
B
· (ϕ∗u − ϕ

∗
v ) ·1m(u, v)+

∧

θ j −
∧
µj

=
Ptrans
B
· (ϕ∗u − ϕ

∗
v ) ·1m(u, v)+ µ

∗
j − θ

∗
j

= 0

Therefore, (ϕ∗,
∧

θ,
∧
µ) is also the solution to the problem Q.

Besides,
∧

f −f ∗ =
∧

θ j +
∧
µj − (θ∗j + µ

∗
j ) = −2θ

∗
j < 0,

which contradicts the assumption that (ϕ∗, θ∗, µ∗) is the best
solution to problem Q. Therefore θ∗(µ∗)T = 0 holds.
The way to prove that θ∗(µ∗)T = 0 holds when θ∗j > µ∗j is

similar, so the proving is omitted here. Because θ∗(µ∗)T = 0,
so for each k (k = 1, 2, · · · , |E|), we have θ∗k µ

∗
k = 0.

If θ∗k = 0, we have

Ptrans
B
· (ϕu − ϕv) ·1m(u, v) = µ∗k ≥ 0

If µ∗k = 0, we have

Ptrans
B
· (ϕu − ϕv) ·1m(u, v) = −θ∗k ≤ 0

Therefore, for both cases, we have

θ∗k + µ
∗
k =

∣∣∣∣PtransB
· (ϕ∗u − ϕ

∗
v ) ·1m(u, v)

∣∣∣∣
=
Ptrans
B
·
∣∣ϕ∗u − ϕ∗v )∣∣ ·1m(u, v)

Therefore, Theorem 1 is proved.
Theorem 2: If problem P has a feasible solution, the

problem Q also has a feasible solution and vice versa. More-
over, if Q has a best solution (ϕ∗, θ∗, µ∗), then ϕ∗ must be
the best solution to P.
Proof 2: Suppose that ϕ is a feasible solution to prob-

lem P. We can define the vectors θ and µ as follows. When
ϕu − ϕv ≥ 0, letθk = 0

µk =
Ptrans
B
· (ϕu − ϕv) ·1m(u, v)

Otherwise, letθk = −
Ptrans
B
· (ϕu − ϕv) ·1m(u, v)

µk = 0

Where, k = 1, 2, · · · , |E|. We can verify that (ϕ, θ, µ) is a
feasible solution to problem Q, because it satisfy all the con-
straints. On the other hand, if (ϕ, θ, µ) is a feasible solution
to problem Q, it is obvious that the vector ϕ is the solution
to problem P. Assume that (ϕ∗, θ∗, µ∗) is the best solution to
problemQ, but ϕ∗ is not the best solution to problem P. Then
for problem P, there must exist the best solution, denoted

by
∧
ϕ, of which the value of the objective function

∧
z is smaller

than that of ϕ∗. Namely,

∧
z =

∑
t∈V

(
∧
ϕt · E lt + (1−

∧
ϕt ) · Ect )

+
Ptrans
B
·

∑
(u,v)∈V

∣∣∣∣∧ϕu − ∧ϕv)∣∣∣∣ ·1m(u, v)
< z∗ =

∑
t∈V

(ϕ∗t · E
l
t + (1− ϕ∗t ) · E

c
t )

+
Ptrans
B
·

∑
(u,v)∈V

∣∣ϕ∗u − ϕ∗v ∣∣ ·1m(u, v)
Based on the vector

∧
ϕ, we construct a feasible solution

(
∧
ϕ,
∧

θ,
∧
µ) to problem Q following the way above. Since

∧

θk +
∧
µk =

Ptrans
B ·

∣∣∣∣∧ϕu − ∧ϕv∣∣∣∣·1m(u, v) holds, for k = 1, 2, · · · , |E|,

the value of the objective function with regards to (
∧
ϕ,
∧

θ,
∧
µ) is

∧

f =
∑
t∈V

(
∧
ϕt · E lt + (1−

∧
ϕt ) · Ect )+

|E|∑
k=1

(
∧

θk −
∧
µk )

=

∑
t∈V

(
∧
ϕt · E lt + (1−

∧
ϕt ) · Ect )

+
Ptrans
B
·

∑
(u,v)∈V

∣∣∣∣∧ϕu − ∧ϕv∣∣∣∣ ·1m(u, v)
According to Theorem 1, the optimization value of

Problem Q is

f ∗ =
∑
t∈V

(ϕ∗t · E
l
t + (1− ϕ∗t ) · E

c
t )

+
Ptrans
B
·

∑
(u,v)∈V

∣∣ϕ∗u − ϕ∗v ∣∣ ·1m(u, v)
Therefore, we have

∧

f < f ∗, which contradicts that
(ϕ∗, θ∗, µ∗) is the best solution to problem Q. Therefore,
Theorem 2 is proved.

Now, for the optimization problem Q, we can further
transform it. Let ϕ = (ϕ1, ϕ2, · · · , ϕn) be the uploading
decision vector, In = (I , I , · · · , I ) and I|E| = (I , I , · · · , I )
be respectively the vectors, of which each element is a unit
matrix. Then, In − ϕ = (I − ϕ1, I − ϕ2, · · · , I − ϕn).

VOLUME 6, 2018 7267



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

LetE l = (E l1,E
l
2, · · · ,E

l
N ) be the energy consumption vector

at the mobile device when tasks are executed locally and be
the energy consumption vector at the mobile device when
tasks are executed remotely. The optimization function f can
be rewritten as follows:

f =
t=N∑
t=1

(ϕt · E lt + (1− ϕt ) · Ect )+
k=|E|∑
k=1

(θk + µk )

= ϕ · (E l)T + (IN − ϕ) · (Ec)T + (θ + µ) · (I|E|)T

= (ϕ, IN − ϕ, θ + µ) · (E l,Ec, I|E|)T

= (ϕ1, · · · , ϕn, I − ϕ1, · · · , I − ϕn, θ1 + µ1, · · · , θ|E|

+µ|E|) · (E l1,E
l
2, · · · ,E

l
N ,E

c
1,E

c
2, · · · ,E

c
N , I , · · · , I )

T

= (ϕ1, · · · , ϕn, I − ϕ1, · · · , I − ϕn, θ1, · · · , θ|E|, µ1, · · ·,

µ|E|) · (E l1,E
l
2, · · · ,E

l
N ,E

c
1,E

c
2, · · · ,E

c
N , I , · · · , I )

T

= (E l1,E
l
2, · · · ,E

l
N ,E

c
1,E

c
2, · · · ,E

c
N , I , · · · , I ) · (ϕ1, · · ·,

ϕn, I − ϕ1, · · · , I − ϕn, θ1, · · · , θ|E|, µ1, · · · , µ|E|)T

Thus, the problem Q can be a linear programming problem.
In the next, we propose two different algorithms to solve this
problem.

IV. DESIGNS AND SCHEDULING ALGORITHMS
It is an NP-complete problem to find the optimal upload
decisions for the task scheduling. However, heuristic intel-
ligent algorithm is a mature approach to get an optimal
solution. In this paper, we adopt two approaches to solve
this problem, i.e., the greedy algorithm and the genetic
algorithm (GA).

A. PROPOSED GREEDY ALGORITHM
Greedy algorithms are best known for their simple implemen-
tation and speed, although they sometimesmay not search out
the best solution. However, the suboptimal solution always is
acceptable if finding out the best solution is NP-hard and the
time is exponential. In this paper, we first present the greedy
algorithm, followed by the genetic algorithm. The pseudo
code of our proposed greedy algorithm based task scheduling
algorithm (GrABTS) is shown in Algorithm 1.
The algorithm first orders all the tasks based on the

decreasing order of their computation data size, which can
be done in advance as the input parameters. Intuitively, mini-
mizing the power consumption at the mobile device means
uploading the tasks with large computation amount to the
mobile cloud for execution. A list denoted by Lschedule is used
to store the tasks which are upload to the mobile cloud for
execution. The algorithm initializes Lschedule by storing in
sequence the tasks in T until the sum of expenditure spent in
executing the tasks in Lschedule in themobile cloud exceeds the
budget (lines 1-7). Then the algorithm calculates the total exe-
cution time of the application and verifies whether it exceeds
the deadline. If the execution time goes beyond the deadline,
the algorithm decides the replacement strategy as followings.
First, it gets the task ti in Lschedule from back to front starting
at the last position of Lschedule denoted by Pst−last (Lschedule)

Algorithm 1 Greedy Algorithm Based Task Scheduling
Algorithm (GrABTS)
Input :

T = tasks set sorted in the decreasing order
of their computation data size

Output:
The optimal uploading decision

1 for i = 1; i < N ; i++ do
2 ti = ith task in T
3 if ρ · Size(t1)+ Costcur < Cost then
4 Lschedule = Lschedule + ti
5 set the corresponding uploading decision vector

for ti to 1
6 end
7 end
8 Calculate the initial power consumption E at the mobile
device according to equation 5

9 Calculate Tapp according to equation 12 based on
Lschedule and ϕ

10 if Tapp > Tdeadline then
11 for i = Pst−last (Lschedule); i−−; i ≥ 0 do
12 for j = Pst−next (ti,T ); j++; j ≤ N do
13 Recalculate Tapp by tj instead of ti
14 if Tapp < Tdeadline then
15 Replace ti by tj in Lschedule
16 update ϕ and E
17 end
18 end
19 end
20 end

and task tj in T from front to back starting at the next position
of ti denoted by Pst−next (ti,T ), respectively. Second, it recal-
culates Tapp until the time constraint is satisfied (lines 8-19).
Note that GrABTS sometimes may not find the best task
scheduling solution and it usually just generates a suboptimal
solution.

B. PROPOSED GENETIC ALGORITHM
GAs are stochastic search techniques which are inspired by
the principles of evolution and heredity [9] and described
formally by Goldberg. GAs are robust algorithms for solving
NP-hard global optimization problems, including scheduling
problems. GAs are population based algorithms that work
iteratively to obtain better solutions over the huge search
space. In this paper, we propose a genetic algorithm based
task scheduling (GABTS) to solve the optimization prob-
lem, of which the outline to describe the process is given
in Algorithm 2. Note that our optimization problem is dif-
ferent from the traditional optimization problems which are
solved by genetic algorithms, for the reason that the opti-
mization function involves both binary variables (ϕ) and real
variables(θ and µ).

7268 VOLUME 6, 2018



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

Algorithm 2 Genetic Algorithm Based Task Scheduling
(GABTS)
Input :

Parameters for genetic algorithm;
Parameters for task scheduling problem

Output:
The optimal uploading decision

1 Generate an initial population of chromosomes;
2 repeat
3 Dispatch the tasks according to the execution

indicator vector ϕ and evaluate the fitness value of
each chromosome in the population;

4 Select a part of chromosomes with a selection
probability based on the fitness values of the
chromosomes, denoted by p1;

5 repeat
6 Select two parent chromosomes from the

individuals from the remaining chromosomes in
the population randomly;

7 With a crossover probability, do crossover
operations on the pair of the selected individuals
to form a new offspring;

8 With a mutation probability, mutate new
offspring at selected position in the
chromosome;

9 until the size of the population reaches the default;
10 Select a part of the resulting population according to

fitness values of the chromosomes, and combined
with p1 to form a new population;

11 until end condition fulfilled ;

In the next, we will elaborate on the details of the
implementation of the genetic algorithm for task scheduling
problem.

C. ENCODING AND INITIALIZATION
Taking into consideration the mixed variables in the opti-
mization objective, for the energy-efficient and constraints-
satisfied task scheduling problem in MCC, we represent an
individual (i.e. a chromosome) in the population of our algo-
rithm by a 3 × N matrix as shown in Table 2, in which the
first row is the execution indicator vector ϕi(∈ {0, 1}) to
denote whether the task is uploaded or not, and the next two
rows are the introduced non-negative auxiliary variables in
Problem Q.

TABLE 2. Chromosome representing in GABTS.

The initial population consists of ps randomly generated
individuals, where ps is the size of the population which is
kept as a constant through the generations. According to dif-
ferent purposes, we can tune the value of ps in the preliminary
computational experiments.

D. FITNESS FUNCTION
Fitness value as a metric to evaluate the individuals decides
which individuals would be used to generate the next generate
population, so the design of the fitness function is crucial to
the genetic algorithm, which exercises a great influence on
the speed of searching out the best solution to the optimiza-
tion problem.

In this paper, we aim to minimize the energy consumption
of the mobile devices by uploading some parts of tasks to
the cloud. Hence the fitness function is the same as the
optimization object function denoted by problem Q.

E. SELECTION OPERATOR
Selection is an important part of genetic algorithm since it
has a significant impact on the convergence of the genetic
algorithm. Intuitively, the better fitted an individual, the larger
the probability of its survival. To this end, there are many
strategies and rules, such as the roulette-wheel selection [7],
which assumes that the probability that an individual is
selected to produce the next generation is proportional to
its fitness value. In each generation, we select a portion
of individuals from the current generation according to the
selection probability. We repeatedly select two individuals as
parents from the remaining individuals at random and further
generate new offspring by crossover and mutation operation.
Then we combine the resulting offspring and the selected
individuals based on selection probability to form the next
generation.

F. CROSSOVER OPERATOR
The crossover operator is to generate new offspring by
exchanging gene segment of two selected parents. Since
the chromosome is represented by mixed variables, for the
crossover operator we need to apply different methods to deal
with the binary and real variables.

1) CROSSOVER FOR BINARY VARIABLE ϕ
In the task scheduling problem, we adopt single-point
crossover to generate the offspring. Specifically, we select
randomly a crossover position to divide the parent chromo-
some into two segments, with regards to the first row in the
chromosome. Then for the two selected parents, we exchange
the corresponding gene segment, e.g., smaller gene segment,
to form the new offspring, as shown in Figure 3.

2) CROSSOVER FOR REAL VARIABLES θ AND µ

For crossing the real variables θ and µ of the proposed GA,
we adopt the simulated binary crossover operator [26] to
generate two children solutions from two parent solutions as
follows:

θ
c1
k =

1
2
· [(1+ β) · θp1k + (1− β) · θp2k ]

θ
c2
k =

1
2
· [(1− β) · θp1k + (1+ β) · θp2k ]

VOLUME 6, 2018 7269



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

FIGURE 3. Crossover operation for binary variable ϕ.

where θcik and θpik (i = 1, 2) denote the children and parents,
respectively. From equation 18, we observe that although
θk and µk are dependent on each other, θk still can have
estimated maximum value max(θk ). For example, max(θk ) =
max(µk ) +1m(u, v) ·

Ptrans
B , when ϕu = 0, ϕv = 1. We here

assume the each element θk in vector θ follows the normal
distribution by setting a upper bound for θ . For β, we can be
designed it as follows:

β =

(2ξ )
1

1+n ξ ≤ 0.5

(
1

2(1− ξ )
)

1
1+n otherwise;

where ξ (0 < ξ < 1) is a random number uniformly
distributed in [0, 1] and n is the number of tasks. We can
observe from these crossover design that the search power
of the crossover operator, i.e, a measure of how flexible the
crossover operator is to create an arbitrary point in the search
space, is sufficient to satisfy a number of criteria suggested by
Radcliffe. The crossover operator for vector µ can be solved
the same way as mentioned above.

G. MUTATION OPERATOR
In order to cover more extensive search space, we use a
variable to control the mutation probability when the muta-
tion position is chosen at random. Mutation operator usually
alters a gene position locally to hopefully generate a better
offspring.

1) MUTATION FOR BINARY VARIABLE ϕ
For the binary execution decision vector ϕ in the task schedul-
ing problem, we turn 0 into 1 and vice versa at the chosen
mutation position. Even though the bad offspring may be
created, they will still be eliminated by repeated selection
operation based on the fitness function in the next generation.

2) MUTATION FOR REAL VARIABLES θ AND µ

We apply the polynomial mutation operator [25] to the mutat-
ing operator for the real variables of the chromosome. Gen-
erally, polynomial mutation uses a polynomial probability
distribution to make a continuous variable (e.g. θ and µ)
changed from the current value to a neighboring value.

The distribution generates the next generation offspring by
a function of the distribution index η. Specially, the details
on mutation operator are described as follows:

δ1 =
θ
p
k − min(θ

p
k )

max(θpk )− min(θ
p
k )

δ2 =
max(θpk )− θ

p
k

max(θpk )− min(θ
p
k )

δ =


[2r + (1− 2r)(1− δ1)η+1]

1
η+1 − 1 r ≤ 0.5

1− [2(1− r)+ 2(r − 0.5)(1− δ2)η+1]
1
η+1

otherwise,

θck = θ
p
k + δ(max(θ

p
k )− min(θ

p
k ))

where, r is a random number uniformly distributed
in [0, 1] and η is the index for polynomial mutation. θck and θ

p
k

denote the children and parents, respectively. max(θpk )
(resp. min(θpk )) denote the upper (resp. lower) bound of the
solution variable.

V. SIMULATION AND RESULTS ANALYSIS
We present in this section the experiments via numerical
simulations to evaluate the effectiveness and efficiency of our
approach.

TABLE 3. Parameter settings in GABTS.

A. EXPERIMENTAL SETUP
We run our experiments on a laptop with 2.5GHz Intel
CPU, 8192M of RAM, Microsoft Win7 Operating Sys-
tem. The algorithms are implemented in C++ and evaluated
under different parameter settings, such as selection rate and
mutation rate in GA. We initialize the task graph structure
(i.e., DAG) based on both real-world application and ran-
dom simulation. For each task in the constructed workflow,
we generate randomly the corresponding workload and trans-
mission data which are transmitted into the subsequent tasks.
For GA related parameter settings, we list them in Table 3.
For example, for the crossover probability, we vary it from
0.3 to 0.8 with a step of 0.05 and the mutation probability
from 0.01 to 0.1. In our experiments, once the population
is initialized, for each task (i.e., gene value in each chromo-
some), the decision to upload it or not is confirmed. In order
to simplify the system model and avoid calculating waiting
time among tasks in the process of uploading, we assume that
each task to be uploaded to the mobile cloud does not need
waiting. Sometimes it is necessary for massive calculation
and achievable via offline technique.

7270 VOLUME 6, 2018



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

FIGURE 4. Example of an application with 20 tasks.

When we construct the task graph based on the real-world
application, the task graph usually has certain structure, num-
ber of nodes and task dependency relationships. For example,
we conduct the first set of experiments based on the task graph
shown in Fig. 4 to validate the influence of crossover prob-
ability and mutation probability on the rate of convergence
in GA. In Fig. 4, there are 20 tasks in the application, each
numerical value around the node representing the computa-
tion data size of the task and each numerical value on the
edge representing the amount of data migration between two
tasks with dependency relationships. Note that the workload
of each task and the amount of data transmission between two
tasks with dependency relationships are generated randomly.

B. EXPERIMENTAL RESULTS
In this section, we report the experimental results in twoways.
First, we evaluate the influence of parameter settings on the
performance of GABTS. For example, different crossover
probabilities and mutation probabilities may give rise to dif-
ferent iterations when achieving the best solution. On the
other hand, we also need to validate the influence of the
number of tasks in the application on the performance of
GABTS with regards to average makespan and iterations
when achieving the best solution. Second, we compare our
approach with other approaches and further analyze the com-
parison results comprehensively.

1) PARAMETERS INFLUENCE ON GABTS
First, we study the influence of the mutation probabil-
ity (MP) on the makespan of finding the optimal solution
with GA. According to parameter settings, we first set the
crossover probability (CP) to the default value and maxi-
mal iteration (MI) to 500. Note that we run the algorithm
50 times under each mutation probability to obtain the aver-
age makespan and the results are shown in Fig.5.

From Fig.5, we can see that the makespan increases when
the mutation probability either increases or decreases from
0.02, which means that the total execution time of the appli-
cation reaches the minimum when the algorithm finds the

FIGURE 5. The average makespan under different MP.

FIGURE 6. The average iterations when achieving MEC.

best solution, i.e., achieving the minimum energy consump-
tion (MEC) with mutation probability being 0.02. A striking
conclusion is that the average makespan almost increases
by 67%, when the mutation probability is set to 0.02 and 0.1,
respectively. Therefore, it is crucial to set the appropriate
mutation probability to solve our task scheduling problem.
The corresponding iterations versus mutation probability is
shown in Fig.6. We can see that there are no obvious correla-
tions between iterations and MEC when mutation probability
varies. When mutation probability ranges from 0.02 to 0.1,

VOLUME 6, 2018 7271



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

the average iterations to reach the minimum energy consump-
tion is roughly the same. It is interesting that the number
of average iterations when mutation probability is 0.01 is
much bigger than others. The main reason is that a lower
mutation probability gives rise to less coverage of population.
Therefore, achieving the best solution, i.e., the minimum
energy consumption, usually takes much more iterations than
other situations.

FIGURE 7. The average makespan under different CP.

We conduct the next set of experiments to validate the
effects of crossover probability on the makespan when
achieving the minimum energy consumption, which is shown
in Fig.7. We set the mutation probability to 0.02 according to
the experimental results in Fig.5. The maximum iteration is
still 500. It is easily noted that the fastest way to achieve the
minimum energy consumption is to set crossover probability
to 0.4 compared to other crossover probability settings. The
average makespan increases by 20% when crossover proba-
bility is set to 0.4 and 0.7, respectively. Therefore, the same as
mutation probability, it is also crucial to choose appropriate
crossover probability to solve the task scheduling problem in
this paper.

In order to verify the influence of the number of tasks on
finding out the best solution (i.e., the minimum energy con-
sumption) with regards to average makespan and iterations,
we conduct the following experiments. First, we generate the
task graph randomly, and the number of tasks ranges from
10 to 19. For other parameter settings, the population size
is set to 100, the maximum generations 1000, the mutation
probability 0.05 and the crossover probability 0.5. The result
is depicted in Fig.8, where the left Y-axis represents the
average makespan while the right Y-axis represents the cor-
responding iterations when achieving the minimum energy
consumption. It is clear that the number of tasks have sig-
nificant influence on the time to find the best solution. For
example, when the number of tasks increases from 10 to 19,
the corresponding average makespan have almost increased
by 230%. It is understandable, for the reason that the exe-
cution time of tasks either at the mobile device or at the
cloud size increases as well as the communication time, not
mention to the task dependency relationships that seriously
restrict the concurrent execution of related tasks. On the other

FIGURE 8. The average makespan under different No. of tasks.

hand, the number of iterations of GA also increases when the
number of tasks increases. The increment of number of tasks
means the increment of the length of chromosome, which
lead to a more extensive genetic diversity of population. As a
result, the number of iterations increase.

2) PERFORMANCE COMPARISON
In this section, we will present comparative performance
of GABTS with other similar algorithms. We choose the
simple GAs as the benchmark. Namely, we apply simple
genetic algorithm to solving problem P. After introducing
two vectors θ andµ to convert the optimization problem from
problem P to problemQ, we use the hybrid genetic algorithm
which is presented in IV-C and involved with both binary
variable and real variable to solving the problem.We compare
the approach with both the simple genetic algorithm and the
proposed greedy approach respectively in this section.

FIGURE 9. Performance comparison (Simple GA vs. GABTS).

Based on the aforementioned experimental results about
the influence of GA parameters on the performance of
GABTS, we conduct the following experiments, where we
compare the GABTS to the simple genetic algorithms with
regards to problem P and problemQ, respectively. The results
are shown in Fig. 9, where we set CP to 0.4, MP to 0.02 and
the length of chromosome to 20, respectively. Note that, for
the upper and lower bound of each element in the introduced
vectors θ and µ, we estimate them by equation 18. From
Fig. 9 we can observe that GABTS achieves the maximum

7272 VOLUME 6, 2018



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

fitness value faster than simple genetic algorithem. Specially,
when the number of iterations reaches 400, GABTS can
achieve the best fitness value, while the simple GA hangs
around with the suboptimal fitness value until the number
of iterations reaches 700. Therefore, when the number of
iteration ranges from 100 to 700, GABTS has a great advan-
tage against the simple GA. Although GABTS involves both
binary and real variables, which makes the chromosome
representation more complicated compared to simple binary
coding chromosome, the efficiency of searching out the best
solution is still acceptable.

FIGURE 10. Performance comparison under different approaches.

The experimental results for evaluating the performance
of simple GA, GrABTS and GABTS as shown in Fig.10,
in which for genetic algorithms (simple GA and GABTS),
the population size is set to 100, the maximum generations
1000, the mutation probability 0.05 and the crossover proba-
bility 0.5.We can observe that as the number of tasks involved
in the application increases, the performance of GrABTS
degrades sharply compared to GABTS and simple GA.When
the number of tasks is small, GrABTS presents a great advan-
tage against simple GA and GABTS, e.g. when the number
of tasks is smaller than 14. As expected, the execution time of
simple GA is relatively smaller than that of GABTS due to the
complicated representation and processing of chromosome,
crossover and mutation operators. However, we also notice
that among the three approaches, GABTS are the most likely
to find the optimal solution while simple GA and GrABTS
sometimes can only find the suboptimal solution.

VI. CONCLUSION
Task scheduling is known as an NP-hard problem, which
has attracted lots of attention in the past few years. The task
scheduling under the context of mobile cloud computing has
its own characteristics. For example, power consumption at
the mobile device usually restricts the deployment and uti-
lization of massive and complicated application at the mobile
device. Hence, tasks are scheduled to the mobile cloud for
execution is an efficient way to save power consumption of
the mobile device.

We in this paper models this kind of task scheduling prob-
lem as an energy consumption optimization problem, while

taking into account task dependency, data transmission and
some constraint conditions such as response time deadline
and cost, and further solve it by genetic algorithms. For the
future work, we will test the performance of algorithms with
much larger task graphs and devise more efficient heuristic
algorithms to solve this task scheduling problem.

REFERENCES
[1] A. I. Awad, N. A. El-Hefnawy, and H. M. Abdel_Kader, ‘‘Enhanced

particle swarm optimization for task scheduling in cloud computing envi-
ronments,’’ Proc. Comput. Sci., vol. 65, pp. 920–929, Jan. 2015.

[2] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J. Wu, ‘‘Towards energy-
efficient scheduling for real-time tasks under uncertain cloud computing
environment,’’ J. Syst. Softw., vol. 99, pp. 20–35, Jan. 2015.

[3] M. Conti et al., ‘‘Research challenges towards the Future Internet,’’ Com-
put. Commun., vol. 34, no. 18, pp. 2115–2134, 2011.

[4] S. Deng, L. Huang, H. Wu, and Z. Wu, ‘‘Constraints-driven service com-
position in mobile cloud computing,’’ in Proc. IEEE Int. Conf. Web Serv.,
Jun. 2016, pp. 228–235.

[5] S. Deniziak, L. Ciopinski, G. Pawinski, K. Wieczorek, and S. Bak, ‘‘Cost
optimization of real-time cloud applications using developmental genetic
programming,’’ in Proc. IEEE/ACM Int. Conf. Utility Cloud Comput.,
Dec. 2014, pp. 774–779.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco, CA, USA: Freeman, 1979.

[7] David E Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. vol. 7. Boston, MA, USA: Addison-Wesley, 1989,
pp. 2104–2116.

[8] S. Guo, B. Xiao, Y. Yang, and Y. Yang, ‘‘Energy-efficient dynamic offload-
ing and resource scheduling in mobile cloud computing,’’ in Proc. IEEE
Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[9] J. H. Holland. Adaptation in Natural and Artificial Systems. Cambridge,
MA, USA: MIT Press, 1992.

[10] P. P. Hung, T.-A. Bui, and E.-N. Huh, ‘‘A new approach for task scheduling
optimization in mobile cloud computing,’’ in Frontier and Innovation
in Future Computing and Communications (Lecture Notes in Electrical
Engineering), vol. 301. Berlin, Germany: Springer, 2014, pp. 211–220.

[11] K. H. Kim, A. Beloglazov, and R. Buyya, Power-Aware Provisioning
of Virtual Machines for Real-Time Cloud Services. Hoboken, NJ, USA:
Wiley, 2011.

[12] K. Kumar and Y.-H. Lu, ‘‘Cloud computing for mobile users: Can offload-
ing computation save energy?’’ Computer, vol. 43, no. 4, pp. 51–56, 2010.

[13] Y. C. Lee, C. Wang, Y. Albert Zomaya, and B. B. Zhou, ‘‘Profit-driven
scheduling for cloud services with data access awareness,’’ J. Parallel
Distrib. Comput., vol. 72, no. 4, pp. 591–602, 2012.

[14] X. Lin, Y. Wang, Q. Xie, and M. Pedram, ‘‘Task scheduling with dynamic
voltage and frequency scaling for energy minimization in the mobile
cloud computing environment,’’ IEEE Trans. Serv. Comput., vol. 8, no. 2,
pp. 175–186, Mar./Apr. 2015.

[15] S. Liu, G. Quan, and S. Ren, ‘‘On-line preemptive scheduling of real-time
services with profit and penalty,’’ in Proc. IEEE Southeastcon, Mar. 2011,
pp. 1476–1481.

[16] A. Mahmood and S. A. Khan, ‘‘Hard real-time task scheduling in cloud
computing using an adaptive genetic algorithm,’’ Computers vol. 6, no. 2,
p. 15, 2017.

[17] S. K. Panda, I. Gupta, and K. Prasanta Jana, ‘‘Allocation-aware task
scheduling for heterogeneous multi-cloud systems,’’ in Proc. Int. Symp.
Big Data Cloud Comput. Challenges, 2015, pp. 176–184.

[18] A. Razaque, N. R. Vennapusa, N. Soni, G. S. Janapati, and K. R. Vangala,
‘‘Task scheduling in cloud computing,’’ in Proc. IEEE Long Island Syst.,
Appl. Technol. Conf., Apr. 2016, pp. 1–5.

[19] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for
VM-based cloudlets in mobile computing,’’ IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009.

[20] J.-T. Tsai, J.-C. Fang, and J.-H. Chou, ‘‘Optimized task schedul-
ing and resource allocation on cloud computing environment using
improved differential evolution algorithm,’’ Comput. Oper. Res., vol. 40,
pp. 3045–3055, Dec. 2013.

[21] J. Wang, J. Tang, G. Xue, and D. Yang, ‘‘Towards energy-efficient task
scheduling on smartphones in mobile crowd sensing systems,’’ Comput.
Netw., vol. 115, pp. 100–109, Mar. 2017.

VOLUME 6, 2018 7273



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

[22] X. Wu, M. Deng, R. Zhang, B. Zeng, and S. Zhou, ‘‘A task scheduling
algorithm based on QoS-driven in cloud computing,’’ Proc. Comput. Sci.,
vol. 17, pp. 1162–1169, Jan. 2013.

[23] Q. Xia, W. Liang, and W. Xu, ‘‘Throughput maximization for online
request admissions in mobile cloudlets,’’ in Proc. IEEE 38th Conf. Local
Comput. Netw., Oct. 2014, pp. 589–596.

[24] Y. Zhao, L. Chen, Y. Li, P. Liu, X. Li, and C. Zhu, ‘‘RAS: A task schedul-
ing algorithm based on resource attribute selection in a task scheduling
framework,’’ in Proc. Int. Conf. Internet Distrib. Comput. Syst., 2013,
pp. 106–119.

[25] K. Deb and M. Goyal, ‘‘A combined genetic adaptive search (GeneAS) for
engineering design,’’ Comput. Sci. Inf., vol. 26, no. 4, pp. 30–45, 1996.

[26] D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algo-
rithms. Hoboken, NJ, USA: Wiley, 2001.

[27] D. E. Goldberg, The Design of Innovation: Lessons From and for Compe-
tent Genetic Algorithms. Norwell, MA, USA: Kluwer, 2002.

[28] H. Kargupta, ‘‘The gene expression messy genetic algorithm,’’ in Proc.
IEEE Int. Conf. Evol. Comput., May 1996, pp. 814–819.

[29] G. R. Harik and D. E. Goldberg, ‘‘Linkage learning through probabilistic
expression,’’ Comput. Methods Appl. Mech. Eng., vol. 186, nos. 2–4,
pp. 295–310, 2000.

[30] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, ‘‘BOA: The Bayesian
optimization algorithm,’’ in Proc. 1st Annu. Conf. Genetic Evol. Comput.,
1999, pp. 525–532.

[31] F. Herrera, M. Lozano, and J. L. Verdegay, ‘‘Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis,’’ Artif. Intell.
Rev., vol. 12, no. 4, pp. 265–319, 1998.

[32] I. G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos, ‘‘Network-
constrained economic dispatch using real-coded genetic algorithm,’’ IEEE
Trans. Power Syst., vol. 18, no. 1, pp. 198–205, Feb. 2003.

[33] S. Panda and C. Ardil, ‘‘Real-coded genetic algorithm for robust power
system stabilizer design,’’ Int. J. Electr., Comput. Syst. Eng., vol. 2, no. 1,
pp. 6–14, 2008.

[34] M. S. Arumugam, M. V. C. Rao, and R. Palaniappan, ‘‘New hybrid genetic
operators for real coded genetic algorithm to compute optimal control of
a class of hybrid systems,’’ Appl. Soft Comput., vol. 6, no. 1, pp. 38–52,
2005.

[35] Y. Xu, K. Li, T. T. Khac, andM. Qiu, ‘‘Amultiple priority queueing genetic
algorithm for task scheduling on heterogeneous computing systems,’’
in Proc. IEEE Int. Conf. High Perform. Comput. Commun., Jun. 2012,
pp. 639–646.

[36] Y.-K. Lin and C. S. Chong, ‘‘Fast GA-based project scheduling for com-
puting resources allocation in a cloud manufacturing system,’’ J. Intell.
Manuf., vol. 28, no. 5, pp. 1189–1201, 2015.

[37] C. Zhu, L. Shu, V. C. M. Leung, S. Guo, Y. Zhang, and L. T. Yang, ‘‘Secure
multimedia big data in trust-assisted sensor-cloud for smart city,’’ IEEE
Commun. Mag., vol. 55, no. 12, pp. 24–30, Dec. 2017.

[38] C. Zhu, H. Zhou, V. C. M. Leung, K. Wang, Y. Zhang, and L. T. Yang,
‘‘Toward big data in green city,’’ IEEE Commun. Mag., vol. 55, no. 11,
pp. 14–18, Nov. 2017.

[39] C. Zhu, V. C. M. Leung, K. Wang, L. T. Yang, and Y. Zhang,
‘‘Multi-method data delivery for green sensor-cloud,’’ IEEE Commun.
Mag., vol. 55, no. 5, pp. 176–182, May 2017.

[40] C. Zhu, X. Li, V. C. M. Leung, L. T. Yang, E. C.-H. Ngai, and L. Shu,
‘‘Towards pricing for sensor-cloud,’’ IEEE Trans. Cloud Comput., to be
published.

[41] C. Zhu, J. J. P. C. Rodrigues, V. C. M. Leung, L. Shu, and L. T. Yang,
‘‘Trust-based communication for industrial Internet of Things,’’ IEEE
Commun. Mag., to be published.

CHAOGANG TANG received the B.S. degree
from the Nanjing University of Aeronautics and
Astronautics in 2007 and the Ph.D. degree from
the School of Information Science and Technol-
ogy, University of Science and Technology of
China in 2012. He is currently a Lecturer with
the China University of Mining and Technology.
His research interests include mobile cloud com-
puting, fog computing, Internet of Things, big
data, and WSN.

XIANGLIN WEI was born in Anhui, China.
He received the bachelor’s degree from the
Nanjing University of Aeronautics and Astro-
nautics, Nanjing, China, in 2007, and the Ph.D.
degree from the University of Science and Tech-
nology, Nanjing, China, in 2012. He is currently a
Researcher with the Nanjing Telecommunication
Technology Research Institute, Nanjing, China.
His research interests include cloud computing,
peer-to-peer network, network anomaly detection,

network measurement, and distributed system design and optimization.
He has served as an editorial member of many international journals and a
TPCmember of a number of international conferences. He has also organized
a few special issues for many reputed journals.

SHUO XIAO received the Ph.D. degree in traffic
information engineering and control from Beijing
Jiaotong University in 2010. Since 2010, he has
been with the China University of Mining and
Technology, where he is currently an Associate
Professor. His research interests include wireless
sensor networks, measure and control systems.

WEI CHEN received the Ph.D. degree in com-
munications and information systems from the
China University of Mining and Technology at
Beijing, Beijing, China, in 2008. In 2008, he joined
the School of Computer Science and Technol-
ogy, China University of Mining and Technol-
ogy at Xuzhou, where he is currently a Professor.
His research interests include machine learning,
image processing, and wireless communications.

WEIDONG FANG received the B.E. degree in
industrial electrical automation from Shandong
University, Jinan, China, in 1993, the M.E. degree
in communication and electronic systems from
the China University of Mining and Technol-
ogy, Beijing, China, in 1998, and the Ph.D.
degree in electromagnetic fields and microwave
techniques from Shanghai University, Shanghai,
China, in 2016. He is currently as an Associate
Professor with the Shanghai Institute of Microsys-

tem and Information Technology, Chinese Academy of Sciences, Shanghai,
China. His current research interests include energy efficiency and informa-
tion security in wireless sensor network, trust management, secure network
coding, and secure routing protocol.

7274 VOLUME 6, 2018



C. Tang et al.: Mobile Cloud Based Scheduling Strategy for IIoT

WUXIONG ZHANG received the B.E. degree
in information security from Shanghai Jiao Tong
University, Shanghai, China, in 2008, and the
Ph.D. degree in communication and information
systems from the Shanghai Institute of Microsys-
tem and Information Technology (SIMIT),
Chinese Academy of Sciences, Shanghai, in 2013.
He is currently an Associate Professor with SIMIT
and is serving as an Associate Professor with the
Shanghai Research Center for Wireless Commu-

nications. His research interests include beyond third-generation mobile
communication systems and vehicular networks.

MINGYANG HAO received the B.S. degree in
electronic information science and technology
from the Shandong University of Science and
Technology in 2016. He is currently pursuing the
Ph.D. degree with the China University of Mining
and Technology, where he is involved in data anal-
ysis related learning and research.

VOLUME 6, 2018 7275


	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL
	SYSTEM DESCRIPTION
	PROBLEM FORMULATION

	DESIGNS AND SCHEDULING ALGORITHMS
	PROPOSED GREEDY ALGORITHM
	PROPOSED GENETIC ALGORITHM
	ENCODING AND INITIALIZATION
	FITNESS FUNCTION
	SELECTION OPERATOR
	CROSSOVER OPERATOR
	CROSSOVER FOR BINARY VARIABLE 
	CROSSOVER FOR REAL VARIABLES  AND 

	MUTATION OPERATOR
	MUTATION FOR BINARY VARIABLE 
	MUTATION FOR REAL VARIABLES  AND 


	SIMULATION AND RESULTS ANALYSIS
	EXPERIMENTAL SETUP
	EXPERIMENTAL RESULTS
	PARAMETERS INFLUENCE ON GABTS
	PERFORMANCE COMPARISON


	CONCLUSION
	REFERENCES
	Biographies
	CHAOGANG TANG
	XIANGLIN WEI
	SHUO XIAO
	WEI CHEN
	WEIDONG FANG
	WUXIONG ZHANG
	MINGYANG HAO


