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ABSTRACT Terahertz (THz) arrays can be used to improve the data acquisition speed considerably in real-
time imaging applications. However, the THz array imaging usually suffers from the side-lobe artifacts,
which leads to a severe decline in the image quality. In this paper, a side-lobe suppression method based
on coherence factor is proposed to improve the image quality. The influences of signal-to-noise ratio on the
imaging results are analyzed by simulation. Furthermore, the results based on the real-world data validate the
effectiveness of the proposed method, which indicates that the side-lobe is suppressed by 29 dB. This paper
can benefit the development of THz imaging technique and its applications in real-time imaging realms.

INDEX TERMS Coherence factor, side-lobe suppression, terahertz array imaging.

I. INTRODUCTION
With the increasing threat of terrorism, the security inspection
are becoming more and more important on high-security
sites, including airports and railway stations. In the past
few years, terahertz (THz) imaging has been developed for
the security inspection applications due to its distinguished
merits, e.g., high spatial resolution, penetration capability and
safety characteristics [1]–[3]. Moreover, the array technique
is applied to further improve the imaging resolution and
the data acquisition speed for real-time imaging [4], [5].
In reality, the sparse array with large spacing between two
elements is usually used in THz imaging systems, which can
be implemented with low cost. However, the side-lobe and
grating lobe artifacts usually arise in the THz sparse array
imaging systems, which would severely degrade the image
quality [6].

Over the years, many approaches, like window function [7]
and array design [8], have been proposed to suppress the
side-lobe and grating lobe artifacts in microwave radar imag-
ing. In contrast, for THz radar imaging, the short wave-
length, the nonlinear errors of signal and low signal-to-noise
ratio (SNR) [2], [9], would lead to higher side-lobe level.
Generally, the coherence factor (CF) [10] is defined as the
ratio of the coherent power to the incoherent power for a

known point in the obtained target image, which has been
successfully used to suppress the grating-lobe artifacts of
the sparse array for through-wall imaging radars [11], [12]
and the THz impulse imaging system [6]. To improve the
image quantity of the THz array system, the coherence factor
which operates in the image domain, is applied for side-lobe
suppression in this paper.

The rest of this paper is organized as follows. In section 2,
the imaging method with side-lobe suppression is proposed
for THz array imaging. In section 3, simulations are carried
out to evaluate the performance of the proposed method. The
values of peak side lobe ratio (PSLR) and integrated side
lobe ratio (ISLR) are calculated for quantitative comparisons.
Furthermore, the proposed side-lobe suppression method is
also validated by real-world data obtained from a THz array
system.

II. THEORY
In this paper, the bistatic back-projection (BP) algorithm [13]
is adopted, which provides the most direct solution for target
reconstruction problem in the imaging scenario. Considering
an array with NT transmitters and NR receivers, the intensity
of a point located at the position r can be obtained by the
coherent sum of echo signals after range compression, which
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can be given by

I (r) =
NT∑
i=1

NR∑
j=1

Iij(r) =
NT∑
i=1

NR∑
j=1

sij(‖ri − r‖ +
∥∥rj − r

∥∥) (1)

where sij is the range-compressed echo signals corresponding
to the bistatic round-trip distance. ri and rj denote the position
vector of the ith transmitter and the jth receiver, respectively.
r represents the position vector of the desired point.

To suppress the side-lobe artifacts, an amplitude weighting
coefficient, i.e. CF, is introduced to correct the target image.
The spatial coherence of the time-delayed signals across the
entire array is measured to calculate the CF. Thus, the CF at
a specific image point r can be written as

CF(r) =

∣∣∣∣∣NT∑i=1
NR∑
j=1

Iij(r)

∣∣∣∣∣
2

NTNR
NT∑
i=1

NR∑
j=1

∣∣Iij(r)∣∣2 (2)

As for the side lobes, the incoherent power is higher than
the coherent power due to the incoherence of the data chan-
nels. The CF is usually smaller than 1. However, the incoher-
ent power and the coherent power of the main lobe are almost
the same, which results in a unity ratio. Thus, the imag-
ing method using CF can be used to suppress the side-lobe
artifacts, and the corrected image can be obtained as

ICF(r) = CF(r) · I (r) (3)

According to (2) and (3), we can conclude that the CF is an
adaptive reconstruction method based on the echo data and
no prior knowledge of the object is needed. The proposed
imaging method with side-lobe suppression is illustrated
in Figure 1.

III. EXPERIMENTS AND ANALYSIS
The schematic of the THz array imaging system is depicted
in Figure 2. The range resolution along the Y axis (line
of sight) is achieved by transmitting linear frequency mod-
ulated signal at the center frequency of 332.8 GHz with
16 GHz bandwidth. The linear multiple-input-multiple-
output (MIMO) array along the X axis is used to realize the
cross-range resolution. The THz waves are transmitted from
the transmitters sequentially, and the echoes from target are
collected by receivers simultaneously. Moreover, a rotating
reflector is used to implement the mechanical steering in the
Y-Z plane, which provided the imaging resolution along the
Z axis. The THz array system operates at a standoff range of
about 2.3 meters with respect to the focal point.

The configuration of the linear MIMO array is shown
in Figure 3, in which Tx and Rx stand for the transmitters and
receivers, respectively. In particular, the MIMO array is con-
sisted of 4 transmitters and 16 receivers with an aperture size
of 136 mm. The spacing between two transmitting elements
is 4 mm, and the spacing between two receiving elements
is 8 mm, which indicates that the element spacing is much

FIGURE 1. The proposed imaging procedure with side-lobe suppression.

FIGURE 2. The schematic of the THz array imaging system.

FIGURE 3. The configuration of the linear MIMO array.

larger than the signal wavelength (approximately 0.9 mm).
Thus, the side-lobe artifacts will occur and severely degrade
the image quality, which should be suppressed.

A. SIMULATION RESULTS
To evaluate the performance of the proposed method in THz
array imaging, the simulation is conducted, based on the
aforementioned system schematic and parameters. Firstly,
the imaging simulation is carried out without noise contribu-
tion. Based on the proposed imaging algorithm in section 2,
the imaging results before and after side-lobe suppression
are shown in Figure 4. It can be seen from Figure 4 that
the side-lobes of the imaging result are greatly suppressed
by the processing with CF. Specifically, the PSLR and ISLR
values of the imaging result before side-lobe suppression are
−12.57 dB and−9.08 dB, respectively. In contrast, the PSLR
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FIGURE 4. The simulation imaging results in the X direction
(without noise).

FIGURE 5. The values of PSLR and ISLR as a function of SNR. (a) PSLR.
(b) ISLR.

and ISLR values of the imaging result after side-lobe suppres-
sion are −37.7 dB and −36.83 dB, respectively.

Secondly, the quantitative analysis is carried out to further
show the good performance of the side-lobe suppression
method. The values of PSLR and ISLR of the imaging results
in the X direction are calculated with different SNR. In the
simulation, 200 Monte Carlo trials are conducted. The PSLR
and ISLR curves as a function of the SNR before and after
side-lobe suppression are shown in Figure 5. In Figure 5(a),
the mean value of PSLR is approximately suppressed by

FIGURE 6. The imaging results on the X-Y plane. (a) Before side-lobe
suppression. (b) After side-lobe suppression using the proposed method.

FIGURE 7. The imaging results in the X direction.

25 dB, and the mean value of ISLR in Figure 5(b) decreases
from −9 dB to −37 dB.

B. IMAGING RESULTS BASED ON REAL-WORLD DATA
To further show the effectiveness of the proposed method in
the THz array imaging, the imaging results based on the real-
world data are provided. The echo of a vertically placed metal
stick is received by the imaging prototype system described
in Figure 2.

The two-dimensional target image on the X-Y plane is
reconstructed using the bistatic BP algorithm, shown in
Figure 6(a). It can be seen from Figure 6(a) that the side-lobe
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FIGURE 8. The imaging results of the metal stick on the X-Z plane.
(a) Before side-lobe suppression. (b) After side-lobe suppression.

artifacts occur and the image quality is severely degraded in
the cross-range dimension. To suppress the side-lobes, the
imaging processing with CF proposed in section 2 is applied
and the imaging result is shown in Figure 6(b). Results indi-
cate that the target image is well focused and almost has no
side lobes in the X direction, i.e., the cross-range dimension.
The one-dimensional imaging result in the X direction is
displayed in Figure 7, which provides a more quantitative
analysis of the side-lobe suppression. The imaging results
in the X direction before and after side-lobe suppression
are both depicted and the corresponding PSLR values of
the two images are −14.49 dB and −43.53dB, respectively.
Thus, the side lobe is suppressed by 29 dB. Furthermore,
the imaging result of a metal stick on the X-Z plane is shown
in Figure 8, which indicates that the image quality has been
improved significantly.

IV. CONCLUSION
In summary, an effective side-lobe suppression method based
on the CF has been proposed for THz array imaging,
in this paper. The proposed imaging method can adaptively
reconstruct the object based on the echo data, and no prior
knowledge of the object was needed. Simulation results with
different SNR indicated the good performance of the pro-
posed side-lobe suppression method. A practical application
processing the real-world data was provided. Experimental

results demonstrated that the side-lobe can be suppressed by
29 dB, which can significantly improve the image quality in
the azimuth direction. Further improvement on the efficiency
of imaging processing will be made to broaden its applica-
tions in the real-time scenario.
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