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ABSTRACT Fault diagnosis of chemical process data becomes one of the most important directions in
research and practice. Conventional fault diagnosis and classification methods first extract features from
the raw process data. Then certain classifiers are adopted to make diagnosis. However, these conventional
methods suffer from the expertise of feature extraction and classifier design. They also lack the adaptive
processing of the dynamic information in raw data. This paper proposes a fault diagnosis method based on
long short-term memory (LSTM) neural network. The novel method can directly classify the raw process
data without specific feature extraction and classifier design. It is also able to adaptively learn the dynamic
information in raw data. First, raw process data are used to train the LSTM neural network until the
cost function of LSTM converges below certain predefined small positive value. In this step, the dynamic
information of raw process data is adaptively learned by LSTM. Then testing data are used to obtain the
diagnosis results of the trained LSTM neural network. The application of LSTM to fault identification and
analysis is evaluated in the Tennessee Eastman benchmark process. Extensive experimental results show
LSTM can better separate different faults and provide more promising fault diagnosis performance.

INDEX TERMS Process monitoring, fault diagnosis, recurrent neural network, long short-term mem-
ory (LSTM) neural network.

I. INTRODUCTION
Monitoring process conditions is crucial to its normal
operation. Over last few years, data-driven statistical pro-
cess monitoring (SPM) has been widely applied to fault
diagnosis for industrial process operations and production
results [1]–[4]. Due to the data-based nature of SPM, it is
relatively convenient to apply to real processes of large
scale comparing to other methods based on theoretical mod-
elling or rigorous derivation of process systems [5]–[9].

MacGregor and Cinar [1] provided latent variable mod-
els which reduced the high dimensional processes into low
dimensional models. Yin et al. [2] provided a comparison
study on different FE algorithms for process monitoring and
fault diagnosis. All of their methods were tested on the
Tennessee Eastman (TE) benchmark process. Feital et al. [5]
considered the multimodal modeling for FE in process mon-
itoring. The process conditions were divided into three com-
ponents describing between-cluster variation, within-cluster

variation, and model residuals. Qin [10] were mainly focused
on the reconstruction- and contribution-based FE methods.
A hierarchical monitoring framework was proposed in [10]
as a way for fault analysis including detectability, recon-
structability and identifiability conditions.

The task of SPM is challenging mainly because of the
‘‘curse of dimensionality’’ problem and the ‘‘data rich but
information poor’’ problem. Many methods have been pro-
posed to embed original process data into a lower dimen-
sional feature space and then performing fault detection or
fault diagnosis in that feature space. Principal component
analysis (PCA) [11], [12], partial least squares (PLS) [13],
independent component analysis (ICA) [14] and linear dis-
criminant analysis (LDA) [15] are the most widely used
feature extraction methods in the fields of fault detection and
fault diagnosis.

Considering the dynamic properties of raw process data,
dynamic principal component analysis (DPCA) [16], [17]
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and dynamic linear discriminant analysis (DLDA) [3], [16]
were adopted. Both of them improved the fault diagnosis
performance by constructing extended vectors through
concatenating current process data and certain number of
previous process data in order to incorporate the dynamic
information of raw data in feature extraction. Other meth-
ods adopted augmented matrices instead of vectors to uti-
lize dynamic information by extending each sample into
a matrix comprising current and past process data within
certain intervals [18]. Both the vector-based augmentation
and matrix-based augmentation may aggravate the ‘‘curse
of dimensionality’’ problem and make the feature extrac-
tion methods unstable [19]. Moreover, the structures of the
augmentations are fixed in advance, i.e. the adoption of the
dynamic information are not adaptively learned from raw
process data.

After feature extraction, different diagnosis or classifica-
tion methods have been developed to determine the root
cause of faults. Fault diagnosis can be viewed as a super-
vised learning task whose target is to classify a new testing
observations to one of the existing classes. Various classi-
fiers such as support vector machines (SVM) [20], Bayesian
discriminant functions [18], neural networks (NNs) [21], and
ANFIS [22] have been applied for fault diagnosis of chemical
processes. Among these classifiers, the neural networks of
multilayer perceptron (MLP) type have received considerable
attention. Numerous studies of fault diagnosis have shown
the simplicity and efficiency of MLP and its variants to
model the extracted features. Nevertheless, the majority of
these works make use of conventional ‘‘feature + classifier’’
strategy, such as ‘‘feature of PCA + ANFIS’’ [22] and ‘‘fea-
ture of ICA + MLP’’ [21]. The reason why the extracted
features are suitable for the following classifiers are not stated
clearly. Moreover, the conventional classifiers used in fault
diagnosis have no relationship with the dynamic information
of chemical process data. For example, Conventional static
neural networks (such as MLP) take each data independently
for training and ignore the correlation information between
different data.

Recently, however, a trend in the deep learning com-
munity has emerged towards an end-to-end manner, which
combines feature extraction and classifier design into one
neural network. The motivation behind this idea is that
the neural network automatically learns both the features
of raw data and the classifier which better suit the fault
diagnosis task and hence lead to improved performance.
In order to deal with the dynamic information of time series,
Recurrent neural network (RNN) [23] architectures such
as long short-term memory (LSTM) neural network and
its variants [24], [25] have exhibited state-of-the-art perfor-
mance on a wide range of complicated sequential problems
including signal processing, speech classification and video
captioning. LSTM can adaptively learn the dynamic infor-
mation of time sequences by non-linear gating units regu-
late the information into and out of the memory cells of
LSTM.

In this paper,We propose a fault diagnosismethod based on
long short-term memory (LSTM) neural network. The main
contributions of this paper are as follows:

1) Contrary to the conventional practises of fault diagno-
sis, where features of raw process data are extracted
individually and then simply fed to a classifier, our
method is trained in an end-to-end manner which pro-
vides a framework to learn the representation of raw
input data and classifier simultaneously.

2) the dynamic information of process data are adaptively
utilized and learned by LSTM. The parameters of acti-
vation functions of different cells in LSTM can be
trained to represent highly correlated features that are
essential for fault diagnosis.

3) In order to reduce the internal covariate shift of
LSTM, batch normalization procedure is adopted in
our method to improve the convergence of LSTM.
Covariate shift is a common problem of deep neural
networks, in which the following layers are continually
affected by the shifting distributions of the previous
layers. Covariate shift may degrades the efficiency of
training and makes LSTM unable to learn effectively.
Batch normalization solves the covariate shift problem
by standardizing the activations going into each layer,
enforcing their means and variances to be invariant to
changes in parameters of other layers. Experimental
results show that our method converges significantly
fast and has good performance.

The application of our LSTM-based fault diagnosis method to
fault identification and analysis is evaluated on the Tennessee
Eastman (TE) benchmark process. Extensive experimental
results show our method can better separate different faults
with our design and provide more promising fault diagnosis
performance.

II. RECURRENT NEURAL NETWORK
Recurrent neural network (RNN) [23], [25], [26] is able to
process sequential data one sample at a time. In this way,
RNN adaptively models dynamic information of sequential
data on multiple scales. The architecture of standard RNN
is presented in Figure 1. The node zt receives input from
the current sample xt as well as the hidden state value of
the hidden layer in the previous state ht−1. Thus RNN is
neural network with loops, adaptively allowing information
to persist long period of time.

Given an input sequence X = [x1, x2, · · · , xT ] , an RNN
defines a sequence of hidden states ht by

ht = ψ (zt) = ψ (Whht−1 +Wxxt + b) (1)

where Wh ∈ Rdh×dh , Wx ∈ Rdh×dx , b ∈ Rdh and the initial
state h0 ∈ Rdh are parameters of RNN. A popular choice of
the activation function ψ (·) is tanh.

From Figure 2, it is easy to find that an RNN can be thought
of as multiple copies of the same network, each passing a
message to a successor.
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FIGURE 1. The architecture of standard recurrent neural network.

FIGURE 2. The feedforward structure of standard recurrent neural
network.

FIGURE 3. The architecture of LSTM.

RNNs are designed for sequential data modelling. How-
ever, training RNNs using stochastic gradient descent (SGD)
is notoriously hard because of the well-known problem of
vanishing/exploding gradients [27]. The exploding gradient
problem is relatively easy to solve by constraint over the norm
of the gradients. On the other hand, the vanishing gradient
problem can be mitigated through architectural variations
such as LSTM, GRU and iRNN/uRNN [25], [27].

III. VANILLA LSTM
A. CONCEPT OF VANILLA LSTM
After refinement and popularization, the variant of LSTM,
vanilla LSTM [24] is widely used in sequential data pro-
cessing. The architecture of the vanilla LSTM is illustrated
in Figure 3.

Vanilla LSTM has this chain like structure like RNN, but
the repeating module is totally different. Instead of having
a single neural network layer, there are four, interacting in a
very special structure. The internal structure of vanilla LSTM
is based on a set of connected cells. Different from simple
RNN which overwrites the cell information directly, each
cell of the vanilla LSTM contains three gates serving as the
controllers for information propagation within the network.
In what follows, we focus on the architecture of the vanilla

TABLE 1. TEP fault modes in 2 cases (RV means Random Variation).

LSTM with recurrent transition given by
zot
zit
zt
zft

 = Whht−1 +Wxxt + b (2)

ct = σ
(
zft
)

� ct−1 + σ
(
zit
)

� tanh (zt) (3)

ht = σ
(
zot
)
� tanh (ct) (4)

where Wh ∈ R4dh×dh , Wx ∈ R4dh×dx , b ∈ R4dh and the
initial states h0 ∈ Rdh , c0 ∈ Rdh are the parameters of
the network. The � operator denotes the Hadamard product
(element-wise multiplication). The σ (·) is the sigmoid func-
tion [25].

Unlike simple RNN, the vanilla LSTM has an additional
memory element ct whose update is approximately linear that
allows the gradient to flow back through time easily. What
is more, different from RNN which overwrites the cell at
every time step, the update of the cell of the vanilla LSTM
is regulated by three gates:

1) The forget gate σ
(
zft
)
controls the extent to which

information is transferred from the previous time step;
2) The input gate σ

(
zit
)
determines the flow of informa-

tion of the current input data xt ;
3) The output gate σ

(
zot
)
controls the information to be

obtained from the cell.
This carefully design allows the vanilla LSTM to robustly
remove or add information during long period of time.

B. BATCH NORMALIZATION
Covariate shift [28] is a common problem in deep neural
networks where the features presented to a network change
in distribution. In order to deal with the covariate shift,
the parameters of the neural networks must be adjusted to
minimize the loss function at hand but also to adapt to the
changing distribution of the features. In deep neural networks,
the changing of the parameters of one layer largely affects the
distribution of all layers following it.

Batch normalization [28] is a recently proposed network
reparametrization procedure to reduce the covariate shift
problem. Batch normalization standardizing the activation
functions using empirical estimates of the mean Ê (h) and
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FIGURE 4. The steps of BN-based vanilla LSTM for fault diagnosis.

FIGURE 5. A diagram of the TEP simulator.

standard deviation ˆVar (h) for each layer. The batch normal-
izing transform is as follows

BN (h; η, ρ) = ρ + η �
h− Ê (h)√
V̂ar (h)+ ε

(5)

where h ∈ Rd is the vector of features to be normalized,
η ∈ Rd , ρ ∈ Rd are parameters that determine the mean and
standard deviation of the normalized features, and ε ∈ R is a
regularization parameter. The division should be understood
to proceed element-wise.

Since the sample mean Ê(h) and sample variance V̂ar (h)
are estimated of the training features of each layer, the
backpropagation algorithm can be derived through these
statistics and preserving the convergence properties of gra-
dient decent.

C. BATCH-NORMALIZATION-BASED VANILLA LSTM
In order to avoid unnecessary redundancy and over fitting,
we set ρ = 0 in our design of batch normalization, and denote
the simplified batch normalization as BN (·; η). We adopt the

FIGURE 6. Autocorrelation charts for different variables.
(a) Autocorrelation chart for the variable of product separator level.
(b) Autocorrelation chart for the variable of A feed (Stream 1).

batch normalization into the vanilla LSTM as follows: zotzitzt
zft

 = BN (Whht−1; ηh)+Wxxt + b (6)

ct = σ
(
zft
)

� ct−1 + σ
(
zit
)

� tanh (zt) (7)

ht = σ
(
zot
)
� tanh (BN (ct; ηc)) (8)

Since the training process data are normalized before train-
ing, we do not perform normalization on the term Wxxt .
In our design, we normalize the recurrent term Whht−1.
Normalizing this term gives the vanilla LSTM better con-
trol over the relative contribution of the terms using the ηh
parameter. In order to preserve the dynamics of LSTM and
maintain the gradient flow through ct , batch normalization is
not performed in the update of ct . In this paper, we set ηh and
ηc all equal 0.9.

For LSTM, outputs can be obtain in each time step, or in
any time steps. There are four types of LSTM, one-to-
one, one-to-many, many-to-many, many-to-one. In this paper,
we use the many-to-one type of LSTM. We compute outputs
after certain time steps (In Figure 3, we compute outputs
every 3 time steps.). The output yt+2 can be obtained by

yt+2 = σ
(
Wyhht+2 + by

)
, (9)

where Wyh ∈ Rdy×dh , by ∈ Rdy .
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FIGURE 7. Comparison of convergence between a baseline LSTM and
BN-based vanilla LSTM on different training sets during training (in the
first 960 training iteration). (a) Comparison of convergence in Case 1.
(b) Comparison of convergence in Case 2. (c) Comparison of convergence
of 21 faults.

During training we estimate the sample mean and sample
variance for each time step. At test time we use these statistics
by averaging the estimates over the training set.

D. LOSS FUNCTION
Let ω1, ω2, · · · , ωC be C classes of fault. In the equa-
tion below, 1 {·} is the indicator function, so that
1 {a true statement} = 1 and 1 {a false statement} = 0.

In this case, dy = C , that is yt+2 =
[
y(1)t+2, y

(2)
t+2, · · · , y

(C)
t+2

]T
∈

FIGURE 8. Visualization of the training samples of Fault 1, 2 and 8 in
Case 1. Sub-Figure (a) and (b) plot the training data on the first two
dimensions of PCA and the first two dimensions of LDA respectively.
Sub-Figure (c) and (d) plot the outputs of the hidden layer of MLP and
those of BN-based LSTM of the training samples, respectively. In this
experiment, we design MLP and BN-based LSTM only with 2 nodes in the
hidden layer, i.e. dh = 2. (a) Visualization plot of DPCA. (b) Visualization
plot of DLDA. (c) Visualization plot of the hidden layer of MLP.
(d) Visualization plot of the hidden layer of BN-based LSTM.

RC . Our loss function will be:

J
(
Wh,Wx ,Wyh,b,by

)
= −

1
T − 2

T−2∑
i=1

C∑
j=1

1
{
xi+2 ∈ ωj

}
ln

y(j)i+2∑C
k=1 y

(k)
i+2

. (10)

In this paper, we use Bengio [29], i.e. adaptive moment
estimation, for mini-batch stochastic-gradient-based opti-
mization of the loss function, based on adaptive estimates of
lower-order moments. For more detail of Adam, please refer
to [25].

E. FAULT DIAGNOSIS BASED ON LSTM
With the proposed batch-normalization-based vanilla LSTM,
the diagnosis of fault data is straightforward. The offlinemod-
eling and onlinemonitoring flow charts are shown in Figure 4.
The procedures of offlinemodeling and onlinemonitoring are
as follows:
• Offline modeling:
1) Collect process data as training data.
2) Normalize each feature of the training data.
3) Train the batch-normalization-based vanilla LSTM

with Adam.
4) Compute the loss J in Equation (10). If J > τ or

the number of iterations l < MaxIter, goto 3. (τ is a
small positive number and MaxIter is the predefined
maximum number of iterations.)

5) Output the parameters for the BN-based vanilla
LSTM.
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FIGURE 9. Diagnosis results of DPCA + SVM, DLDA + SVM, MLP, and
BN-based LSTM in different cases. (a) Diagnosis results of different
methods in Case 1. (b) Diagnosis results of different methods in Case 2.
(c) Diagnosis results of 21 faults by different methods.

• Online monitoring:

1) Sample a new augmented testing data
[
xnewt−2, x

new
t−1, x

new
t
]

(t ≥ 3).
2) Normalize the testing data according to the means and

variances of the training features.
3) Obtain the output ynewt , where ynewt =

[ (
ynewt

)(1),(
ynewt

)(2)
, · · · ,

(
ynewt

)(C) ]T .
4) Classify the testing data to Fault ĉ, where ĉ =

argmaxj
{(
ynewt

)(j)}.

IV. SIMULATION AND DISCUSSION
This section compares the fault classification performance
of DPCA + SVM, DLDA + SVM, MLP and BN-based
vanilla LSTM on the benchmark Tennessee Eastman pro-
cess (TEP). DPCA and DLDA are classical dynamic fea-
ture extraction methods. In DPCA and DLDA, we concate-
nate three samples to form the extended vectors for feature
extraction. After the feature extraction of DPCA and DLDA,
we use SVM as the classifier for fault diagnosis respectively.
For SVM classifier [30], we utilize the SVM program in
scikit-learn [31] with the rbf kernel and set the parameter
γ = 1/df , where df is the number of the extract features
of DPCA or DLDA. For the MLP method, we adopt the feed-
forward neural network with one hidden layer and directly
train this neural network with the raw process data using
sigmoid function as the activation function. The code of our
propsed BN-based vanilla LSTM in PyTorch can be found at
https://github.com/haitaozhao/LSTM_fault_detection.

TEP has been widely used by process monitoring com-
munity as a source of publicly available data for com-
paring different algorithms. The simulated TEP is mainly
based on a practical industrial process in which the kinet-
ics, operation and units have been altered for specific rea-
sons. The data generated by TEP are nonlinear, strong
coupling and dynamic [16], [32]. A flow sheet of TEP
with its implemented control structure is shown in Fig-
ure 5. The MATLAB codes can be downloaded from
http://depts.washington.edu/control/ LARRY/TE / download.
html. There are five major units in TEP: a chemical reactor,
condenser, recycle compressor, vapor/liquid separator, and
stripper. Besides normal data, the simulator of TEP can also
generate 21 different types of faults in order to test process
monitoring algorithms.

A total of 52 variables including 22 continuous process
measurements, 19 compositions and 11 manipulated vari-
ables1 were selected as the monitoring variables in our sim-
ulation. Our first simulation includes 12 programmed fault
modes. We group these 12 fault modes into two cases. The
fault modes in each case are listed in Table 1. Fault modes in
Case 1 are related to composition of feed and flow rate, while
fault modes in Case 2 have relationship with temperature,
480 training samples and 800 testing samples are utilized in
our experiments. Our second simulation takes all 21 faults
for fault diagnosis. More details about TEP can be referred
to [16].

A. DYNAMIC PROBLEM OF TEP
Dynamic problem or serial statistical correlation problem
is common in TEP. Autocorrelation chart is a simple method
to check whether correlations are present in each variable of
the raw data. If significant autocorrelation is shown in the
autocorrelation chart, the dynamic problem should be consid-
ered in fault diagnosis. Autocorrelation is a mathematical tool
for finding cross-correlation which can be considered as the
cross-correlation of a variable with itself at different points in

1the agitation speed was not included because it was not manipulated
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FIGURE 10. Confusion matrices of different methods in Case 1. (a) Confusion matrix of DPCA + SVM
in Case 1. (b) Confusion matrix of DLDA + SVM in Case 1. (c) Confusion matrix of MLP in Case 1.
(d) Confusion matrix of BN-based LSTM in Case 1.

time sequence. Let τt and τt+k , where k = 0, · · · ,K and τt is
a stochastic process. The formula [33] for the auocorrelation
for lag k is

r̂k =
ck
c0

where ck = 1
T−1

∑T−k
t=1 (τt − τ̄ ) (τt − τ̄ ), τ̄ is the mean of

τt (t = 1, 2, · · · ,T ), and c0 is the sample variance of the
time series. The standard error for testing the significance of
a single lag-h autocorrelation, r̂h, is approximately

SEr =

√√√√(1+ 2
h−1∑
i=1

r̂2i

)
/N .

For example, Figure 6 shows the number of time lags for
past and future data points determined from autocorrelation
function (ACF) of two measurements of product separator
level and A feed (Stream 1), respectively. In the figure,
approximate 95% confidence intervals are drawn at ±2SEr
(blue lines). Figure 6(a) shows that the ACF cuts off with no

lag. This behavior indicates that there is no serial correlation
in the measurement of product separator level. This mea-
surement can be considered as independent sampled variable.
As for the measurements of A feed (Stream1), the ACFs in
Figure6(b) show time lags in this measurement.

Conventional methods, such as PCA and LDA, consider
the data as independent sampled variables. In this way, no cor-
relation information are taken into account. DPCA or DLDA
algorithm try to utilize the dynamic information through
extended vectors. However, due to the prefixed structure of
the extension, DPCA or DLDA cannot deal with the different
characteristics of the serial correlations of different variable.
Thanks for the recurrent structure of LSTM and the adaptive
training strategy, our proposed algorithm can take fully con-
sideration of the dynamic information of different variables
for further fault diagnosis.

B. EFFECTS OF BATCH NORMALIZATION
In deep learning, such as LSTM, where the features presented
to a network change in distribution, covariate shift is a com-
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FIGURE 11. Confusion matrices of different methods in Case 2. (a) Confusion matrix of DPCA + SVM
in Case 2. (b) Confusion matrix of DLDA + SVM in Case 2. (c) Confusion matrix of MLP in Case 2.
(d) Confusion matrix of BN-based LSTM in Case 2.

mon problem. Covariate shift may degrades the efficiency of
training and makes LSTM unable to learn effectively. Batch
normalization solves the covariate shift problem by standard-
izing the activations going into each layer, enforcing their
means and variances to be invariant to changes in parameters
of other layers. Batch normalization is a recent proposed
technique to tackle the covariate shift problem and make
LSTM more stable and easier to converge.

In the following experiments, we train conventional LSTM
and BN-based LSTM respectively. In the training, the min-
batch size is set to 30 and 60 epochs of training (total
480/30 × 60 training iterations) are show in Figure 7.
Experimental results in Figure 7 show that BN-based LSTM
converges significantly faster to a baseline LSTM in all three
experiments. It is easy to find that compared with conven-
tional LSTM, the more fault modes we used in training,
the faster the convergence rate of BN-based LSTM is.

Experiments are run on a computer with Inter Core
i7-6700 CPU, 16GB memory and NVIDIA GeForce GTX
1070 GPU. Programming language is Python 3.5 with deep
learning package ‘‘PyTorch’’. Thanks for GPU-accelerated
computing, the total training time of NCA is 12.18 seconds.

C. FAULT CLASSIFICATION AND ANALYSIS
Figure 8(a) and Figure 8(b) shows the visualization results of
the training samples of Fault 1, 2 and 8 in Case 1 on the first
two dimensions of DPCA and DLDA, respectively (Samples
of Fault 6 and Fault 7 in Case 1 are not plotted since they
have no overlapping with any other faults.). Figure 8(c) and
Figure 8(d) shows the outputs of the hidden layers of MLP
and BN-based LSTM, respectively. In this case, the number
of nodes in the hidden layer is set to 2, i.e. dh = 2 for
both MLP and BN-based LSTM. It is easy to find that the
overlapping of samples of different classes are much less in
BN-based LSTM than those by DPCA, DLDA, and MLP.
Figure 8 indicates that the discriminant power in BN-based
LSTM is larger than that in DPCA, DLDA, and MLP. The
visualization intuitively shows that BN-based LSTM should
be more suitable and effective for fault diagnosis.

The diagnosis results of DPCA + SVM, DLDA + SVM,
MLP and BN-based LSTM on the testing data of different
cases are shown in Figure 9. For DPCA, we provide the
performance under different reduced dimensions from 2 to
30. We also provide the performance of MLP and BN-based
LSTM under different numbers of nodes in the hidden layer.
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FIGURE 12. ROC plots of different methods on all 21 faults. (a) ROC plot of DPCA + SVM on
21 faults. (b) ROC plot of DLDA + SVM on 21 faults. (c) ROC plot of MLP on 21 faults. (d) ROC plot
of BN-based LSTM on 21 faults.

In Figure 9, the dimension of MLP and BN-based LSTM is
the number of nodes in the hidden layer. Note that since the
reduced dimension of DLDA can not exceed C − 1 (C is the
number of fault modes.), the diagnosis results of DLDA +
SVM are largely affected by the dimension of the reduced
features. The experimental results show that the proposed
BN-based LSTM method can provide the best performance
of all the methods in all three conditions.

In order to give more detailed analysis of the four tested
methods, we also provides the confusion matrices of DPCA
+ SVM, DLDA+ SVM, MLP, and BN-based LSTM in Fig-
ure 10 and Figure 11 for Case 1 and Case 2. For DPCA,
the reduced dimension is 30, while for DLDA, the reduced
dimension is C − 1 (C is the number of fault modes. For
example, C = 5 in Case 1.). For MLP and BN-based LSTM,
the confusion matrices is obtained under the neural networks
with 30 hidden nodes, respectively. Confusion matrix [34]
takes target and output data into consideration. The target
data are ground truth labels. The output data are the outputs
from the tested method that performs classification. In the
confusion matrix, the rows show the predicted class, and
the columns show the ground truth. The diagonal cells show
where the true class and predicted class match. The off

diagonal cells show instances where the tested algorithm has
made mistakes. The column on the right hand side of the
confusion matrix shows the accuracy for each predicted class,
while the row at the bottom of the confusion matrix shows the
accuracy for each true class. The cell in the bottom right of
the confusion matrix shows the overall accuracy.

From the bottom rows of the confusion matrices
in Figure 10 and Figure 11 we can obtain the performances
of different algorithms on different fault modes and also
obtain the overall accuracies from the bottom right cell of
the confusion matrices. It is easy to find BN-based LSTM
achieves the best overall accuracies both in Case 1 and
Case 2. Moreover, we can find that the classification accu-
racies are largely varied in different fault modes. In Case 2,
DPCA + SVM cannot effectively classify Fault 5 and the
classification accuracy is 54.4%. However, DLDA + SVM,
MLP, and BN-based LSTM can identify this fault with
much higher recognition rates of 95.2%, 95.8%, and 98.7%,
respectively.

Figure 11 also shows both Fault 3 and Fault 9 in Case 2 are
hard to diagnosis for all four algorithms. DPCA + SVM and
DLDA + SVM can not classify these two faults, the accu-
racies are all below 50%. MLP has 202 samples of Fault 3
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misclassified to Fault 9 and 172 samples of Fault 9 misclas-
sified to Fault 3. While BN-based LSTM has 118 samples of
Fault 3 misclassified to Fault 9 and 167 samples of Fault 9
misclassified to Fault 3. According to Table 1, both Fault 3
and Fault 9 are related to D feed temperature (Stream 2).
The only difference is that the type of Fault 3 is step noise
while Fault 9 is random variation. It means these two fault
modes are easy to mixed up and make the diagnosis hard to
perform [16]. Our experimental results also confirm this point
of view.

For the experiments on all 21 faults, due to the limitation
of space, the receiver operating characteristic (ROC) [34]
plots are drawn in Figure 12 instead of providing confusion
matrices. ROC is a metric often used to check the quality of a
method on each fault mode. For each fault mode, ROC applies
different threshold values across the interval [0,1] to outputs.
For each threshold, two values are calculated, the True Pos-
itive Ratio (TPR) (the number of outputs greater or equal
to the threshold, divided by the number of samples in this
fault mode), and the False Positive Ratio (FPR) (the number
of outputs less than the threshold, divided by the number
of samples in other fault modes). ROC curves tend to go
from the bottom left corner to the top right corner of the
box. The top left corner of the ROC box is the point where
TPR = 100% and FPR = 0%. This point can be con-
sidered as a perfect fault diagnosis. The closer the ROC
curve comes to the top left corner, the better the diagnosis is
overall. The closer the curve gets to the centre grey diagonal
line, the worse the diagnosis. Figure 12 shows that, although
DPCA + SVM, DLDA + SVM, MLP, and BN-based LSTM
may have different diagnosis performances on different fault
modes, the overall performance of BN-based LSTM are the
best one.

We summarize the studies of different cases below:
1) Due to the design and utilization of batch normaliza-

tion, our proposed BN-based LSTM converges much
faster than conventional LSTM for TEP data.

2) Different from DPCA and DLDA, which concatenate
prefixed number of samples to incorporate dynamic
information, BN-based LSTM can adaptively learn the
dynamic information of different variables through dif-
ferent gates in the cells of LSTM. Because of the
adaptive learning ability, BN-based LSTM becomes a
more powerful tool for fault diagnosis.

3) Although no single algorithm gives optimal perfor-
mance for all fault modes consisting of diverse num-
bers of fault conditions. BN-based LSTM outperforms
DPCA + SVM, DLDA + SVM and MLP with regard
to the best performance and emerges as the clear
winner.

V. CONCLUSION
In this paper, we propose BN-based LSTM neural network
for fault diagnosis. Unlike the traditional methods which
take conventional ‘‘feature + classifier’’ strategy for fault
classification, our method is trained in an end-to-end manner

which provides a framework to learn the representation of
raw input data and classifier simultaneously. Moreover, due
to the usage of LSTM, the dynamic information of process
data can be adaptively utilized. In order to reduce the internal
covariate shift of LSTM and accelerate the convergence of
LSTM, batch normalization is designed and used in LSTM
neural network to achieve fault diagnosis tasks.

We compare BN-based LSTM with several other algo-
rithms, such as DPCA + SVM, LDA + SVM, and MLP,
on TEP. Based on the experiments, it is clear that BN-based
LSTM outperforms DPCA + SVM, DLDA + SVM, and
MLP for fault diagnosis performance. BN-based LSTM can
be considered as an alternative to the prevalent data driven
fault diagnosis techniques. In the future work, BN-based
LSTM can be extended to deal with batch process monitoring
problems.
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