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ABSTRACT This paper addresses the model predictive control for positive systems with uncertainty and
exogenous disturbance input. By utilizing a linear Lyapunov function, a sequence of model predictive
controllers for positive systems is designed based on multi-step control sets guaranteeing robust stability
with mixed performances. A sequence of cone sets is chosen as the invariant sets of the model predictive
control. With the above idea, a model predictive control algorithm is established to compute the optimal
value of the mixed performances. All conditions are in terms of linear programming to cope with large-
scale computation with low computation burden. Finally, a numerical example is provided to verify the
effectiveness of the proposed design.

INDEX TERMS Model predictive control, positive systems, multi-step control strategy, uncertainty.

I. INTRODUCTION
The past two decades have witnessed an increasing interest
in positive systems [1]–[4] since there are lots of real control
systems that can be modeled as positive systems. In [5],
a communication network that employs drop-tail queue-
ing and additive-increase multiplicative-decrease congestion
control algorithms was described as positive system. The
problem of establishing an aggregate production plan for a
manufacturing plant was considered using a positive system
based approach [6]. The routing control problem of dynamic
continuous-time networks in each node is described by a pos-
itive system [7]. On the other hand, there have been some the-
ory results on positive systems [8]–[12]. In particular, control
synthesis of positive systems has attracted a lot of attention.
Linear programmingwas used to design the controller and the
observer of positive systems in [13] and [14]. A constrained
controller based on linear programming for positive system
with delays was constructed in [15]. In [16], stability analysis
and control synthesis of positive systems were considered
using linear matrix inequalities. A distributed controller [17]
was developed for positive systems using a linear Lyapunov
function. As we all know, an optimal control design is
always desired to improve system performance and there have
been various methods dealing with different system perfor-
mance indexes. L1- and L∞-gain performances based robust

stability and stabilization [18] were explored in terms to lin-
ear programming. Static output-feedback and state-feedback
stabilization with optimal L1/`1-gain for positive systems
were solved in [19] and [20], respectively. Control synthesis
with L1-gain performance was addressed for interconnected
positive systems [21]. H2 suboptimal controllers [22] using
linear matrix inequalities were developed for positive sys-
tems. An optimal quadratic complementary controller [23]
was presented to solve the servomechanism problem of a
multivariable positive system.

It is well known that model predictive control (MPC) is
a popular control technique [24]–[29]. An MPC controller
is designed at each sampling time instant by solving an
optimization problem over a prescribed future time instants
and the optimization problem is resolved at the next time
instant to realize the receding horizon strategy. This prop-
erty enables MPC to possess a powerful ability to explicitly
deal with the constrained problems. In [30], a linear matrix
inequalities-based MPC framework was used to design the
state-feedback control law that minimizes an upper bound
on the robust performance objective subject to input and
output constraints. Following the MPC framework [30], the
literature [31] and [32] constructed a parameter-dependent
Lyapunov function based MPC design and an efficient MPC
was also proposed in [33]–[36] to reduce the computation
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burden [30]. Using mixed H2/H∞ design method, the MPC
was also extended for the systems with exogenous dis-
turbance input [36]–[38]. In general, the control set used
in [30]–[37] is called the single step control set. A new multi-
step control set was presented in [39] for constrained polyhe-
dral uncertain systems, where the designed robust controller
can achieve a large feasible region and high control perfor-
mance compared with the single step control set approach.

In [40], the MPC with a single step control set was
proposed for interval and polytopic positive systems. The lit-
erature [41] considered `1-gain based MPC for nominal pos-
itive systems with exogenous disturbance input. This paper
is a continuation of the works in [40] and [41]. The paper
investigates the MPC for interval/polytopic positive systems
with exogenous input. Compared with existing literature,
the contribution of the paper lies in the facts: (i) the designed
MPC controller is general without sign and rank constraints;
(ii) mixed performance indexes based robust stabilization
for interval/polytopic positive systems is solved; and (iii) a
sequence of cone invariant sets based multi-stepMPC control
strategy is constructed for positive systems. The remainder
of the paper is organized as follows. Section 2 gives the
problem formulation and some preliminaries. In Section 3,
themain results are addressed. Section 4 provides a numerical
example. Section 5 concludes the paper.
Notations: The symbols <,<n,<n×n represent the sets of

real numbers, n-dimensional vectors, and n × n matrices,
respectively. Let N and N+ denote the nonnegative and
positive integers, respectively. The symbol co stands for the
convex hull. A matrix I is the identity matrix with compatible
dimensions. For a vector v, the inequality v � 0 (v � 0)
means that all of its components vi ≥ 0 (vi > 0). For a
matrix A, the inequality A � 0 (A � 0) means that all
of its ith row jth column components aij ≥ 0 (aij > 0).
Then, the inequality A � B (A � B) means that aij ≥
bij (aij > bij), where aij and bij are the ith row jth column
components of matrices A and B, respectively. Similarly,
the inequalities v � 0 (v ≺ 0),A � 0 (A ≺ 0), and
A � B (A ≺ B) can be defined. The vector set <n+ consists
of nonnegative nonzero vectors. Set 1n = (1, . . . , 1︸ ︷︷ ︸

n

)T and

1(i)n = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

)T . The Euclidean norm and

1-norm of a vector x ∈ <n are defined by ‖x‖2 =
2
√
6n
i=1x

2
i and ‖x‖1 = 6n

i=1|xi|. Given a discrete-time
function w(k) : N → <

n, its `1 norm is defined as
‖w(k)‖`1 =

∑
∞

k=0 ‖w(k)‖1. Furthermore, we define the vec-
tor space `1[0,∞) , {w(k)|w(k) is measureble in [0,∞) and
‖w(k)‖`1 <∞}.

II. PROBLEM STATEMENT
Consider the linear time-varying system:

x(k + 1) = A(k)x(k)+ B(k)u(k)+ D(k)w(k),

z(k) = C(k)x(k)+ E(k)w(k), (1)

where x(k) ∈ <n, z(k) ∈ <s, u(k) ∈ <m,w(k) ∈ <r+
represent the system state, the measured output, the con-
trol input, and the exogenous disturbance input, respectively.
The system matrices

∑
: [A(k)|B(k)|C(k)|D(k)|E(k)] are

time-varying and hold compatible dimensions. In the paper,
the system matrices are assumed to locate into two classed
of uncertain sets: interval uncertain set (2), as shown at the
top of the next page, and polytope uncertain set (3), as shown
at the top of the next page, ∀k ∈ N, where A � 0,B � 0,
C � 0,D � 0,E � 0 and Ai � 0,Bi � 0,Ci � 0,Di � 0,
Ei � 0 ∀i ∈ {1, 2, . . . , l}. The exogenous disturbance input
w(k) satisfies:

w(k)T 1r ≤ η1,
∑∞

k=0
w(k)T 1r ≤ η2, (4)

where η1 > 0, η2 > 0 are given constants.
System (1) with uncertain sets �1 and �2 are called

interval and polytope systems, respectively. In [39], it has
been verified that the two classes of uncertain systems are
suitable for describing time-varying system (1), especially
time-varying positive system (1). The objective of the paper is
to design a sequence of control laws u(k+i|k) = Kix(k+i|k),
i = 0, 1, . . . ,N such that the system (1) is robustly stable
with `1-gain performance:

‖z(k)‖`1 ≤ γ1‖w(k)‖`1 (5)

with x(0) = 0 and 1-norm based bounded output:

‖z(k)‖1 ≤ γ2, (6)

where x(k + i|k), u(k + i|k) are the state and control law
predicted at time instant k , N ∈ N+ is the predicted
step, and γ1 > 0, γ2 > 0. The value of γ1 repre-
sents the disturbance attenuation level from the disturbance
w(k) to the output z(k). Minimizing the value of γ1 will
increase the ability to attenuate the disturbance. From (6), the
1-morm ‖z(k)‖1 shows the dynamic performance from the
initial state to the output. Then, minimizing the value of γ2
will obtain better system performance. In view of the afore-
mentioned facts, the formulas (5) and (6) are called mixed
performance indexes of MPC for system (1). In [36]–[38],
mixed H∞/H2 performance indexes were used for the MPC
design of general systems. Considering the positivity prop-
erty of positive systems, we introduce the mixed performance
indexes (5) and (6), which are natural extensions of mixed
H∞/H2 performance.
The system state x(k) and the controller gain Ki = K−i +

K+i proposed in later sections are subject to the constraints:

x(k)T 1n ≤ δ, (7a)

K+Ti 1m − K−Ti 1m � θ, (7b)

where K−i � 0, K+i � 0, and δ > 0, θ � 0, θ ∈ <n

are given. We will explain why the condition (7) is used
in Section III(C).

In the following, we introduce some preliminaries of pos-
itive systems.
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�1 , {
∑∣∣A � A(k) � A,B � B(k) � B,C � C(k) � C,D � D(k) � D,E � E(k) � E} (2)

�2 , {
∑∣∣∑ ∈ co{[A1|B1|C1|D1|E1], [A1|B1|C1|D1|E1], . . . , [Al |Bl |Cl |Dl |El], },∀k ∈ N, l ∈ N+} (3)

Definition 1 [1], [2]: A discrete-time system

x(k + 1) = Ax(k)+ Bu(k)+ Dw(k),

z(k) = Cx(k)+ Ew(k), (8)

is positive if the state x(k) � 0 and the output z(k) � 0
hold ∀u(k) � 0,∀w(k) � 0 under any nonnegative initial
condition x(k0) � 0.
Lemma 1 [1], [2]: System (8) is positive if and only

if A � 0, B � 0, C � 0, D � 0, E � 0.
For interval system (1), it can be derived that A(k) � 0,

B(k) � 0,C(k) � 0,D(k) � 0,E(k) � 0,∀k ∈ N using the
interval uncertain set (2). For polytope system (1), we have
[A(k)|B(k)|C(k)|D(k)|E(k)]=

∑l
i=1 λi[Ai|Bi|Ci|Di|Ei] � 0,∑l

i=1 λi = 1, λi ≥ 0 by the polytope uncertain set (3). Then,
we can obtain that A(k) � 0, B(k) � 0, C(k) � 0, D(k) � 0,
E(k) � 0, ∀k ∈∈ N. Finally, interval and polytope system (1)
are positive by Lemma 1.
Lemma 2 [1], [2]:LetA � 0, then the following statements

are equivalent:
(a) The matrix A is Schur;
(b) There is a vector v � 0 in <n such that (A− I )v ≺ 0.
(c) There is a vector ν � 0 in <n such that (A− I )T ν ≺ 0.

III. MAIN RESULTS
This section will present the MPC design for inter-
val/polytope systems described by (1) via three steps: firstly,
the MPC controller is designed; secondly, a sequence of cone
invariant sets based on the multi-step control approach is
constructed; finally, the robust stability of the considered
systems is achieved.

A. MPC CONTROLLER DESIGN
Theorem 1: (a) If there exist constants h̄ > 1, ςi > 0, γ2 > 0
and vectors v(i) � 0, v(i) ∈ <n, ξ (i) ∈ <n, ξ ≺ 0, ξ ∈ <n,
ζ (i) � 0, ζ (i) ∈ <n, ζ ∈ <n such that

h̄A1TmB
T v(i+1) + h̄B

∑m

ı=1
1(ı)m ξ

(ı)T

+B
∑m

ı=1
1(ı)m ζ

(ı)T
� 0, (9a)

A
T
v(i+1) + ξ + ζ − v(i) + C

T
1s ≺ 0, (9b)

D
T
v(i+1) − ςi1r + E

T
1s ≺ 0, (9c)

1TmB
T
v(i+1) ≤ h̄1TmB

T v(i+1), (9d)

ξ (ı) � ξ, ζ (ı) � ζ ,

ı = 1, 2, . . . ,m, (9e)

ςi ≥ ςi+1, (9f)

and

x(0)T v(0) + ς0η2 ≤ γ2 (10)

hold for i = 0, 1, . . . ,N − 1 and v(i) = v(N ), ςi = ςN for
i ≥ N , then under the MPC control law

u(k + i|k) = Kix(k + i|k)

= (K−i + K
+

i )x(k + i|k) (11)

with

K−i =

∑m
ı=1 1

(ı)
m ξ

(ı)T

1TmB
T v(i+1)

, K+i =

∑m
ı=1 1

(ı)
m ζ

(ı)T

h̄1TmB
T v(i+1)

, (12)

interval system (1) is positive and satisfies the mixed perfor-
mance indexes (5) and (6), where x(0) is the initial condition.

(b) If there exist constants h̄ > 1, ςi > 0 and vectors
v(i) � 0, v(i) ∈ <n, ξ (i) ∈ <n, ξ ≺ 0, ξ ∈ <n, ζ (i) � 0, ζ (i) ∈
<
n, ζ ∈ <n such that

h̄Aj1TmB̂
T v(i+1) + h̄Bj

∑m

ı=1
1(ı)m ξ

(ı)T

+Bj
∑m

ı=1
1(ı)m ζ

(ı)T
� 0, (13a)

ATj v
(i+1)
+ ξ + ζ − v(i) + CT

j 1s ≺ 0, (13b)

DTj v
(i+1)
− ςi1r + ETj 1s ≺ 0, (13c)

1TmB
T
j v

(i+1)
≤ h̄1TmB̂

T v(i+1), (13d)

ξ (ı) � ξ, ζ (ı) � ζ ,

ı = 1, 2, . . . ,m, (13e)

ςi ≥ ςi+1, (13f)

and (10) hold for j = 1, 2, . . . , l, i = 0, 1, . . . ,N − 1 and
v(i) = v(N ), ςi = ςN for i ≥ N , then under the MPC control
law

u(k + i|k) = Kix(k + i|k)

= (K−i + K
+

i )x(k + i|k) (14)

with

K−i =

∑m
ı=1 1

(ı)
m ξ

(ı)T

1TmB̂T v(i+1)
, K+i =

∑m
ı=1 1

(ı)
m ζ

(ı)T

h̄1TmB̂T v(i+1)
, (15)

polytopic system (1) is positive and satisfies the mixed per-
formance indexes (5) and (6), where

B̂ = [̂bι ], Bj = [b(j)ι ], b̂ι = min
j=1,2,...,l

{b(j)ι }, (16)

for ι = 1, 2, . . . , n,  = 1, 2, . . . ,m.
Proof: (a) First, we prove that interval system (1) is posi-

tive. Since h̄1Tn λ > 0, we have

A+ B

∑m
ı=1 1

(ı)
m ξ

(ı)T

1TmB
T v(i+1)

+ B

∑m
ı=1 1

(ı)
m ζ

(ı)T

h̄1TmB
T v(i+1)

� 0. (17)

From (12), it is shown that A+BK−i +BK
+

i � 0 withK−i ≺ 0
and K+i � 0. Then, A(k)+ B(k)Ki � A+ BK

−

i + BK
+

i � 0.
By Lemma 1, interval system (1) is positive, which means
that x(k) � 0,∀k ∈ N.
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Next, we prove that mixed performances (5) and (6) are
satisfied. Choose a linear Lyapunov function:

V (k + i) = x(k + i|k)T v(i) + ςi
∑∞

n=i
w(k + n)T 1r . (18)

Then

V (k + i+ 1)− V (k + i) = x(k + i|k)T
(
A(k + i)T v(i+1)

+KT
i B(k + i)

T v(i+1) − v(i)
)

+w(k + i)TD(k + i)T v(i+1)

+ ςi+1
∑∞

n=i+1
w(n)T 1r

− ςi
∑∞

n=i
w(n)T 1r . (19)

Owing to (2) and K−i ≺ 0,K+i � 0, we obtain

KT
i B(k + i)

T v(i+1) � K−Ti BT v(i+1) + K+Ti B
T
v(i+1)

=

∑m
ı=1 ξ

(ı)1(ı)Tm BT v(i+1)

1TmB
T v(i+1)

+

∑m
ı=1 ζ

(ı)1(ı)Tm B
T
v(i+1)

h̄1TmB
T v(i+1)

. (20)

By (9d) and (9e), (20) is transformed into

KT
i B(k + i)

T v(i+1) �
ξ
∑m

ı=1 1
(ı)T
m BT v(i+1)

1TmB
T v(i+1)

+
ζ
∑m

ı=1 1
(ı)T
m B

T
v(i+1)

h̄1TmB
T v(i+1)

=
ξ1TmB

T v(i+1)

1TmB
T v(i+1)

+
ζ1TmB

T
v(i+1)

h̄1TmB
T v(i+1)

= ξ +
ζ1TmB

T
v(i+1)

h̄1TmB
T v(i+1)

� ξ + ζ . (21)

Combining (2), (9b), and (21) yields

A(k + i)T v(i+1) + KT
i B(k + i)

T v(i+1) − v(i)

� A
T
v(i+1) + ξ + ζ − v(i) � −C

T
1s. (22)

By (9f) and (22), (19) becomes

V (k + i+ 1)− V (k + i)

≤ −x(k + i|k)TC
T
1s + w(k + i)T

×D(k + i)T v(i+1)

+ ςi
∑∞

n=i+1
w(k + n)T 1r

− ςi
∑∞

n=i
w(k + n)T 1r

≤ −x(k + i|k)TC
T
1s

+w(k + i)TD(k + i)T v(i+1)

− ςiw(k + i)T 1r
≤ −x(k + i|k)TC

T
1s

+w(k + i)T (D
T
v(i+1) − ςi1r ), (23)

Substituting (9c) into (23) gives

V (k + i+ 1)− V (k + i)

≤ −x(k + i|k)TC
T
1s − w(k + i)TE

T
1s

≤ −x(k + i|k)TC(k + i)T 1s
−w(k + i)TE(k + i)T 1s

= −‖z(k + i)‖1. (24)

Summing both sides of (24) from i = 0 to∞ yields

V (∞)− V (k) ≤ −
∑∞

i=0
‖z(k + i)‖1. (25)

Let k = 0, we have∑∞

i=0
‖z(i)‖1 ≤ V (0)− V (∞) ≤ V (0) (26)

owing to the fact V (∞) ≥ 0. Thus, we get
∑
∞

i=0 ‖z(i)‖1 ≤
ς0
∑
∞

i=0 ‖w(i)‖1 when x(0) = 0. This reveals that the perfor-
mance (5) is satisfied as long as one chooses γ1 = ς0.

Noting the condition (4), then∑∞

i=0
‖z(i)‖1 ≤ V (0) = x(0)T v(0) + ς0

∑∞

n=0
w(n)T 1r

≤ x(0)T v(0) + ς0η2. (27)

Thus, the performance (6) is satisfied as long as (10) holds.
(b) We first prove that polytopic system (1) is positive.

Under the control law (14), the resulting closed-loop poly-
topic system (1) with the control law (14) is

x(k + i+ 1) =
(
A(k + i)+ B(k + i)Ki

)
x(k + i|k)

+D(k + i)w(k + i)

=

∑l

j=1
λj(Aj + BjKi)x(k + i|k)

+

∑l

j=1
λjDjw(k + i), (28)

where
∑l

j=1 λj = 1, λj ≥ 0. By (13a) and (16), we obtain

Aj+Bj
∑m

ı=1 1
(ı)
m ξ

(ı)T

1TmB̂T v(i+1)
+Bj

∑m
ı=1 1

(ı)
m ζ

(ı)T

h̄1TmB̂T v(i+1)
� 0.Using (14) and (15)

leads to Aj + BjKi � 0. Then, A(k + i) + B(k + i)Ki � 0.
By (3), it follows that D(k + i) � 0. Therefore, the closed-
loop system is positive by Lemma 1.

By (16) and (13d), we have
1TmB

T
j v

(i+1)

1TmB̂T v(i+1)
≥ 1 and

1TmB
T
j v

(i+1)

h̄1TmB̂T v(i+1)
≤ 1. From (13e), (14), and (15), we deduce

KT
i B

T
j v

(i+1)
�
ξ1TmB

T
j v

(i+1)

1TmB̂T v(i+1)
+
ζ1TmB

T
j v

(i+1)

h̄1TmB̂T v(i+1)

� ξ + ζ . (29)

Choose a linear Lyapunov function candidate as (18), then

V (k + i+ 1)− V (k + i)

= x(k + i|k)T
∑l

j=1
λj
(
ATj v

(i+1)
+ KT

i B
T
j v

(i+1)
− v(i)

)
+w(k + i)T

∑l

j=1
λjDTj v

(i+1)

+ ςi+1
∑∞

n=i+1
w(n)T 1r

− ςi
∑∞

n=i
w(n)T 1r
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≤ x(k + i|k)T
∑l

j=1
λj
(
ATj v

(i+1)
+ KT

i B
T
j v

(i+1)
− v(i)

)
+w(k + i)T

∑l

j=1
λj
(
DTj v

(i+1)
− ςi1r

)
. (30)

from (3) and (13f), where
∑l

j=1 λj = 1, λj ≥ 0. Substituting
(29) into (30) yields

V (k + i+ 1)− V (k + i)

≤ x(k + i|k)T
∑l

j=1
λj
(
ATj v

(i+1)
+ ξ + ζ − v(i)

)
+w(k + i)T

∑l

j=1
λj
(
DTj v

(i+1)
− ςi1r

)
. (31)

By (13b) and (13c), (30) is transformed into

V (k + i+ 1)− V (k + i) ≤ −x(k + i|k)T
∑l

j=1
λjCT

j 1s

−w(k + i)T
∑l

j=1
λjETj 1s

= −x(k + i|k)TC(k + i)T 1s
−w(k + i)TE(k + i)T 1s

= −‖z(k + i)‖1. (32)

The rest of the proof can be given using a similar method
to (24)–(27) and is omitted. �
Remark 1: Given h̄, the conditions (9) and (13) are linear

programming problems, which are solvable by using the
Linprog toolbox in Matlab. It is necessary to point out that
the given value h̄ does not increase the conservativeness of
the MPC design in Theorem 1. From (9d), it is easy to choose

the value h̄ ≥ max
i=1,2,...,n,
j=1,2,...,m

{
bij
bij
}, where bij and bij are the ith

row jth column element of the matrices B and B, respectively.
Similarly, the value h̄ in (13d) can be chosen.
Remark 2: In [36]–[38], the MPC based on mixed H2/H∞

performances was investigated for general systems (non-
positive). In [40], the MPC for nominal positive systems,
i.e., system (1) without interval and polytopic uncertainties,
was proposed. Theorem 1 in the paper develops the mixed
H2/H∞ MPC control approach to positive systems with
mixed performances (5) and (6). Theorem 1 further solves
the MPC of interval/polytopic system (1).
Remark 3: In [40], the MPC controller gain rank is 1.

In practice, there always exist some control systems that
cannot be stabilized using the controller with the gain matrix
rank 1. Additionally, the MPC is essentially an optimiza-
tion problem. It is not suitable to use a restricted control
law to achieve the optimal system performances. Theo-
rem 1 removes the rank constraint in [40].
Remark 4: In Theorem 1, the open-loop systems are

required to be positive. It is necessary to point out that Theo-
rem 1 can be extended to general systems (non-positive). It is
a complex but straight process. We do not repeat it here.

B. INVARIANT SET
In Theorem 1, the multi-step control approach is employed
for the MPC controller design of positive systems. The multi-
step control approach releases the conservativeness of the

single step control based MPC. In the multi-step control
design, the state stays in a sequence of control sets. Under
the MPC control law, the state is steered from a control set
to another control set and finally stays in a classic invariant
set. For the MPC of general systems, the ellipsoidal set is
usually chosen as the invariant set. Owing to the speciality
of positive systems, the ellipsoidal set is not very suitable for
the invariant set of positive systems. In [39] and [40], a cone
set (or a sequence of cone sets) is verified to be more suitable
for the MPC of positive systems. Here, we further introduce a
sequence of cone sets as the control invariant set of the MPC.
Theorem 2: (a) If there exist constants 0 < σ < 1, τ > 0,

ρi > 0 and vectors v(i) � 0, v(i) ∈ <n, ξ (i) ∈ <n, ξ ≺ 0,
ξ ∈ <n, ζ (i) � 0, ζ (i) ∈ <n, ζ ∈ <n such that

A
T
v(i+1) + ξ + ζ − σv(i) ≺ 0, (33a)

D
T
v(i+1) − τ1r ≺ 0, (33b)

σρi + η1τ ≤ ρi+1, (33c)

ρi+1 ≤ ρi, (33d)

x(k)T v(0) ≤ ρ0, (33e)

hold for i = 0, 1, . . . ,N − 1, and v(i) = v(N ) for i > N ,
then, under the MPC control law (11) with (12), the sets
0i = {x|xT v(i) ≤ ρi} are the multi-step control sets of the
MPC for interval system (1).

(b) If there exist constants 0 < σ < 1, τ > 0, ρi > 0
and vectors v(i) � 0, v(i) ∈ <n, ξ (i) ∈ <n, ξ ≺ 0, ξ ∈ <n,
ζ (i) � 0, ζ (i) ∈ <n, ζ ∈ <n such that

ATj v
(i+1)
+ ξ + ζ − σv(i) ≺ 0, (34a)

DTj v
(i+1)
− τ1r ≺ 0, (34b)

σρi + η1τ ≤ ρi+1, (34c)

ρi+1 ≤ ρi, (34d)

x(k)T v(0) ≤ ρ0, (34e)

hold for i = 0, 1, . . . ,N − 1, and v(i) = v(N ) for i > N ,
then, under the MPC control law (14) with (15), the sets
0i = {x|xT v(i) ≤ ρi} are the multi-step control sets of the
MPC for polytopic system (1).
Proof: (a) The proof is given via the induction method.

When i = 0, x(k) ∈ 00 by (33e). Assume x(k + i) ∈ 0i.
Combining (2) and the proofs in (20) and (21), we have

x(k + i+ 1)T v(i+1) = x(k + i)T (A(k + i)T v(i+1)

+K−Ti B(k + i)T v(i+1)

+K+Ti B(k + i)T v(i+1))

+w(k + i)TD(k + i)T v(i+1)

≤ x(k + i)T (A
T
v(i+1) + ξ + ζ )

+w(k + i)TDv(i+1). (35)

By (33a) and (33b), (35) is transformed into

x(k + i+ 1)T v(i+1) ≤ σx(k + i)T v(i) + τw(k + i)T 1r . (36)

By (4), we obtain

x(k + i+ 1)T v(i+1) ≤ σρi + τη1. (37)
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Substituting (33c) into (37) yields x(k+ i+1)T v(i+1) ≤ ρi+1,
which means that x(k + i+ 1) ∈ 0i+1.
(b) By using a similar method in (a), we have

x(k + i+ 1)T v(i+1) = x(k + i)T (A(k + i)T v(i+1)

+K−Ti B(k + i)T v(i+1)

+K+Ti B(k + i)T v(i+1))

+w(k + i)TD(k + i)T v(i+1)

≤ x(k + i)T
∑l

j=1
λj(ATj v

(i+1)

+K−Ti BTj v
(i+1)
+ K+Ti BTj v

(i+1))

+w(k + i)T
∑l

j=1
λjDTj v

(i+1)

≤ x(k + i)T
∑l

j=1
λj(ATj v

(i+1)
+ ξ + ζ )

+ τw(k + i)T
∑l

j=1
λj1r

≤ σx(k + i)T
∑l

j=1
λjv(i)

+ τw(k + i)T
∑l

j=1
λj1r

≤ σx(k + i)T v(i) + τη1
≤ σρi + τη1

≤ ρi+1 (38)

from (34a)-(34d) and the proof in (29). This completes the
proof. �

In [40], the multi-step control setsϒi = {x|xT v(i) ≤ ρ} are
used. Theorem 2 in the paper constructs improved multi-step
control sets 0i by introducing an additional condition (33d)
(or, (34d)). Thus, a series of free variables ρi is added to the
recursive conditions. These variables release the conserva-
tiveness in ϒi. By (33d) or (34d), we also have 0i ⊆ ϒi for
each fixed i.
Remark 5: Take the conditions (9) and (33) into account.

Assume that the conditions (9b) and (9c) hold. Then the con-
ditions (33a) and (33b) must hold if one chooses arbitrarily
0 < σ < 1 and τ = ςN . This implies that the conditions (33a)
and (33b) can be removed. Thus, the recursive condition (33)
is easier to be computed. The objective of adding the condi-
tions (33a) and (33b) is to increase the feasibility of the recur-
sive condition (33) by introducing some more free variables.
A similar issue exists in the conditions (13) and (34).

C. CONSTRAINT HANDLING
In this subsection, we will consider how to handle the con-
straint (7). First, it is necessary to explain why the con-
straint (7) is used. In the classical MPC literature [30]–[39],
the constraint condition is based on quadratic forms
xTRx ≤ %1 and uTQu ≤ %2, where R and Q are positive defi-
nite matrices and %1 > 0, %2 > 0. On one hand, the quadratic
forms describe the constraints on ‖x‖2 and ‖u‖2. On the other
hand, the quadratic forms are consistent with the quadratic
performance index used for the MPC of general systems.
Based on the special feature of positive systems, we employ

the linear performance indexes (5) and (6). Naturally, we
use (7) to describe the constraints on states and control inputs.
The condition (7a) can be rewritten as ‖x‖1 ≤ δ, which
is consistent with the classic quadratic constraint condition
by the equivalence of norms. For the constraint on u(k),
we have ‖u(k)‖1 = ‖K

−

i x(k) + K+i x(k)‖1 ≤ (‖K−i ‖1 +
‖K+i ‖1)‖x(k)‖1. Therefore, the bound of ‖u(k)‖1|| can be
obtained as long as the bounds of ‖K−i ‖1 + ‖K

+

i ‖1 and
‖x(k)‖1 are given. The condition (7a) gives the bound of
‖x(k)‖1. This is why the controller gain constraint condi-
tion (7b) is utilized to describe the constraint on the control
input.
Theorem 3: (a) If there exist a constant ε > 0 and a vector

ξ ≺ 0, ξ ∈ <n such that

v(i) � ε1n, (39a)

ρi ≤ εδ, (39b)

mh̄ζ − mξ � h̄θ1TmB
T v(i+1), (39c)

ξ � ξ (ı), ı = 1, 2, . . . ,m, (39d)

hold for i = 0, 1, . . . ,N − 1, and v(i) = v(N ) for i > N , then,
under the MPC control law (11) with (12), the constraint (7)
is satisfied for interval system (1), where m is the dimension
of u(k).
(b) If there exist a constant ε > 0 and a vector ξ ≺ 0,

ξ ∈ <n such that

v(i) � ε1n, (40a)

ρi ≤ εδ, (40b)

mh̄ζ − mξ � h̄θ1TmB̂
T v(i+1), (40c)

ξ � ξ (ı), ı = 1, 2, . . . ,m, (40d)

hold for i = 0, 1, . . . ,N − 1, and v(i) = v(N ) for i > N , then,
under the MPC control law (14) with (15), the constraint (7)
is satisfied for polytopic system (1), wherem is the dimension
of u(k).
Proof: (a) By (39a), (39b), and Theorem 2, we have

εx(k + i)T 1n ≤ x(k + i)T v(i) ≤ ρi ≤ εδ, which ensures
the validity of the condition (7a). Combining (12), (39c), and
(39d) gives

K+Ti 1m − K−Ti 1m =
∑m

ı=1 ζ
(ı)1(ı)Tm

1TmB
T v(i+1)

1m−
∑m

ı=1 ξ
(ı)1(ı)Tm

h̄1TmB
T v(i+1)

1m

� ζ

∑m
ı=1 1

(ı)T
m

1TmB
T v(i+1)

1m − ξ
∑m

ı=1 1
(ı)T
m

h̄1TmB
T v(i+1)

1m

=
mζ

1TmB
T v(i+1)

−
mξ

h̄1TmB
T v(i+1)

� θ, (41)

which implies the condition (7b).
The proof of (b) can be given by using a similar method to

(a) and is omitted. �
Remark 6: Given h̄ as chosen in Remark 1, the conditions

(39) and (40) are linear programming.
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Theorems 1, 2, and 3 have considered the MPC controller
design, invariant set, and the constraint handling, respec-
tively. In the following, we will establish the robust stability
criterion on interval/polytopic system (1).
Theorem 4: (a) If there exist constants h̄ > 1, ςi > 0,

γ2 > 0, 0 < σ < 1, τ > 0, ρi > 0, ε > 0 and vectors
v(i) � 0, v(i) ∈ <n, ξ (i) ∈ <n, ξ ∈ <n, ξ ≺ 0, ξ ∈ <n, ζ (i) �
0, ζ (i) ∈ <n, ζ ∈ <n such that (9), (10), (33), and (39) hold
for i = 0, 1, . . . ,N−1, and v(i) = v(N ) for i > N , then, under
the MPC control law (11) with (12), the resulting closed-loop
interval system (1) is positive and robustly stable with mixed
performances (5) and (6).

(b) If there exist constants h̄ > 1, ςi > 0, 0 < σ < 1,
τ > 0, ρi > 0, ε > 0 and vectors v(i) � 0, v(i) ∈
<
n, ξ (i) ∈ <n, ξ ∈ <n, ξ ≺ 0, ξ ∈ <n, ζ (i) � 0, ζ (i) ∈
<
n, ζ ∈ <n such that (13), (10), (34), and (40) hold for

i = 0, 1, . . . ,N − 1, and v(i) = v(N ) for i > N , then, under
the MPC control law (14) with (15), the resulting closed-
loop polytopic system (1) is positive and robustly stable with
mixed performances (5) and (6).

Theorem 4 is a direct result of Theorems 1, 2, and 3.
Theorem 2 ensures that the MPC in Theorem 1 is a multi-
step control design, Theorem 3 guarantees the robust property
of the MPC design, and Theorem 1 reveals that the consider
system is stable with desired mixed performances. Based on
these issues, we do not repeat the proof of Theorem 4.

To obtain the optimal values of γ1 and γ2, the following
optimization algorithm can be implemented:
Algorithm 1: min

ςi,γ2,τ,ρi
v(i),ξ (i),ξ ,ξ ,ζ (i),ζ

γ1 + γ2 (or, ς0 + γ2) that

is subject to (9), (10), (33), and (39) (or, (13), (10), (34),
and (40)), where h̄ > 1 and 0 < σ < 1 are given constants.
In classical MPC design, the linear matrix inequalities

technique is usually used. However, the computation burden
of the corresponding MPC algorithm will be increased with
the dimension of the system. Meanwhile, the linear matrix
inequalities technique will gets into trouble when dealing
with large-scale computation. Efficient MPC algorithms have
been one of the difficulties in MPC design. Algorithm 1 is
a linear programming problem. As we all know, linear pro-
gramming possesses powerful ability for solving the large-
scale computation and a linear condition is also simpler than
other ones. This feature overcomes the drawbacks of MPC
algorithms based on linear matrix inequalities. These are
also the reasons why we employ the linear programming
technique, the linear performance indexes, and the linear
Lyapunov function.
Remark 7: It is necessary to point out that Algorithm 1 has

some constraints. In Remark 1, a scope of value h̄ is sug-
gested. The value of σ is restricted into the interval (0, 1).
However, we do not know how to choose a couple of proper
values h̄, σ such that γ1 + γ2 is optimal. We provide a
reference algorithm as follows:

Step 1: Given a value h̄0 = max
i=1,2,...,n,
j=1,2,...,m

{
bij
bij
} and σ = 0.5,

implement Algorithm 1. If Algorithm 1 is infeasible, then
choose the value of h̄ larger than h̄0 (one could choose the
value along the power function h̄k = h̄k0, where k is the
search time) until Algorithm 1 is feasible. Denote the feasible
value h̄k .
Step 2: Implement Algorithm 1. Denote the value of γ1+γ2

as α0.
Step 3: Change the value of σ as 0.75 and 0.25, respec-

tively (here, the value of σ is given by using a dichotomy
search). Skip the values of σ that makes Algorithm 1 infeasi-
ble. Implement Algorithm 1 for the values of σ that makes
Algorithm 1 feasible (in general, we could prescribe the
computation times).
Step 4: Assign the value of γ1 + γ2 smaller than the last

one to α0 until completing all prescribe computation times.
Denote the value of σ = σ0.
Step 5: Fix the value σ0 and an interval (h̄k−1, h̄k+1).

Change the value of h̄ by a dichotomy search in the fixed
interval. Then, go to Step 4.
Remark 8:The reference algorithm in Remark 7 can reduce

but cannot remove the conservativeness. In the future work,
how to overcome the constraints from these two parameters
h̄ and σ is an interesting topic.

IV. EXAMPLE
In a social or biologic environment, the dynamics of the sur-
vival rates and fertility rates plays a key role in investigating
the environment change, the resource utilization, etc. An age-
structured population model is usually used to describe the
population dynamics and the Leslie modelling method [42]
is effective for characterizing the age-structured population
dynamics. In [1], a Leslie population model is established
via positive systems. The literature [20] further improved the
model by adding the exogenous disturbance input. Indeed,
system (1) is also an improved model of the classic Lesilie
model. In system (1), we impose the interval/polytopic uncer-
tainty on the system. On one hand, almost all control systems
contain uncertainty in practice. On the other hand, the inter-
val/polytopic constraint can describe the uncertainty of the
systems well.

Consider interval system (1) with

A =

 0.52 0.31 0.94
0.45 0.62 1.00
0.75 0.51 0.86

, A =

 0.61 0.43 1.05
0.55 0.70 1.27
0.81 0.63 0.96

,
B =

 1.22 1.43 0.36
0.57 1.46 0.27
0.08 0.70 1.10

, B =

 1.29 1.52 0.45
0.60 1.53 0.34
0.11 0.79 1.30

,
C =

 0.01 0.01 0.01
0.02 0.03 0.02
0.02 0.03 0.02

, C =

 0.02 0.01 0.02
0.03 0.03 0.03
0.02 0.05 0.04

,
D =

 0.02 0.01 0.04
0.02 0.06 0.02
0.03 0.03 0.05

, D =

 0.04 0.03 0.04
0.03 0.07 0.04
0.04 0.04 0.06

,
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FIGURE 1. The simulation results of the states x′

1, x1, and x′′

1 .

E =

 0.01 0.07 0.01
0.02 0.05 0.02
0.01 0.03 0.01

, E =

 0.03 0.08 0.03
0.04 0.06 0.03
0.02 0.04 0.02

,
w(k) =

 e−2k

e−2k

e−2k

, δ = 20, θ =

 200
200
200

.
It follows that η1 = 3 and η2 = e2

e2−1
. Choosing the predictive

step N = 2 and implementing Algorithm 1, we obtain

v(0) =

 0.0197
0.0247
0.0264

, v(1) =

 0.0120
0.0141
0.0153

,
v(2) =

 0.0321
0.0001
0.0001

, ξ =

−6.0135−6.0239
−6.0322

,
ξ (1) =

−0.0152−0.0094
−0.0280

, ξ (2) =

−0.0151−0.0093
−0.0281

,
ξ (3) =

−0.0151−0.0093
−0.0280

, ξ =

−0.0150−0.0092
−0.0279

,
ζ (1) =

 0.0001
0.0002
0.0001

, ζ (2) =

 0.0002
0.0001
0.0001

,
ζ (3) =

 0.0002
0.0002
0.0001

, ζ =

 0.0003
0.0003
0.0002

,
ς0 = γ1 = 0.0200, ς1 = 0.0190, ς2 = 0.0095,

ρ0 = 0.2162, ρ1 = 0.2145, ρ2 = 0.2128, ε = 0.0114,

h̄ = 1.375, σ = 0.9375, γ2 = 0.2377, τ = 0.0034.

Then, implement
the first obtained control law at the first predicted step:

u(0) =

−0.1563 −0.0950 −0.2876
−0.1545 −0.0948 −0.2886
−0.1545 −0.0940 −0.2876

 x(0).

The lower and upper bound of the closed-loop system matrix

FIGURE 2. The simulation results of the states x′

2, x2, and x′′

2 .

FIGURE 3. The simulation results of the states x′

3, x3, and x′′

3 .

FIGURE 4. The simulation results of the outputs z′

1, z1, and z′′

1 .

FIGURE 5. The simulation results of the outputs z′

2, z2, and z′′

2 .

are

A+ BK (1)−
0 + BK (1)+

0 =

 0.0137 0.0008 0.0007
0.0671 0.3859 0.2880
0.4094 0.3021 0.2263

,
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FIGURE 6. The simulation results of the outputs z′

3, z3, and z′′

3 .

FIGURE 7. The feasible region of the initial states.

A+ BK (1)−
0 + BK (1)+

0 =

 0.1037 0.1208 0.1107
0.1671 0.4659 0.5580
0.4694 0.4221 0.3263

.
Implement the first obtained control law at the second pre-
dicted step:

u(1) =

−0.1563 −0.0950 −0.2876
−0.1545 −0.0948 −0.2886
−0.1545 −0.0940 −0.2876

 x(1).

The lower and upper bound of the closed-loop system
matrix are

A+ BK (1)−
0 + BK (1)+

0 =

 0.0137 0.0008 0.0007
0.0671 0.3859 0.2880
0.4094 0.3021 0.2263

,
A+ BK (1)−

0 + BK (1)+
0 =

 0.1037 0.1208 0.1107
0.1671 0.4659 0.5580
0.4694 0.4221 0.3263

.
The controller gain matrix and the closed-loop system matri-
ces in the second sampling time instant are the same as those
in the first sampling time instant. This case is possible in the
optimization problem. Denote x(k)′ = (x1(k)′ x2(k)′ x3(k)′)T

and z(k)′ = (z1(k)′ z2(k)′ z3(k)′)T as the lower bounded
state and output of interval system (1) with corresponding
matrices, x(k)′′ = (x1(k)′′ x2(k)′′ x3(k)′′)T and z(k)′′ =
(z1(k)′′ z2(k)′′ z3(k)′′)T as the upper bounded state and out-
put of interval system (1) with corresponding matrices, and
x(k) = (x1(k) x2(k) x3(k))T and z(k) = (z1(k) z2(k) z3(k))T as
the state and output of interval system (1), respectively break

Figs. 1-3 show the simulations of the states and Figs. 4-6 show
the simulations of the outputs. Fig. 7 shows the feasible region
of the initial conditions.

V. CONCLUSION
This paper has solved the MPC design for interval/polytopic
positive systems with exogenous disturbance input. A new
MPC framework for positive systems with desired mixed per-
formances is established. Using a linear technique, the MPC
controller, the cone based multi-step control set, and the con-
straint handling are proposed, respectively. Under the MPC
design, the systems are robust stability with mixed linear
performance indexes. An implementable MPC algorithm is
formulated into linear programming.

REFERENCES
[1] L. Farina and S. Rinaldi,Positive Linear Systems: Theory and Applications.

New York, NY, USA: Wiley, 2000.
[2] T. Kaczorek, Positive 1D and 2D Systems. London, U.K.: Springer-Verlag,

2002.
[3] A. Leizarowitz, R. Stanojevic, and R. Shorten, ‘‘Tools for the analysis and

design of communication networks withMarkovian dynamics,’’ IEE Proc.-
Control Theory Appl., vol. 153, no. 5, pp. 506–519, Sep. 2006.

[4] W.M. Haddad andV. S. Chellaboina, ‘‘Stability theory for nonnegative and
compartmental dynamical systems with time delay,’’ Syst. Control Lett.,
vol. 51, no. 5, pp. 355–361, 2004.

[5] R. N. Shorten, D. J. Leith, J. Foy, and R. Kilduff, ‘‘Analysis and design
of AIMD congestion control algorithms in communication networks,’’
Automatica, vol. 41, no. 4, pp. 725–730, 2005.

[6] L. Caccetta, L. R. Foulds, and V. G. Rumchev, ‘‘A positive linear discrete-
time model of capacity planning and its controllability properties,’’ Math.
Comput. Model., vol. 40, nos. 1–2, pp. 217–226, 2004.

[7] H. Arneson and C. Langbort, ‘‘A linear programming approach to routing
control in networks of constrained linear positive systems,’’ Automatica,
vol. 48, no. 5, pp. 800–807, 2012.

[8] F. Knorn, O. Mason, and R. Shorten, ‘‘On linear co-positive Lyapunov
functions for sets of linear positive systems,’’ Automatica, vol. 45, no. 8,
pp. 1943–1947, 2009.

[9] W. M. Haddad and V. Chellaboina, ‘‘Stability and dissipativity theory
for nonnegative dynamical systems: A unified analysis framework for
biological and physiological systems,’’ Nonlinear Anal. Real World Appl.,
vol. 6, no. 1, pp. 35–65, 2005.

[10] X. Liu, W. Yu, and L. Wang, ‘‘Stability analysis of positive systems with
bounded time-varying delays,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 56, no. 7, pp. 600–604, Jul. 2009.

[11] E. Fornasini andM. E. Valcher, ‘‘Linear copositive Lyapunov functions for
continuous-time positive switched systems,’’ IEEE Trans. Autom. Control,
vol. 55, no. 8, pp. 1933–1937, Aug. 2010.

[12] X. Zhao, X. Liu, S. Yin, and H. Li, ‘‘Improved results on stability of
continuous-time switched positive linear systems,’’ Automatica, vol. 50,
no. 2, pp. 614–621, 2014.

[13] M. A. Rami and F. Tadeo, ‘‘Controller synthesis for positive linear systems
with bounded controls,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54,
no. 2, pp. 151–155, Feb. 2007.

[14] R. M. Ait, F. Tadeo, and A. Benzaouia, ‘‘Control of constrained positive
discrete systems,’’ in Proc. Amer. Control Conf., New York, NY, USA,
Jul. 2007, pp. 5851–5856.

[15] X. Liu, L. Wang, W. Yu, and S. Zhong, ‘‘Constrained control of positive
discrete-time systems with delays,’’ IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 55, no. 2, pp. 193–197, Feb. 2008.

[16] Y. Ebihara, D. Peaucelle, and D. Arzelier, ‘‘LMI approach to linear positive
system analysis and synthesis,’’ Syst. Control Lett., vol. 63, pp. 50–56,
Jan. 2014.

[17] A. Rantzer, ‘‘Scalable control of positive systems,’’ Eur. J. Control, vol. 24,
pp. 72–80, Jul. 2015.

[18] C. Briat, ‘‘Robust stability and stabilization of uncertain linear positive sys-
tems via integral linear constraints: L1-gain and L∞-gain characterization,’’
Int. J. Robust Nonlinear Control, vol. 23, no. 17, pp. 1932–1954, 2013.

VOLUME 6, 2018 10229



J. Zhang et al.: Model Predictive Control With Mixed Performances for Uncertain Positive Systems

[19] J. Shen and J. Lam, ‘‘Static output-feedback stabilization with optimal
L1-gain for positive linear systems,’’ Automatica, vol. 63, pp. 248–253,
Jan. 2016.

[20] X. Chen, J. Lam, P. Li, and Z. Shu, ‘‘`1-induced norm and controller
synthesis of positive systems,’’ Automatica, vol. 49, no. 5, pp. 1377–1385,
2013.

[21] Y. Ebihara, T. Matsumura, T. Hagiwara, D. Peaucelle, and D. Arzelier,
‘‘Analysis and synthesis of interconnected positive systems with external
inputs,’’ IFAC-PapersOnLine, vol. 48, no. 14, pp. 161–166, 2015.

[22] W. M. Haddad, V. Chellaboina, and B. Gholami, ‘‘H2 suboptimal estima-
tion and control for nonnegative dynamical systems,’’Optim. Control Appl.
Methods, vol. 30, pp. 27–45, Jan. 2009.

[23] B. Roszak and E. J. Davison, ‘‘Optimal complementary control for positive
stable LTI systems,’’ Automatica, vol. 50, no. 5, pp. 1401–1406, 2014.

[24] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, ‘‘Con-
strained model predictive control: Stability and optimality,’’ Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[25] S. J. Qin and T. A. Badgwell, ‘‘A survey of industrial model predictive
control technology,’’Control Eng. Pract., vol. 11, no. 7, pp. 733–764, 2003.

[26] Y.-G. Xi and D.-W. Li, ‘‘Fundamental philosophy and status of qualitative
synthesis of model predictive control,’’ Acta Autom. Sinica, vol. 34, no. 10,
pp. 1225–1234, 2008.

[27] Z. Li, H. Xiao, C. Yang, and Y. Zhao, ‘‘Model predictive control of
nonholonomic chained systems using general projection neural networks
optimization,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, no. 10,
pp. 1313–1321, Oct. 2015.

[28] M. Yue, C. An, and Z. Li, ‘‘Constrained adaptive robust trajectory
tracking for WIP vehicles using model predictive control and extended
state observer,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be published,
doi: 10.1109/TSMC.2016.2621181.

[29] Z. Li, J. Deng, R. Lu, Y. Xu, J. Bai, and C.-Y. Su, ‘‘Trajectory-tracking
control of mobile robot systems incorporating neural-dynamic optimized
model predictive approach,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 46, no. 6, pp. 740–749, Jun. 2016.

[30] M. V. Kothare, V. Balakrishnan, and M. Morari, ‘‘Robust constrained
model predictive control using linear matrix inequalities,’’ Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[31] F. A. Cuzzola, J. C. Geromel, and M. Morari, ‘‘An improved approach for
constrained robust model predictive control,’’ Automatica, vol. 38, no. 7,
pp. 1182–1189, 2002.

[32] W.-J. Mao, ‘‘Robust stabilization of uncertain time-varying discrete sys-
tems and comments on ‘an improved approach for constrained robust
model predictive control,’’’ Automatica, vol. 39, no. 6, pp. 1109–1112,
2003.

[33] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans, ‘‘Efficient robust
predictive control,’’ IEEE Trans. Autom. Control, vol. 45, no. 8,
pp. 1545–1549, Aug. 2000.

[34] Z. Wan and M. V. Kothare, ‘‘Efficient robust constrained model predictive
control with a time varying terminal constraint set,’’ Syst. Control Lett.,
vol. 48, no. 5, pp. 375–383, Apr. 2003.

[35] B. Ding, Y. Xi, and S. Li, ‘‘A synthesis approach of on-line constrained
robust model predictive control,’’ Automatica, vol. 40, no. 1, pp. 163–167,
2004.

[36] P. E. Orukpe, I.M. Jaimoukha, andH.M.H. El-Zobaidi, ‘‘Model predictive
control based on mixed H2/H∞ control approach,’’ in Proc. Amer. Control
Conf., Aug. 2007, pp. 6147–6150.

[37] P. E. Orukpe, ‘‘Towards a less conservative model predictive control
based on mixed H2/H∞ control approach,’’ Int. J. Control, vol. 84, no. 5,
pp. 998–1007, 2011.

[38] J. Li, D. Li, Y. Xi, and J. Lu, ‘‘Improved robust model predictive control
with guaranteed H2/H∞ performance for polytopic systems,’’ Trans. Ins.
Meas. Control, vol. 37, no. 7, pp. 892–899, 2015.

[39] D.-W. Li and Y.-G. Xi, ‘‘Design of robust model predictive control based
on multi-step control set,’’ Acta Autom. Sinica, vol. 35, no. 4, pp. 433–437,
2009.

[40] J. Zhang, X. Zhao, Y. Zuo, and R. Zhang, ‘‘Linear programming-based
robust model predictive control for positive systems,’’ IET Control Theory
Appl., vol. 10, no. 15, pp. 1789–1797, 2016.

[41] J. Zhang, X. Cai, W. Zhang, and Z. Han, ‘‘Robust model predictive control
with `1-gain performance for positive systems,’’ J. Franklin Inst., vol. 352,
no. 7, pp. 2831–2846, 2015.

[42] P. H. Leslie, ‘‘On the use of matrices in certain population mathematics,’’
Biometrika, vol. 33, no. 3, pp. 183–212, 1945.

JUNFENG ZHANG received the M.S. degree
from the College of Mathematics and Information
Science, Henan Normal University, in 2008, and
the Ph.D. degree from the School of Electronic
Information and Electrical Engineering, Shanghai
Jiao Tong University, in 2014. From 2014, he
was a Lecturer with the School of Automation,
Hangzhou Dianzi University, where he has been
an Associate Professor since 2017. His research
interests include positive systems, switched sys-

tems, model predictive control, and differential inclusions. He was a
recipient of the Outstanding Master Degree Thesis Award from Henan
Province, China, in 2011 and a recipient of the Outstanding Ph.D. Gradu-
ate Award from Shanghai, China, in 2014, respectively. He is a Co-Chair
of Program Committee in The 6th International Conference on Positive
Systems (POSTA2018).

HAOYUE YANG was born in Gansu Province,
China, in 1995. He received the B.S. degree in
electrical engineering and automation from the
Zhejiang University of Science and Technology
in 2016. He is currently pursuing the master’s
degree in control science and engineering from
Hangzhou Dianzi University in 2017 with a focus
on the positive system, the switching system,
the model predictive control.

XIANGLEI JIA received the Ph.D. degree from
the Nanjing University of Science and Technol-
ogy, Nanjing, China, in 2017. From 2015 to 2016,
he was a Visiting Scholar with the Department
of Electronic and Information Systems, Shibaura
Institute of Technology, Japan. He joined the
School of Automation, Hangzhou Dianzi Univer-
sity, as an Associate Professor, in 2017. His current
research interests include robust adaptive control,
observer design of nonlinear systems, and control
of time-delay systems.

10230 VOLUME 6, 2018

http://dx.doi.org/10.1109/TSMC.2016.2621181

	INTRODUCTION
	PROBLEM STATEMENT
	MAIN RESULTS
	MPC CONTROLLER DESIGN
	INVARIANT SET
	CONSTRAINT HANDLING

	EXAMPLE
	CONCLUSION
	REFERENCES
	Biographies
	JUNFENG ZHANG
	HAOYUE YANG
	XIANGLEI JIA


