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ABSTRACT Multimode is an important feature of modern processes, since various manufacturing strategies
are needed to satisfy different demands of markets. Direct application of traditional multivariate statistical
process monitoring methods cannot obtain satisfactory results, as the data set collected from multimode
processes always followsmultimodal distribution. To construct a single model which canmonitor multimode
processes directly, this paper proposes an original algorithm named temporal–spatial global locality projec-
tions. First, given that both temporal and spatial neighbors can express the similarity, the determination of the
neighborhood is conducted in both the temporal and spatial scale. Second, an optimization objective function
which preserves not only the local structure but also the global structure is defined. Third, the monitoring
statistic is established via the local outlier factor. To certify the effectiveness, a numerical example,
the multimode Tennessee Eastman process, and the CE117 process which is proposed by TecQuipment
for process control are studied.

INDEX TERMS Multimode process monitoring, temporal and spatial scale, local and global structure,
temporal-spatial global locality projections.

I. INTRODUCTION
In modern industrial processes, to ensure production safety
and improve product quality, process monitoring plays an
important role [1]–[4]. With the extensive application of dis-
tributed control system (DCS), a large amount of data can be
easily collected and stored. Therefore, MSPM methods gain
more and more attention [5]–[9]. Due to different production
plans, the change of raw materials, the diversification of
market demands and the change of external environments,
modern processes often have more than one operating con-
dition. The dataset collected from the multimode process
always follows multimodal distribution. Meanwhile, tradi-
tional MSPM methods such as principal component analysis
(PCA) and partial least squares (PLS) require that the dataset
follows unimodal distribution [10], [11].

Up to now, many methods have been proposed to moni-
tor multimode processes. The most primitive idea for mon-
itoring multimode processes is to construct one model for
every mode. This kind of method is called multiple models
method. Except establishing the model for every mode, mul-
tiple models method requires two extra steps. Specifically,

in the offline modeling phase, the multimode dataset needs to
be divided into multiple datasets corresponding to different
modes. Moreover, in the online monitoring phase, a rule
should be designed to determine the final result. To label
the transition states, a clustering algorithm on the basis of
dynamic k-principal component analysis-independent com-
ponent analysis is designed [12]. Song et al. [13] proposed
multi-subspace PCA with LOF to monitor multimode pro-
cesses, where a novel clustering algorithm was designed.
Through making an adequate projection, the mode-common
subspace and multiple mode-specific subspaces are con-
structed [14]. Zhu et al. [15] developed a novel framework
to construct process pattern and monitor multimode process.
For a dynamic system with multiple modes, the state-space
representation with different model parameters was estab-
lished to characterize each mode [16]. To monitor multi-
mode batch processes online, a concurrent phase partition
and between-mode statistical modeling strategy was devel-
oped [17]. Tan et al. [18] developed a mode identification
method on the basis of the resemblance of data characteristic.
Based on the linear subspace and the Bayesian inference,
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a two-dimensional Bayesian method was proposed for
multimode processes with nonlinear characteristic [19].
Guo et al. [20] proposed the local neighbor normalizedmatrix
method which can capture the nonlinear relationship between
modes and within modes. According to the value of squared
prediction error, Zhao et al. [21] selected the right model for
the current data in multimode processes. For results combina-
tion in multimode processes monitoring, a novel probabilistic
scheme was developed by Ge and Song [22].

In addition, the other multimode processes monitoring
method is to establish a single model. This kind of method is
called single model method. Compared with multiple models
method, single model method never needs to conduct mode
division and final result determination. The key of using
the single model to monitor multimode processes is how to
make the single model include different modes information.
Ge and Song [23] applied the just-in-time learning strategy
to deal with the multiple modes problem. Using the mode
unfolding scheme, a single PCA model was established for
processes withmultiple modes [24]. For nonlinear multimode
processes with between-mode transition, the LL-SVDD-
MRDA method was developed where a local model was
generated via the lazy learning algorithm [25]. To deal with
the robust multimode process modeling, a novel Bayesian
robust mixture factor analyzer was proposed [26]. Given that
the single mode dataset can be described by the Gaussian
distribution or the hidden state, the Gaussian mixture model
(GMM) and hiddenMarkovmodel (HMM) have been applied
to characterize multimode processes [27]–[29]. On the basis
of the Expectation Maximization algorithm, a mixture model
was developed for handling the multimode problem [30].

Apart from traditional MSPM methods, manifold learn-
ing algorithms which do not require data following uni-
modal distribution have been applied in process monitoring
successfully. The widely used four algorithms are neighbor-
hood preserving projections (NPE), locally linear embed-
ding (LLE), locality preserving projections (LPP), and
laplacian eigenmaps (LE) [31], [32]. Meanwhile, there are
two issues in these original manifold learning algorithms.
On one hand, the selection of the neighborhood is always lim-
ited in the spatial scale, and the temporal scale is neglected.
On the other hand, these algorithms only focus on the local
structure, and the global structure is undermined. Luo [33]
developed a new algorithm called global-local preserving
projections (GLPP) which solves a dual-objective optimiza-
tion. Ma et al. [34] proposed the local and nonlocal embed-
ding (LNLE) through minimizing distances among neighbors
and maximizing distances among nonlocal samples. Based
on the constructed dual weight matrix and enhanced objec-
tive function, the enhanced neighborhood preserving embed-
ding (ENPE) was presented [35]. An unsupervised method
called nonlocal structure constrained neighborhood preserv-
ing embedding (NSC-NPE) was proposed through minimiz-
ing the local scatter and maximizing the nonlocal scatter [36].
Zhang et al. [37] put forward the global-local structure anal-
ysis (GLSA) by combining advantages of LPP and PCA.

Yu [38] proposed the local and global PCA (LGPCA) algo-
rithm preserving both the local and global information. By
employing the neighborhood embedding in both the global
and local graph, the multi-manifold projection (MMP) algo-
rithm was developed [39]. To explore the dynamic infor-
mation, Miao et al. [40] presented the time neighborhood
preserving embedding (TNPE). To solve the suppression
of useful information, the weighted neighborhood preserv-
ing embedding and support vector data description (WNPE-
SVDD) was developed [41]. Song et al. [42] proposed
the improved dynamic neighborhood preserving embedding
(IDNPE) to monitor multimode processes. In contrast to
traditional MSPM methods, the greatest advantage of these
manifold learning algorithms is that there is no assumption
on the data distribution. Therefore, direct application of these
algorithms to monitor multimode processes is reasonable.

To monitor multimode processes via one single model,
an original dimensionality reduction algorithm named
temporal-spatial global locality projections (TSGLP) is pro-
posed in this paper. Firstly, to mine information in both the
temporal and spatial scale, the neighborhood is constituted
through aggregating temporal and spatial neighbors. Sec-
ondly, in multimode processes, the within-mode relationship
can be represented by the local structure. Correspondingly,
the mode-to-mode relationship can be represented by the
global structure. An optimization objective function preserv-
ing both the local and global structure is established. Thirdly,
considering that the dataset may disobey some particular
distributions, the monitoring statistic is constructed using
LOF which has no requirements on the data distribution.
Compared to establishing multiple models for multimode
processes, the advantage of establishing the single model
is that the relevance between different modes can be taken
into consideration. Finally, the effectiveness of the TSGLP
method is proved through comparing with other process mon-
itoring methods under a numerical example, the multimode
TE process which is widely used to test process monitoring
performance, and the CE117 process which is a fully inte-
grated and self-contained bench top process control apparatus
containing valves, pumps, power supplies and ancillaries to
allow flow, level, temperature and pressure control strategies
to be investigated individually and in combinations.

II. PRELIMINARIES
A. LOCALITY PRESERVING PROJECTIONS (LPP)
LPP is one of manifold learning algorithms which can reduce
the dimensionality of the original dataset through finding the
manifold structure [43]. On the basis of the local information,
the dataset XT

= {x1, x2, · · ·, xn} ∈ Rm×n (n is the number
of data, m is the dimensionality) is transformed to the low-
dimensional manifold YT ∈ Rd×n(d < m) using LPP. The
steps are shown as follows.

1) Establishing the adjacency graph: Search k neighbors
of xi to compose the neighborhood. For the original
dataset X , an edge is set from i to j if xj belongs to the
neighborhood of xi.
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2) Calculating the weight in each edge: LetWij represents
the weight value in the edge between i to j. According
to the Gaussian kernel, Wij can be computed in (1).

Wij =

e−
||xi−xj||

2

σ if xj is a neighbor of xi
0 otherwise

(1)

3) Eigenmaps: Obtain the projection matrix A which is
constituted by eigenvectors of (2).

XTLXα = λXTDXα (2)

Dii =
∑
j

Wji, L = D−W (3)

III. TSGLP FOR MULTIMODE PROCESS MONITORING
A. TSGLP
The objective of the proposed TSGLP algorithm is to obtain
the projection matrix which can project the original space to
the low-dimensional feature space. In the process of feature
extraction based on TSGLP, the information contained in
both the temporal and spatial scale can be excavated and
employed. Moreover, both the local and global structure
of the original dataset can be preserved. In order to mine
information in both the temporal and spatial scale, a union
form of temporal and spatial neighbors is determined to
construct the final neighborhood. Considering that some tem-
poral neighbors may belong to spatial neighbors, the num-
ber of neighbors for each data may be different. For the
purpose of preserving both the local and global structure,
an optimization function is established on the basis of the
Gaussian kernel distance and the proposed weighted mutual
information (WMI). The Gaussian kernel distance is applied
to descript the distance between the current data and its
neighbors. Correspondingly, the WMI which can express the
correlation of the entire multimode dataset is developed to
represent the global structure.

For multimode processes, the within-mode data can be rep-
resented using neighbors from the aspect of the spatial. The
mode-to-mode data can be represented using neighbors from
the aspect of the temporal. Thus, to construct the monitoring
model for multimode processes, mining both the temporal
and spatial information is necessary. In the temporal scale,
the dataset collected from multimode process includes the
sequence of sampling. In the spatial scale, the dataset col-
lected from multimode process contains the information of
topology and distance.

From the aspect of the temporal scale, the closer the sam-
pling, the higher the similarity. Thus, choose k1 adjacent data
before the current data and k1 adjacent data after the current
data to establish the temporal neighborhood Nt . In order
to make the current data and its temporal neighborhood Nt
belong to the same mode, the k-means clustering or the
clustering algorithm developed by our previous work [13] is
used. Suppose the original dataset X ∈ Rn×m is clustered

FIGURE 1. The final neighborhood in the TSGLP.

into C sub-datasets as

X =


xT1
xT2
...

xTn

 =

X1
X2
...

XC

 ∈ Rn×m (4)

Xc ∈ Rnc×m (c = 1, 2, · · · ,C) (5)

Specifically, for a data xi in X , the temporal neighborhood
Nt is Nt (xi) =

{
xi−k1 , · · · , xi−1, xi+1, · · · , xi+k1

}
if xi does

not belong to k1 mode starting data and k1 mode ending data.
Otherwise, the temporal neighborhoodNt is composed by 2k1
nearest data from the view of sampling. Thus, the temporal
neighborhood Nt is established based on those data which
belong to the same mode with the current data. As a result,
the number of data in Nt is 2k1.

Correspondingly, from the aspect of the spatial scale,
the closer the distance, the higher the similarity. There-
fore, select k2 nearest data to construct the spatial neighbor-
hood Ns.

Finally, the final neighborhoodNf in the TSGLP algorithm
is determined as follows

Nf = Nt ∪ Ns (6)

Fig. 1 depicts the relationship betweenNf andNt ,Ns. From
this figure, we can know that the number of neighbors in Nf
may be smaller than 2k1 + k2.
Moreover, for multimode processes, different single modes

are not independent of each other. Only considering the single
modemay ignore the correlation between differentmodes and
destroy the global structure of the dataset. To describe the
multimode process more complete, in addition to extract the
local structure information of everymode, the global structure
information of the entire dataset should also be focused on.

To characterize the local structure, the Gaussian kernel is
used to depict the distance between the data and its neigh-
bors. In addition, the Gaussian kernel distance is maintained
from the original space to the feature space. In other words,
the neighbor relationship contained in the original dataset is
preserved. The specific approach in TSGLP is to construct
the weight matrixW as follows:

Wij =

e−
||xi−xj||

2

σ if xj is a neighbor of xi
0 otherwise

(7)

To describe the global structure, the WMI is proposed
to represent the correlation of the entire dataset. Moreover,
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the WMI relationship is hold from the original space to the
feature space. In other words, the variable correlation con-
tained in the original dataset is preserved. The details of MI
are introduced as follows [44]:

I (xi, xj) = ∫ ∫
xi,xj

p(xi, xj) log(
p(xi, xj)
p(xi)p(xj)

)dxidxj (8)

where I (xi, xj) is the MI value between two variables xi and
xj, p(xi, xj) is the joint probability density function, p(xi) is
the marginal probability density function. Then, the mutual
information matrix of the dataset Xc (c = 1, 2, · · · ,C) in the
mode c is expressed as MI (Xc). It needs to be emphasized
that the value of mutual information is large if the relationship
between two different variables is close.

In this work, the global structure of mode c is represented
by the mutual information matrix MI (Xc). For the entire
multimode dataset, the global structure is represented based
on every global structure of singlemode. In addition, the scale
ofMI (Xc) (c = 1, 2 · · · ,C) is different. In order to consider
the scale of different single mode, the WMI of the original
dataset X is defined as

WMI =
C∑
i=1

C∑
c=1

ρ [MI (Xc)]− ρ [MI (X i)]

C∑
c=1

ρ [MI (Xc)]

MI (X i) (9)

where ρ [MI (Xc)] (c = 1, 2, · · · ,C) is the spectral radius
of MI (Xc). As shown in (9), the larger the scale of mode c,
the smaller the weight coefficient.

The objective function of TSGLP is constructed as:

Jlocal = min
1
2

∑
ij

(yi − yj)
2Wij

= min
1
2

∑
ij

(AT xi−AT xj)2Wij

= min
∑
i

AT xiDiixTi A−
∑
ij

AT xiWijxTj A

= minATXT (D−W )XA

Dii =
∑
j

Wji (10)

Jglobal = maxAT (WMI)A (11)

J =
Jglabal
Jlocal

(12)

Then, the following constraint is imposed on the objective
function:

ATXT (D−W )XA = I (13)

Based on the Lagrangianmultiplier λ, the projectionmatrix
A can be computed by solving (14).

(WMI)A = λXT (D−W )XA (14)

Then, the low-dimensional data yi is determined as:

yi = AT xi (15)

1) COMPARISONS
There are mainly two differences between the LPP and the
proposed TSGLP. On one hand, in the process of construct-
ing the neighborhood, LPP establishes the neighborhood
based on the distance from the aspect of the spatial scale.
Meanwhile, both the temporal and spatial neighborhood are
built in the proposed TSGLP. Therefore, compared with
LPP, the information mining in TSGLP is more adequate.
On the other hand, in the process of constructing the objec-
tive function, LPP only focuses on the local structure of
the original dataset. Meanwhile, not only the local structure
but also the global structure is preserved in the proposed
TSGLP.

Compared with GLSA [37] and LGPCA [38] which
establish the global-local monitoring model, the proposed
TSGLP method has three differences. Firstly, both GLSA
and LGPCAmethods are developed for monitoring the single
mode process, the TSGLP method is proposed to monitor the
multimode process. Secondly, the covariance matrix is used
to represent the global structure in GLSA and LGPCA. The
TSGLP method employs the developed WMI to represent
the global structure. In contrast to the covariance matrix
which only can express the linear correlation, the mutual
information is not limited to linear relationship. Thirdly,
only the spatial information is excavated in both GLSA
and LGPCA. The TSGLP method applies temporal and
spatial information. Moreover, the TNPE method employs
the information in the scale of temporal. However, TNPE
ignores the information in the scale of spatial and the global
structure.

2) PARAMETERS
There are three important parameters k1, k2, d in the pro-
posed TSGLP. 2k1 is the number of neighbors in the temporal
neighborhood. k2 is the number of neighbors in the spatial
neighborhood. If k1 is large, the information contained in the
temporal scale is emphasized. On the contrary, the informa-
tion contained in the spatial scale is emphasized. d represents
the dimension of the feature space, and it can be determined
using the cross-validation method.

B. MONITORING STATISTIC AND ITS CONTROL LIMIT
Given that the training dataset X is collected from the
multimode process, the obtained low-dimensional dataset Y
always follows multimodal distribution. Traditional monitor-
ing statistics such as T 2 and SPE cannot depict the data fol-
lowing multimodal distribution. In TSGLP, the LOF method
is used to establish the monitoring statistic. The extent that
a data is regarded as an outlier can be indicated via the LOF
value [45]. The steps are listed as follows.

1) Constructing the neighborhood: For every data yi in
the dataset Y ∈ Rn×d , find K nearest neighbors to
constitute the neighborhood.

2) Defining the K_dis tan ce: Define the radius of the
neighborhood as K_dis tan ce

(
yi
)
.

VOLUME 6, 2018 9743



B. Song, H. Shi: TSGLPs for Multimode Process Monitoring

3) Determining the reachability distance: The reachability
distance reachd

(
yi, y

f
i

)
is determined as

reachd
(
yi, y

f
i

)
= max

{
K_dis tan ce(yfi ), d

(
yi, y

f
i

)}
,

f = 1, 2, . . . ,K (16)

4) Computing the local reachability density: The local
reachability density (LRD) of yi is computed as

LRD
(
yi
)
=

K
K∑
f=1

reach_d
(
yi, y

f
i

) (17)

5) Calculating the local outlier factor: The LOF of yi is
given as

LOF
(
yi
)
=

1
K

K∑
f=1

LRD
(
yfi
)

LRD
(
yi
) (18)

As shown above, the calculation of LOF is based on the
density information. Therefore, the LOF statistic is not lim-
ited by the data distribution. For a testing data xt , the low-
dimensional data is obtained according to yt = AT xt . Then,
the neighborhood of yt is constructed using the normal data
in Y . If the testing data is normal, the density of yt is similar
to that of data in Y . Thus, the LOF value LOF(yt ) is close to
1. On the contrary, the density of yt is different from that of
data in Y . Thus, the LOF value LOF(yt ) is larger than 1 to a
large extent.

Because the LOF value of normal data is close to 1, the con-
trol limit can be determined as 1±ε where ε is approximately
equal to 0. In order to make the control limit more accurate,
the kernel density estimation (KDE) method is applied to
estimate the control limit. A univariate kernel estimator is
shown as:

f̂h(x) =
1
nh

n∑
i=1

K
(
y− yi
h

)
(19)

where f̂h(y) is the estimated probability density, n is the
number of data and h is the smoothing parameter. K is the
kernel function, where Gaussian kernel is used in this work.

C. THE PROCEDURE OF TSGLP
Offline modeling phase:

1) Acquire the normal training dataset X which is col-
lected from the multimode process.

2) Preprocess X to zero mean and unit variance via the
z-score method.

3) Construct the temporal neighborhood Nt for every data
in X .

4) Establish the spatial neighborhood Ns for every data
in X .

5) Determine the final neighborhood Nf for every data
in X according to (6).

6) Compute the weight matrixW based on (7) to describe
the local structure.

7) Calculate the WMI to depict the global structure.
8) Build the objective function according to (13).
9) Obtain the projection matrix A via (14).

10) Construct the LOF statistic and estimate the control
limit.

Online monitoring phase:
1) Acquire the testing data xt .
2) Preprocess xt using the mean and the variance of the

normal training dataset.
3) Project xt onto the feature space applying yt = AT xt .
4) Calculate the monitoring statistic LOF(yt ).
5) Judge LOF(yt ) exceeds the control limit or not.

IV. EXAMPLES AND APPLICATIONS
To show the advantage of the proposed TSGLP, a numeri-
cal example, the multimode TE process, and the multimode
CE117 process are applied to test the monitoring perfor-
mance. The TSGLP is comparedwith the LPP andGLSA [37]
methods. The monitoring results of all three methods are
calculated based on the 99% control limit.

A. NUMERICAL EXAMPLE
A numerical example is designed in this work as follows:[

u1(k)
u2(k)

]
=

[
0.811 −0.226
0.477 0.415

]
·

[
u1(k − 1)
u2(k − 1)

]
+

[
0.193 0.689
−0.320 −0.749

]
·

[
w1(k)
w2(k)

]
; (20) x1(k)x2(k)

x3(k)

 =
 0.118 −0.191 0.287

0.847 0.264 0.943
−0.333 0.514 −0.217


·

 x1(k − 1)
x2(k − 1)
x3(k − 1)

+
 1 2

3 −4
−2 1

 · [ u1(k)
u2(k)

]
;

(21) y1(k)y2(k)
y3(k)

 =
 x1(k)x2(k)
x3(k)

+
 v1(k)v2(k)
v3(k)

; (22)

It includes eight variables u1, u2, x1, x2, x3, y1, y2, y3 which
are produced via five factors v1, v2, v3, w1, w2. In this work,
two different operating modes are set as follows.

Mode 1

v1 N (−0.1, 0.1);
v2 N (−0.1, 0.1);
v3 N (−0.1, 0.1);
w1 N (1, 2);
w2 N (1, 2);

(23)

Mode 2

v1 N (0.1, 0.1);
v2 N (0.1, 0.1);
v3 N (0.1, 0.1);
w1 N (−1, 2);
w2 N (−1, 2);

(24)

The normal training dataset is simulated according to
(20)–(24). It contains 400 mode 1 data and 400 mode 2 data.
In the proposed TSGLP, the number of neighbors in the
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TABLE 1. False detection rates (%) of three methods in the testing
dataset.

TABLE 2. Missed detections rates (%) of three methods in the testing
dataset.

FIGURE 2. The monitoring results of three methods for the first testing
dataset. (a) LPP. (b) LPP. (c) GLSA. (d) GLSA. (e) TSGLP.

temporal neighborhood 2k1 is 10 and that in the spatial neigh-
borhood k2 is 10. The dimension of the feature space d is
selected as 4. For fair comparisons, the number of neighbors
in the neighborhood k is 20 and the dimension of the feature
space d is selected as 4 in the LPP and GLSA methods.

For the purpose of testing the monitoring performance of
TSGLP, two testing datasets are simulated in the following
way where first 200 data are normal and the remaining
400 data are abnormal. In the first testing dataset, the process
runs under mode 2, a step of 0.5 in v3 occurs from data 200 to
the end. In the second testing dataset, the process runs under
mode 2, a drift of 0.005 in v3 occurs from data 200 to the end.

Table 1 and Table 2 list false detection rates and missed
detection rates for LPP, GLSA, and TSGLP, respectively.
In Table 2, the smallest missed detection rates are marked
with bold. To show the monitoring performance visually,
the monitoring results of LPP, GLSA and TSGLP for two
testing datasets are plotted in Fig. 2 and Fig. 3.

From Table 1, we can know that false detection rates of
LPP, GLSA and TSGLP for two testing datasets are smaller
than 2%, and can be accepted. From Table 2, the proposed
TSGLP method can obtain the best missed detection rates
among three methods. Since the information in the temporal

FIGURE 3. The monitoring results of three methods for the second testing
dataset. (a) LPP. (b) LPP. (c) GLSA. (d) GLSA. (e) TSGLP.

scale is not mined and the global structure of the original
dataset is ignored, the LPP method hardly detects the fault.
Compared with LPP, the monitoring results of GLSA have
been improved because both the local and global structure are
preserved. Considering that the information in the temporal
and spatial scale is excavated and both the local and global
structure are preserved, the proposed TSGLP can acquire the
best monitoring result for two testing datasets.

For the first testing dataset, almost all fault data are
wrongly classified as normal ones where the missed detection
rate is 90.5% and 99.75% in Fig. 2(a) and Fig. 2(b). In other
words, the monitoring results of LPP (T2) and LPP (SPE)
cannot satisfy the detection requirement. From Fig. 2(c),
the T2 value of more than 10% fault data are similar to
those of normal data. The missed detection rate of GLSA
(T2) is 14.25% since both the local and global structure
are preserved. Compared with LPP and GLSA, the LOF
statistic of TSGLP can detect this fault timely and effectively
in Fig. 2(e) with the missed detection rate 4%. For the second
testing dataset, LPP (SPE) cannot detect the occurrence of
the fault where the missed detection rate is 97.5%. There is
some progress in LPP (T2) with the missed detection rate
79.75%. In Fig. 3(c), the T2 of GLSA can detect this fault
successfully and the missed detection rate is 21.5% because
both the local and global structure is considered. In contrast
to LPP and GLSA, the proposed TSGLP method can obtain
the lowest missed detection rate for the second testing dataset
in Fig. 3(e).

B. TE
The TE process is the simulation of an industrial chemical
process [46]–[48]. Fig. 4 is the schematic graph of it. From
this figure, we can know that it contains five units: a reactor,
a condenser, a vapor separator, a recycle compressor, and a
product stripper [49], [50]. According to the mass ratio of two
desired products G/H, the TE process has six modes. In this
article, 9 manipulated variables and 22 continuous process
variables are chosen as monitoring variables.
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FIGURE 4. The schematic graph of TE.

TABLE 3. Missed detection rates (%) of 20 faults in TE Mode 1.

In this section, the TE process undermode 1 andmode 3 are
simulated. A total of 1000 data including 500 normal data
of mode 1 and 500 normal data of mode 3 are collected as
the training dataset. In addition, there are 20 faults in the
TE process. Then, 20 datasets produced under mode 1 and
20 datasets produced under mode 3 are collected as the testing
datasets. In each testing dataset, data 1 to data 200 are normal
and data 201 to data 1000 are abnormal.

In the proposed TSGLP method, the number of neighbors
in the temporal neighborhood 2k1 is 10 and that in the spatial
neighborhood k2 is 10. The dimension of the feature space d is
selected as 9. For fair comparisons, the number of neighbors
in the neighborhood k is 20 and the dimension of the feature
space d is selected as 9 in the LPP and GLSA methods.

Table 3 and Table 4 list missed detection rates of 20 faults
in mode 1 and those in mode 3, respectively. In these tables,
the smallest missed detection rates are marked with bold.
Moreover, for computing false detection rates of normal pro-
cess, the normal dataset collected under mode 1 andmode 3 is

TABLE 4. Missed detection rates (%) of 20 faults in TE Mode 3.

FIGURE 5. The monitoring results of three methods for normal process.
(a) LPP. (b) LPP. (c) GLSA. (d) GLSA. (e) TSGLP.

tested, which is shown in Fig. 5. In addition, to show the mon-
itoring performance visually, the monitoring results of LPP,
GLSA and TSGLP for Fault 10 inmode 3 are plotted in Fig. 6.
In contrast to LPP and GLSA, the proposed TSGLP method
can obtain the best monitoring results for 16 faults in mode 1.
For 20 faults in mode 3, as shown in Table 3, the proposed
TSGLPmethod can obtain the smallest missed detection rates
for 19 faults compared with LPP and GLSA. Fig. 5 shows the
monitoring performance of normal process where first 500
data are collected from mode 1 and the remaining data are
collected from mode 3. In this figure, no fault happens and
the false detection rate is acceptable.

Fault 10 is a random change occurring in the temperature of
C feed. The monitoring results of this fault under mode 3 are
presented in Fig. 6. As shown in Fig. 6(a), although the
LPP(T2) method can detect this fault, more than 30% fault
data are judged as normal data with the missed detection
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FIGURE 6. The monitoring results of three methods for Fault 10 in
mode 3. (a) LPP. (b) LPP. (c) GLSA. (d) GLSA. (e) TSGLP.

FIGURE 7. The schematic graph of CE117.

rate 31.875%. Compared with LPP which only considers the
local structure, theGLSAmethod preserves both the local and
global structure. Themonitoring result of GLSA(T2) has been
progressed to a large extent where the missed detection rate is
7.875%. In addition, in contrast to GLSA, the TSGLPmethod
can obtain better monitoring result since not only the spatial
information but also the temporal information is applied.

C. CE117
The CE117 process trainer is proposed by TecQuipment for
chemical engineering control. Fig. 7 is the schematic graph
of it. As shown in this figure, the meanings of symbols con-
nected by the dashed arrows are listed in Table 5, where the
variables with bold are selected as the monitoring variables.
The CE117 process trainer can be controlled by means of the
built-in computer interface and CE2000 software or any other
suitable analogue or digital controller that may be available.
In this study, the CE117 process trainer is linked to computer

TABLE 5. The meanings of symbols attached to the module.

by the interface provided by the control modules integrated
on a control panel.

In this study, the CE117 runs under two modes. In the
first mode, LT is set as 8cm and TT5 is set as 37 oC . In the
second mode, LT is set as 9cm and TT5 is set as 35.2 oC .
A total of 600 data including 300 normal data of mode 1 and
300 normal data of mode 2 are collected as the training
dataset. Two testing datasets are simulated as follows:

In the first testing dataset, the CE117 process runs under
mode 1 firstly, then, it is switched to mode 2. After 600
normal data are collected, the fan can not work properly.

In the second testing dataset, the CE117 process runs under
mode 1 firstly, then, it is switched to mode 2. After 600
normal data are collected, the flow transmitter of FT2 occurs
a hard-over fault [51], where the value of FT2 and the actual
value have an error of 0.3.

In the proposed TSGLP method, the number of neighbors
in the temporal neighborhood 2k1 is 10 and that in the spatial
neighborhood k2 is 10. The dimension of the feature space d is
selected as 2. For fair comparisons, the number of neighbors
in the neighborhood k is 20 and the dimension of the feature
space d is selected as 2 in the LPP and GLSA methods.

In the first testing dataset, the fan can not work after the
600th data. Firstly, TT4 rises suddenly. Compensated by the
closed-loop control, this fault influences the hot water system.
Then, TT2 and FT1 change. Fig. 8 presents monitoring results
for the first testing dataset. As shown in this figure, although
LPP (T2) and GLSA (T2) can detect this fault, the monitoring
results are unsatisfactory. Moreover, the monitoring result of
LPP (SPE) has been improved to a large extent, where the
missed detection rate is 5%. In contrast to LPP and GLSA,
TSGLP can obtain the best monitoring result. Once the fault
occurs, the statistic of TSGLP exceeds the control limit and
can maintain all the time.

In the second testing dataset, a transmitter fault occurs.
Once this fault happens, apart from the value of FT2, the other
parts of the process are operated under normal condition.
As shown in Fig. 9(a) and Fig. 9(c), the LPP(T2) and
GLSA(T2) methods cannot detect this fault, where all fault
data are regarded as normal data. FromFig. 9(b) and Fig. 9(d),
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FIGURE 8. The monitoring results of three methods for the first testing
dataset. (a) LPP. (b) LPP. (c) GLSA. (d) GLSA. (e) TSGLP.

FIGURE 9. The monitoring results of three methods for the second testing
dataset. (a) LPP. (b) LPP. (c) GLSA. (d) GLSA. (e) TSGLP.

the monitoring results of LPP (SPE) and GLSA (SPE) have
been improved with the missed detection rate 48.3% and
68%, respectively. Compared with LPP and GLSA, the pro-
posed TSGLP method can obtain the best monitoring result,
where the missed detection rate is 0.

V. CONCLUSION
In this article, a novel algorithm TSGLP is proposed to mon-
itor multimode processes. For mining both the temporal and
spatial information, the neighborhood construction in TSGLP
is implemented using neighbors in both temporal and spatial
scale. In addition, not only the local structure but also the
global structure is preserved in TSGLP. In contrast to LPP and
GLSA, the TSGLP method can acquire the best monitoring
performance in three case studies. Considering that one batch
in the batch process always contains multiple phases, it would
be worth some research efforts to extend the proposedmethod
to batch processes.
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