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ABSTRACT In this paper, a new structure to designmodel-free control (MFC) based on the ultra-local model
is presented for an unknown nonlinear single-input single-output dynamic system. The proposed structure
includes two adaptive laws corresponding to the unknown linear and nonlinear terms. Utilizing the adaptive
law for linear term, the controller gain is going to be updated online using a differential Riccati equation.
Subsequently, the control policy which includes an optimal term as well as a term for compensating the
system unknown dynamics is generated. Here, the two proposed adaptive laws are model-free estimation
algorithms, in which the need for any regressor parameter and also the persistent excitation condition is
eliminated. Finally, two simulation studies are presented to show that the proposed adaptive MFC (AMFC)
policy outperforms the two well-known controllers. Moreover, the AMFC is applied on a Duffing-Holmes
chaotic oscillator plant and the convincing performance of the algorithm is observed through the simulation
results.

INDEX TERMS Model-free control, optimal control, adaptive control, nonlinear system, ultra-local model,
model-free estimation, chaotic systems, SISO system.

I. INTRODUCTION
The design procedure of controller for nonlinear dynamic
systems can be categorized as model-based and model-
free control policies. For a model-based controller to have
acceptable performance, an accurate model of the dynamic
system should be defined a priori in an off-line manner.
Due to the uncertainties in a dynamic system and envi-
ronmental unknown disturbances, the process for extract-
ing the exact model is too expensive and time-consuming.
Hence, the model-based controllers alone are not practical
in their original format, since they need an extra process
for generating the dynamic model of the plant. There are
lots of adaptive algorithms proposed to deal with this prob-
lem. In the adaptive control algorithms, a structure of the
dynamic system is known and only the unknown parameters
are estimated online to provide the controller with the plant
dynamic model. Although the adaptive control algorithms
have solved the issue of unavailability of an accurate model
for the plant, the assumption of known structure for the
dynamic system is still a constraint in the design procedure.

Therefore, a model-free controller of which does not require
knowledge of the structure is proposed to remove this con-
straint [1]. The model-free controllers consider a general
structure for an unknown dynamic system and use the mea-
sured input-output data to estimate the unknown dynamic
system in an online manner and generate the control policy.
Nowadays, model-free control approaches play an important
role in control [2], some new model-free control algorithms
are designed recently [3]–[6], and several applications can be
found for these algorithms [7]–[12].

The MFC technique which is first proposed by Fliess
for SISO systems, uses an ultra-local model to approxi-
mate the whole nonlinear dynamic system [13]. The ultra-
local model which is an affine dynamic model with regards
to the control input variable, includes a lumped unknown
nonlinear function and a priori-known constant input gain.
Estimation of the unknown nonlinear term is performed by
a simple algebraic equation utilizing the past input-output
data. A shortcoming of the initial MFC algorithm is that
it has not been formulated with a set of analyses that
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guarantees stability [18]. The stability analysis for the MFC
technique is provided in [14] and an application of the algo-
rithm is presented for a twin-rotor system. In [15], first the
ultra-local model is transformed to a linear time-invariant
state-space system. Then an adaptive observer is designed to
estimate both system states and unknown nonlinear dynamics
of the system. The work by Thabet et al. [15] reveals the
model-based adaptive observer to estimate the unknown input
gains and unknown nonlinear terms. Moreover, since the esti-
mation is performed utilizing a model-based algorithm, there
is a requirement of PE condition for a regressor parameter.
Similarly, a parametric model for estimating both unknown
nonlinear term and input gain is presented in [16] with PE
condition observed. In [17], the MFC is proposed for a multi-
input multi-output (MIMO) dynamic system. In that paper,
the MFC is formulated in a linear time-invariant system and
an optimal MFC is presented. The control policy includes an
optimal term which is derived from the solution of a linear
quadratic regulator (LQR) problem. Since the optimal control
problem is solved off-line, the controller gains should be
defined before the system starts to operate. In [18], two MFC
sliding mode algorithms are proposed and compared with a
simpleMFC according to the experimental results. Moreover,
a fuzzy MFC is proposed in [19], in which a fuzzy inference
system (FIS) is used as an online estimator for estimating the
unknown lumped nonlinear term. A robust adaptive iterative
learning control for unknown nonlinear systems is proposed
in [20]. In that work, the unknown nonlinear terms are pre-
sented by multiplication of a vector of unknown parameters
and a vector of known nonlinear functions (or regressors).
It is to note that the main controller gains should be deter-
mined off-line (which is a barrier against going forward
with fully autonomous dynamic systems) and the adaptive
laws are model-based algorithms which require PE condi-
tion for regressors. Recently, Wang et al. [21], [22] and
Zhao et al. [23] have developed adaptive controllers which
use FIS and also Artificial Neural Network (ANN) to deal
with the unmodeled dynamics and unknown uncertainties of
a nonlinear system. In those algorithms, the estimations are
regressor-based adaptive laws which require the definition of
regressor variables and the PE condition for the regressors is
a must.

Due to the PE condition, convergence of the adaptive
law to the solution will be achieved if and only if the
input signal is sufficiently rich (SR) [24]. The PE condition,
as which is applicable for all model-based estimation, is alle-
viated in our regressor-free-based adaptive laws. Moreover,
the need for defining regressor variables are removed in the
proposed algorithm, which makes the implementation more
convenient.

In this paper, a new structure for MFC based on the ultra-
local model is presented. The structure is new, since the
unknown lumped nonlinear term is considered to include
an unknown linear term plus an unknown nonlinear func-
tion. According to the new structure, two adaptive laws are
proposed for estimating both linear and nonlinear terms.

Here, the adaptive laws are going to be generated in order
to drive the tracking error to zero (direct adaptation). When
the tracking objective is reached, the adaptive laws are turned
off thereby, halting further adaptation. This does not affect
the tracking objective. Utilizing this technique, we can use
adaptive controllers for any time-varying reference signal
which can be non-SR. Having updated value for the unknown
linear term, the main controller gain is computed online using
a scalar DRE. Such new MFC with optimal term incorpo-
rated yields a new structure of controller we called Adaptive
Model-Free Control or AMFC. Stability and optimality anal-
yses are provided the proposed AMFC. Our contributions can
be listed as follows
• a new structure for MFC is proposed, which seg-
ments unknown lumped nonlinear term into an unknown
linear-in-state part and an unknown nonlinear part;

• online tuning for the controller gain is provided;
• the proposed MFC includes an optimal control policy;
• the proposed adaptive laws for estimating unknown
dynamics of the system are model-free estimation algo-
rithms which lead to no requirement for PE condition
and also no need to define regressor variables.

In the following sections, first a new structure for the
ultra-local model is proposed. Then, the design procedure
for the AMFC including the stability and optimality analyses
is presented in Section III. Finally, the simulation results
are presented in Section IV to compare the performance of
the proposed AMFC with two well-known controllers over a
nonlinear system and a delay system. The simulation results
for application of the AMFC on an oscillatory system is
presented in Section V.

II. THE NEW STRUCTURE FOR ULTRA-LOCAL MODEL
Definition 1: The unknown nonlinear dynamics of a SISO
nonlinear system can be represented using the following
ultra-local model [13]

ẋ = f (x)+ bu
y = x (1)

where, x ∈ R is the system state, f : R→ R is the unknown
Lipschitz bounded nonlinear function depending only on x
(f also can include bounded disturbances), parameter b ∈ R
is a non-zero non-physical priori-known constant input gain
which is chosen by the practitioner such that bu and ẋ are of
the same order [13] (the value of b mostly can be considered
as 1), u is the control input and y is the system output.
Here, we express f as follows

f (x) = ax + g, (2)

where a = a(t) ∈ R is an unknown time-varying state
gain which is bounded and Lipschitz; and g = g(x) is
another unknown Lipschitz bounded nonlinear function with
the Lebesgue measurable property. According to (2), we have
divided f into one linear-in-state part and one nonlinear part.
Hence, the system proposed in (1) can be presented as follows

ẋ = ax + bu+ g

y = x. (3)
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III. DESIGN PROCEDURE FOR ADAPTIVE
MODEL-FREE CONTROL
Definition 2: Considering a time-varying reference signal yd ,
the tracking error can be proposed as [33]

e = yd − y = yd − x. (4)

The tracking objective is defined as converging e to zero,
when time goes to infinity. Moreover, we define a joint cost
function

σ = e+ ζ (5)

where, ζ =
∫
edt . By accompanying the tracking error with

its time integral, the steady-state error can be eliminated [31].

A. AMFC POLICY DESIGN PROCEDURE
Lemma 1 [30]: Based on the Separation Principle, the com-
bination of a stable controller and a stable observer leads
to a stable dynamic system. For further readings, please
refer to [30].
Lemma 2 [26]: Recalling the sliding-mode differentia-

tor [26], the derivative of a reference signal yd can be
estimated as

ẏd = ν, (6)

where

ż = ν

ν = −k1|z− yd |1/2sgn(z− yd )+ ν1
ν̇1 = −k2sgn(z− yd ) (7)

with k1 > 0 and k2 > 0 are two constant parameters
and sgn(.) is the signum function. The differentiator presented
in (6) and (7), is going to be used in the design procedure for
AMFC, wherever ẏd is required. For further readings, please
refer to [26].
Theorem 1: For the SISO dynamic system proposed in (3),

if we construct the control input u = u1 + u2 as follows

u1 =
1
2
rbPσ

u2 =
1
b
[ẏd − â(x − σ )− ĝ− ζ + [1+

2q
P
]σ ]−

3
4
rbPσ

(8)

where r > 0, q > 0 are two constant values and P > 0 is
updated online using the following scalar DRE

Ṗ = 2âP− rb2P2 + 2q, P(0) > 0 (9)

with the following adaptive laws

˙̂g = −γ1Pσ − ρ1γ1ĝ
˙̂a = −γ0Pσ (x − σ )− ρ0γ0â (10)

where γ0, γ1, ρ0 and ρ1 are constant positive gains; then the
tracking objective presented in Definition 2 will be achieved.

Proof: By considering the estimation errors g̃ = g − ĝ
and ã = a− â, we define the following Lyapunov function

V =
1
2
Pσ 2
+

1
2γ1

g̃2 +
1
2γ0

ã2. (11)

The time derivative of V is

V̇ = Pσ σ̇ +
1
2
σ 2Ṗ+

1
γ1

˙̃gg̃+
1
γ0

˙̃aã. (12)

Then, we have

V̇ = Pσ (ẏd − ax − bu− g+ e)+
1
2
σ 2Ṗ+

1
γ1

˙̃gg̃

+
1
γ0

˙̃aã. (13)

We add and subtractPaσ 2 to the right-hand side of (13). Thus,
it will be presented as

V̇ = Pσ (ẏd − a(x − σ )− bu− g+ e− aσ )+
1
2
σ 2Ṗ

+
1
γ1

˙̃gg̃+
1
γ0

˙̃aã. (14)

Then, by adding and subtracting Pσ (ĝ+â(x−σ )) to the right-
hand side of (14), we have

V̇ = Pσ [ẏd − â(x − σ )− bu− ĝ+ e− aσ ]+
1
2
σ 2Ṗ

+ [
1
γ1

˙̃gg̃− Pσ g̃]+ [
1
γ0

˙̃aã− Pσ (x − σ )ã]. (15)

Hence,

V̇ = Pσ [ẏd − â(x − σ )− bu− ĝ+ e− aσ ]

+
1
2
σ 2Ṗ+ [

1
γ1
ġg̃−

1
γ1

˙̂gg̃− Pσ g̃]

+ [
1
γ0
ȧã−

1
γ0

˙̂aã− Pσ (x − σ )ã]. (16)

Referring to Definition 1, a = a(t) and g = g(x(t)) are time-
varying but bounded, i.e. ġ 6= 0 and ȧ 6= 0. By adding and
subtracting

s1 = [
1
4ρ1

(
1
γ1
ġ+ ρ1g)2 + ρ1g̃2 + ρ1g̃ĝ] (17)

and

s2 = [
1
4ρ0

(
1
γ0
ȧ+ ρ0a)2 + ρ0ã2 + ρ0ãâ] (18)

and also the term Pσζ , we lead to

V̇ = Pσ [ẏd − â(x − σ )− bu− ĝ− ζ + (1− a)σ ]+
1
2
σ 2Ṗ

− [(ρ1ĝ+
1
γ1

˙̂g+Pσ )g̃]−[
1
4ρ1

(
1
γ1
ġ+ρ1g)2+(

√
ρ1g̃)2

−2(
√
ρ1g̃)(

1
2
√
ρ1

)(ρ1g̃+ρ1ĝ+
1
γ1
ġ)]+

1
4ρ1

(
1
γ1
ġ+ρ1g)2

− [(ρ0â+
1
γ0

˙̂a+ Pσ (x − σ ))ã]− [
1
4ρ0

(
1
γ0
ȧ+ ρ0a)2

+ (
√
ρ0ã)2 − 2(

√
ρ0ã)(

1
2
√
ρ0

)(ρ0ã+ ρ0â+
1
γ0
ȧ)]

+
1
4ρ0

(
1
γ0
ȧ+ ρ0a)2. (19)
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Using the adaptive laws proposed in (10), the third and sixth
terms in (19) are zero. Hence, we reach to

V̇ = Pσ [ẏd − â(x − σ )− bu− ĝ− ζ + (1− a)σ ]+
1
2
σ 2Ṗ

+
1
4ρ1

(
1
γ1
ġ+ ρ1g)2 − [(

√
ρ1g̃)−

1
2
√
ρ1

(
1
γ1
ġ+ρ1g)]2

+
1
4ρ0

(
1
γ0
ȧ+ ρ0a)2 − [(

√
ρ0ã)−

1
2
√
ρ0

(
1
γ0
ȧ+ρ0a)]2.

(20)

Since f is bounded and Lipshitz, g and a are two bounded
Lipschitz functions (refer to Definition 1). Consequently,
we have |g| ≤ Mg, |ġ| ≤ Mġ, |a| ≤ Ma, |ȧ| ≤ Mȧ, where
Mg, Mġ Ma, Mȧ are four positive constants. Thus, we lead to
the following inequality

V̇ ≤ Pσ [ẏd − â(x − σ )− bu− ĝ− ζ + (1− a)σ ]

+
1
2
σ 2Ṗ− H1 + δ, (21)

where

H1 = [(
√
ρ1g̃)−

1
2
√
ρ1

(
1
γ1
ġ+ ρ1g)]2 + [(

√
ρ0ã)

−
1

2
√
ρ0

(
1
γ0
ȧ+ ρ0a)]2 (22)

and

δ =
1
4ρ1

(
1
γ1
Mġ + ρ1Mg)2 +

1
4ρ0

(
1
γ0
Mȧ + ρ0Ma)2. (23)

Note that δ is a positive constant. Then by replacing
u = u1 + u2 as proposed in (8), we have

V̇ ≤ Pσ [(−
2q
P
σ )+ (−aσ )+ (−

1
2
rb2Pσ )+ (+

3
4
rb2Pσ )]

+
1
2
σ 2Ṗ− H1 + δ. (24)

The equation in (24) can be written as

V̇ ≤ σ 2[−2q− aP+
1
4
rb2P2 +

1
2
Ṗ]− H1 + δ. (25)

Then, by utilizing

Ṗ = 2aP− rb2P2 + 2q, (26)

we reach to

V̇ ≤ −[q+
1
4
rb2P2]σ 2

− H1 + δ. (27)

Here, u1 can be considered as the tracking part of the control
signal, while u2 is the compensating part. Finally, by defining
H2 = {[q+ 1

4 rb
2P2]σ 2

+ H1} > 0, we have

V̇ ≤ −H2 + δ. (28)

Referring to the LaSalle-Yoshizawa theorem [25], V is uni-
formly ultimately bounded (UUB). Since V includes the
tracking error and the estimation errors, we can deduce that
σ , g̃ and ã converge to a small radially bounded space around
origin. Finally, since ã is converging to zero, we can use â

instead of a in (26) by recalling Lemma 1. Then, we reach
to (9). This completes the proof.
Remark 1: The parameter δ defined in (23), can be

expanded as

δ = [(
1

4ρ1γ 2
1

M2
ġ )+ (

1
4
ρ1M2

g )+ (
1
2γ1

MġMg)]

+ [(
1

4ρ0γ 2
0

M2
ȧ )+ (

1
4
ρ0M2

a )+ (
1
2γ0

MȧMa)]. (29)

By choosing γ1 and γ0 large enough and also ρ1 and ρ0
adequately small, the value of δ will decrease and can reach to
zero. Therefore, the convergence of σ , ã and g̃ can be satisfied
faster.
Remark 2: The value of P as the main gain for proposed

controller and adaptive laws in Theorem 1, is updated online
utilizing (9). Referring to this property, there is not too
much effort to tune other controller gains (i.e. r , q) off-line.
Moreover, since the value of P are computed using the DRE
in (26), it is confirmed that P > 0 which is a requirement
for the stability analysis proposed in Theorem 1. For further
discussions, refer [27] and [28].
Definition 3: For the dynamic system proposed in (3) with

the tracking objective defined in Definition 2, we define a
cost-to-go function for time interval [t,∞) as

J =
∫
∞

t
L(σ, u)dτ, (30)

where

L = qσ 2
+

1
r
u21 (31)

is the utility function which presents the cost at each time step
of system operation.
Lemma 3: The cost-to-go function J can be represented by

J =
1
2
Pσ 2 (32)

as an energy function at the current time step t .
Proof: Consider

S =
∫
∞

t

d
dτ

[
1
2
Pσ 2]dτ. (33)

Then, we have

S = V1(∞)− V1(t) (34)

where

V1(t) =
1
2
Pσ 2(t). (35)

Recalling Theorem 1, we know that V1 converges to zero
when time reaches to infinity (i.e. V1(∞) = 0). Hence,

S = −V1(t). (36)

By adding and subtracting S (defined in (33) and (36)) from
the right-hand side of (30), we have [29]

J = V1(t)+
∫
∞

t
[
d
dτ

V1 + qσ 2
+

1
r
u21]dτ. (37)
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Besides, referring to Lemma 1 and utilizing Theorem 1,
we can have the system dynamics as follows

ẋ = âx + bu+ ĝ. (38)

Hence, by replacing V1 from (35) in (37) and also utiliz-
ing (38), we have

J = V1(t)+
∫
∞

t
[Pσ (ẏd − âx − bu− ĝ+ e)+

1
2
σ 2Ṗ

+ qσ 2
+

1
r
u21]dτ. (39)

Then, by utilizing u = u1 + u2 defined in (8), we reach to

J = V1(t)+
∫
∞

t
[−2q− âP−

1
2
rb2P2 +

3
4
rb2P2 +

1
2
Ṗ

+ q+
1
4
rb2P2]σ 2dτ, (40)

where the term inside the bracket is zero using the scalar
DRE defined in (9). Finally, it follows to (32) and the proof
is completed.
Proposition 1 [29]: For the dynamic system defined in (3)

and the cost-to-go and utility functions defined in Defini-
tion 3, the optimal control can be achieved by utilizing the
Hamilton-Jacobi-Bellman (HJB) equation as follows [29]

0 = min
u=uop
{L(σ, u)+

dJ (σ )
dt
}. (41)

Theorem 2: For the dynamic system proposed in (3) with
the cost-to-go and utility functions defined in (32) and (31),
the designed control input suggested in (8) includes an opti-
mal control policy.
Proof: By replacing J and L from (31) and (32) in (41),

we have

0 = min
u=uop

[qσ 2
+

1
r
u21 + Pσ σ̇ +

1
2
σ 2Ṗ]. (42)

By computing σ̇ according to (4) and (5) and using (38),
we lead to

0 = min
u=uop

[qσ 2
+
1
r
u21+Pσ (ẏd − âx − bu−ĝ+ e)+

1
2
σ 2Ṗ].

(43)

Then by utilizing u proposed in (8), we reach to

0 = min
u=uop

[qσ 2
+

1
4
rb2P2σ 2

+ (−2q− âP−
1
2
rb2P2

+
3
4
rb2P2 +

1
2
Ṗ)σ 2], (44)

where it is zero utilizing the DRE defined in (9). More-
over, by computing the derivative of (43) with respect to u1,
we have

0 = +
2
r
u1 − bPσ, (45)

which can be satisfied by replacing u1 from (8). It means that
u = uop + u2, where uop = u1 satisfies the HJB equation
presented in (41). Then, the proof is completed.

IV. COMPARATIVE RESULTS
A. CASE-1: UNSTABLE NONLINEAR SYSTEM
In this section, an unstable nonlinear system is considered for
evaluating the performance of the proposed AMFC. Dynamic
system for the unstable plant is considered as follows [13]

ẋ = x + u3

y = x. (46)

Here, we have compared the performance of AMFC with a
well-known sliding-mode controller (SMC) defined as [26]

u = −
ẏd − e+ ρssat(σ )

b

sat(σ ) =
σ

|σ | + ε
(47)

and an MFC policy proposed in [13] as

u = −
f̂ − ẏd − kpe− kiζ

b

f̂ =
1
l0

∫ t

t−l0
[ẏd − bu+ kpe+ kiζ ]dτ. (48)

The MFC presented in (48) is known as intelligent-PI (iPI) in
the literature. Besides, we have considered the cost function

C =
∫ tf

0
[e2 + u2]dτ, (49)

TABLE 1. Properties of the controllers in Case-1.

where tf is the terminal time for the simulation study, as a
measure to compare the controllers regarding their perfor-
mance. It should be noted that C includes the tracking error
and the control effort, both. Hence the controller with less
tracking error but too much control effort is also penalized.
Tuning parameters for the controllers are defined such that
we can have almost equal values of C among them, since the
controllers are strong enough to have the same tracking per-
formance (with minor differences). In this way, we can com-
pare the controllers regarding the fluctuations in the control
signals. The properties of threementioned controllers for sim-
ulation of the dynamic system in (46) are presented in Table 1.
Here, r = q = 1. The tuning parameters for AMFC are
chosen to have fast convergence in the adaptive laws, as sug-
gested in Remark 1. As mentioned before, the values of C
corresponding to each controller are kept almost the same by
choosing the appropriate tuning parameters in SMC and iPI.
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FIGURE 1. Case-1: Tracking performance; the whole (top) and in
detail (bottom).

FIGURE 2. Case-1: Tracking error.

The simulation results for comparison of the controllers’ per-
formance are depicted in Fig. (1) to Fig. (5). As can be seen,
the tracking performance of AMFC is superior to those of iPI
and SMC. Moreover, the convergence of unknown linear and
nonlinear parameters and consequently the controller gain to
finite values are observed using AMFC. The control signals
produced by SMC and iPI exhibit fluctuations and aggressive
perturbations. On contrary, the signal for AMFC is suggesting
a more smooth control effort. This is shown in Fig. (6),
where the fast Fourier transform (FFT) of the control input
signals produced by SMC, iPI and AMFC are compared. The
control signals generated by SMC and iPI have several dom-
inant frequencies less than 150 Hz as presented in Table 1.
The control signal produced by AMFC does not have any

FIGURE 3. Case-1: Control signal.

FIGURE 4. Case-1: Estimated value for nonlinear term in AMFC.

FIGURE 5. Case-1: Top: Estimated value for linear term; and
bottom: Controller gain in AMFC.

dominant frequencies. The dominant frequencies in a control
signal can excite the natural and structural frequencies of
any dynamical system and consequently can lead to severe
problems in the system. Hence, more smooth control signal
is preferred [32].

B. CASE-2: DELAY SYSTEM
In this section, a delay system with dynamics as follows [13]

ẏ(t) = y(t)+ 5y(t − τ )+ u(t) (50)
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FIGURE 6. Case-1: FFT for control inputs.

FIGURE 7. Case-2: Tracking performance; the whole (top) and in
detail (bottom).

FIGURE 8. Case-2: Tracking error.

where τ is a time-varying delay function as

τ (t) = τ (t − T0)+ 10T0sgn(N (t)), τ (0) = 2.5s, (51)

is considered for simulation study. Here, T0 is a constant value
and N (t) is a zero-mean Gaussian distribution with standard

TABLE 2. Properties of the controllers in Case-2.

FIGURE 9. Case-2: Control signal.

FIGURE 10. Case-2: Estimated nonlinear term in AMFC.

FIGURE 11. Case-2: Top: Estimated value for linear term; and
bottom: Controller gain in AMFC.

deviation equal to 1. The tuning parameters and the properties
of the controllers for simulation of the dynamic system in (50)
is presented in Table 2. The AMFC is tuned same as in Case-1
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FIGURE 12. Case-2: FFT of control inputs.

FIGURE 13. Application: Tracking performance.

without any change in tuning parameters. Again, the values
of C are almost equal for the three controllers. The simulation
results for the delay system are presented in Fig. (7) to
Fig. (11), proving that the AMFC’s performance supersedes
the rest. In addition, the asymptotic convergence of ĝ, â and
consequently P are achieved in AMFC. Online adaptation
of P, reduces the efforts needed for off-line tuning of the
other control parameters in AMFC. In this case, there is a
dominant frequency about 28 Hertz in the control signals of
SMC and iPI, while the AMFC control signal is more smooth
(Fig. (12)).

V. APPLICATION
In this section, the proposed AMFC is applied to a Duffing-
Holmes chaotic systemwhich is a well-known dynamic oscil-
lator. The dynamic system is [33]

ẋ1 = x2
ẋ2 = −p1x1 − px2 − x31 + q cosωt + h(x, u)+ d(t)

y = x1, (52)

FIGURE 14. Application: top: control signal; and bottom: controller gain.

FIGURE 15. Application: top: estimated values for linear term; and
bottom: estimated values for nonlinear term.

where p1 = 0.3 + 0.2 sin 10 t , q = 5 + 0.1 cos t , p = 0.2 +
0.2 cos 5t , ω = 0.5 + 0.1 sin t , h(x, u) = u + 0.5 cos u and
the external disturbance is d = 0.4 sin 0.2π t + 0.3 sin x1 x2.
The desired trajectory for this system is considered as
yd = sin t + cos 0.5 t . The tuning parameters for AMFC
algorithm in this case is presented in Table 3. Also, the simu-
lation results are depicted in Fig. 13 to Fig. 15. The tracking
objective is satisfied. Since the plant in (52) is a double-
integrator dynamic system, there are two system states and
one control inputs. In this regards, there are two unknown
linear terms and two unknown nonlinear terms which are
estimated online (as shown in Fig. 15).
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TABLE 3. Properties of the AMFC in application case.

VI. CONCLUSION
In this paper, the design procedure for an adaptive model-free
control policy based on the ultra-local model is presented for
a SISO system. Here, a technique is proposed for determining
the main controller gain in an online manner. Such efficacy
brings convenience in terms of controller tuning as there is
a very minimal adjustment needed on the available tuning
knobs. Utilizing model-free estimation algorithms for esti-
mating both unknown nonlinear and linear terms, the need
for PE condition is removed. According to the simulation
results, the tracking performance of AMFC is more accurate
than those of SMC and iPI controllers. In addition, the control
policy generated by AMFC is smoother than the ones gener-
ated by SMC and iPI, which have some dominant frequencies
that can lead to a resonance in the dynamic system. The
proposed online adaptive model-free control policy has a
smooth control effort that makes the algorithm applicable
directly on dynamic systems, as it is shown in application for
an oscillator plant. Additionally, it can be implemented on any
SISO andMIMO single agent system and be further extended
to accommodate for a multi-agent network problem.
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