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ABSTRACT Recently, with various developing sensors, mobile devices have become interesting in the
research community for indoor localization. In this paper, we propose Twi-Adaboost, a collaborative
indoor localization algorithm with the fusion of internal sensors, such as the accelerometer, gyroscope, and
magnetometer from multiple devices. Specifically, the data sets are collected first by one person wearing
two devices simultaneously: a smartphone and a smartwatch, each collecting multivariate data represented
by their internal parameters in a real environment. Then, we evaluate the data sets from these two devices
for their strengths and weaknesses in recognizing the indoor position. Based on that, the Twi-AdaBoost
algorithm, an interactive ensemble learning method, is proposed to improve the indoor localization accuracy
by fusing the co-occurrence information. The performance of the proposed algorithm is assessed on a real-
world dataset. The experiment results demonstrate that Twi-AdaBoost achieves a localization error about
0.39 m on average with a low deployment cost, which outperforms the state-of-the-art indoor localization
algorithms.

INDEX TERMS Indoor localization, Twi-AdaBoost, fusion, internal sensors, multiple devices.

I. INTRODUCTION
Typical tasks for indoor localization with mobile devices
include many applications, such as medical assistance
(patient tracking) [2], elderly care (aged pedestrian track-
ing) [2] and underground mining safety [4], which have
attractedmany researchers’ attention in recent time. However,
it is challenging to obtain the accurate pedestrian localization
in indoor environment due to multiple reasons. First of all,
it is difficult to measure the distance due to the complexity
of human movements in the GPS-denied, crowded and clut-
tered indoor environment. Also any sensor system used by a
pedestrian should be wearable and portable, which makes it
difficult to use certain sensors, such as laser range scanners
although they can be successfully used in robotic applica-
tions [14]. In addition, instead of localizing a target in some
area sporadically or on demand, the localization of pedestrian
should be continuously and possibly in real-time.

With the availability of new small and inexpensive
sensors, which enables practical tracking of individuals
(who must carry them at all times), the localization of pedes-
trian in indoor environment has been improved significantly.

In recent years, there has been an increasing interest in the
development of pedestrian navigation systems for satellite-
denied scenarios. The popularization of smartphones and
smartwatches is an interesting opportunity to reduce the
infrastructure cost of the positioning systems. If these devices
compute their own positions using their internal sensors,
it requires very little, if any, physical infrastructure to func-
tion. Moreover, this offers a degree of location privacy since
users can select whether they share the information with any
third party or not.

Some of the existing technological approaches for indoor
location systems, such as the infrared light, ultrasonic sen-
sors, WLAN, RFID, Ultra Wideband, ZigBee and computer
vision, are not suitable formobile devices [18] and [19]. Since
a dedicated infrastructure or higher processing capabilities
are necessary for these technologies, this hinders the sys-
tems miniaturization and scalability. In addition, the above
technologies can lead to sub-optimal positioning because the
communication access points are rarely deployed to pro-
vide the optimal location geometry and coverage overlap.
Therefore, mobile devices equipped with a variety of sensors
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(e.g., accelerometer, gyroscope, magnetometer) have become
popular in modern indoor localization systems [19].

Motivated by the lack of a comprehensive approach in
multi-device based context recognition research, we propose
a multi-device context indoor localization system using sev-
eral kinds of sensors in both smartphone and smartwatch. The
Twi-AdaBoost algorithm is utilized to purse the optimal com-
bination of sensors from multiple devices. By following this
approach, the system is able to obtain an accurate location.
The proposed fusion approach reduces the mean localiza-
tion errors of position x (0.387m) by 51.26% as compared
to using Generalized Regression Neural Network (GRNN)
algorithm [25] on the combined dataset, where the datasets of
smartphone and smartwatch are merged by simply combining
all the features. As for the mean localization error of position
y (0.398m), the proposed fusion approach is improved by
62.56% compared to GRNN [25]. The other state-of-the-
art indoor localization algorithms, such as Support Vector
Regression (SVR) [24] perform worse than GRNN [25] on
the simply combined dataset.

The rest of the paper is organized as follows. In Section II,
this paper reviews related works. Section III presents the
proposed Twi-AdaBoost fusion strategy and its knowledge
background. The datasets analysis and preprocessing, exper-
imental results as well as performance evaluations are intro-
duced in Section IV. Finally, Section V concludes the
paper.

II. RELATED WORK
In outdoor environments, Global Positioning System (GPS)
is one of the most popular way to localize mobile devices.
However, in indoor environments where the GPS signals are
not receivable or usable, different models were proposed to
solve the indoor localization problems.

Chen et al. [28] proposed a Convolutional Neural Net-
work that used the Channel State Information of only one
access point and achieved an average localization error
of 1.36m, but has a high training complexity. In contrary,
a low computational complexity model was proposed in [17]
which achieved a localization error of 2.1m. In that model,
an AdaBoost algorithmwith C4.5 method as a weak classifier
was used to combine the RSS and orientation information
to improve the accuracy of indoor localization. It included
two phases, the offline phase and online phase. In the offline
phase, a database of the RSS from different access points at
each reference location for the target environment was built;
in online phase, the localization was determined by means
of a sample of RSS collected in a particular position and an
estimation model that used database information. Although
the proposed model was not more accurate than other models,
it demonstrated that it was possible to execute such mod-
els on resource-constrained devices. GRNN was proposed
in [25], where RSS data gathered at the access points from
the referenced nodes were used to train the GRNN model
and the target node position was calculated by the weighted
centroid method. Wu et al. [24] used the SVR model to

solve the missing value location estimation problem. Utiliz-
ing other machine learning technologies, such as LR [27]
which is a RSS-based localizaiton method, localization accu-
racy was improved by correcting the distance circles using
LR model.

In [21], a sensor fusion framework was proposed by
combining WiFi, Pedestrian Dead Reckoning (PDR) and
landmarks. It used the linear Kalman filter to simplify the
sensor fusion problem on a smartphone. The weighted path
loss algorithm was used in the WiFi localization due to its
simplicity and effectivity, while in the pedestrian dead reck-
oning approach the initial estimation error was amended by
landmarks. A Kalman filter was used to fuse magnetometer
and gyroscope records in order to improve the accuracy of
walking direction estimation. The localization accuracy of
this approach was 1m on an average. However, the additional
landmarks with the known positions should be provided
to help this approach restart when the users went through
these landmarks. At the same time, Ma et al. [12] used the
weighted fusion to improve the WiFi-based indoor localiza-
tion. There were two steps in this algorithm: the offline acqui-
sition and the online localization. In the offline acquisition
process, the optimal parameters were selected to complete
the signal acquisition. In addition, the fingerprints database
was built. In the online localization process, a pre-match
method was employed to select the candidate fingerprints to
shorten the positioning time. Then, two intermediate results
were obtained by using the improved Euclidean distance
and the improved joint probability. The final results were
calculated by fusing these two intermediate results with dif-
ferent weights. More similar work can be found in [9]–[11].
However, the time required to install, configure and main-
tain the WiFi systems together with the expense of access
points have limited the general deployment of these indoor
algorithms.

Fusing the internal sensors is popular in human activity
recognition [13], [16]. For example, in [16], the data coming
from embedded sensors on the smartphone and environmen-
tal sensors were fused by a decision tree based on multi-
sensor data-stream. Then they used the Recurrent Neural
Networks (RNNs) to model the RSS stream.

However, few previous researchers did work on sensor
fusion from multi-device in indoor localization. In this
paper, to use the richer context information, we propose a
Twi-AdaBoost algorithm which combines the data of self-
contained sensors frommultiple devices, like smartphone and
smartwatch.

III. METHODOLOGY
Indoor localization has been an important issue in recent
time. To solve this problem, a Twi-AdaBoost fusion strategy
is proposed, exploiting the intrinsic correlation between two
conditional independent datasets from smartphone and smart-
watch to boost the ability of prediction of the pedestrian’s
location from a crowded and cluttered background.
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FIGURE 1. Example of cart regression tree.

A. BUILDING A WEAK LEARNER BASED
ON THE CART ALGORITHM
In 1984, Breiman et al. [15] proposed the CART method
by building a binary decision tree according to some split-
ting rules based on the predictor variables to address the
regression problem. Suppose that the CART method takes
a training dataset with instances (x1, y1), · · · , (xn, yn) as
input, where each xi belongs to the features space X (such as
accelerometer, gyroscope and magnetometer) and each label
yi is in the reference location dataset and yi ∈ R. Fig. 1
depicts an example of the cart regression tree based on the
experiment dataset [6]. The subsets created by the splits are
named nodes, otherwise, they will be named by terminal
nodes. A regression tree partitions the X -space into disjoint
regions Ak and provides a fitted value E(Y |X ∈ Ak ) within
each region.

The tree is implemented recursively with the following
steps in Algorithm 1.

Algorithm 1 Construction of Cart regression model
Input : Training dataset

(x1, y1), · · · , (xn, yn) and y ∈ R; CART .
for Each node xi ∈ X do

Examine every allowable split on each reference
location variable yi. Binary questions, like
Is xi > c?, are used to generate the binary splits.
Select and execute the ‘best’ of these splits.
Stop splitting on a node when some stopping rule is
reached.

end
Output: CART regression model H (x)

The CART regression method is selected as the weak
leaner based on the following two main reasons:
• It is simple and fast. In addition, it is not significantly
impacted by outliers in the input variables.

• It is nonparametric and does not rely on the dataset
distribution.

B. ADABOOST.R2 REGRESSION MODEL
AdaBoost.R2 is one of most popular ensemble learning algo-
rithms, which is designed to solve the regression problem [5].
In AdaBoost.R2, a set of weak classifiers are trained to form
a strong classifier. Initially, each training instance receives a
uniform weightwi, which indicates the relative importance of
each instance. After each iteration, the weight of the instance
with the larger real-valued error ei =

|yi−ht (xi)|
maxni=0|ei|

will be
increased, otherwise, the weight will be decreased. In this
case, the weaker learner is forced to focus on the ‘‘hard’’
examples in the training dataset. In particular, three loss
functions can be selected in AdaBoost.R2: e′i =

ei
D (linear),

e′i = ( eiD )
2 (square), e′i = 1− exp(−ei/D) (exponential). The

pseudo code of AdaBoost.R2 is given in Algorithm 2.

C. TWI-ADABOOST FUSION STRATEGY
Localization techniques based on individual dataset have
their own strengths and weaknesses. In this paper, we investi-
gate the potential of fusing both smartphone and smartwatch
datasets to better infer the pedestrian’s indoor localization.

Fig. 2 depicts the proposed Twi-AdaBoost algorithm based
on the collaborative exploitation of smartphone-smartwatch
characteristics. The training datasets are first extracted from
smartphone and smartwatch using their internal sensors, such
as the accelerometer, gyroscope and magnetometer. Then,
the Twi-AdaBoost strategy is used to improve the localization
performance. Ultimately, the accurate location is obtained by
combing all generated weak learners.

Fig. 3 illustrates the interactive ensemble learning process
across multiple datasets to form a consolidated fusion by
interactively exploiting the complementary sensor features
from different devices, which is the key difference from
the traditional AdaBoost.R2 algorithm. The pseudo-code for
Twi-AdaBoost is given in Algorithm 3. Twi-AdaBoost works
by training the weak learner with an initial sample weight
and evaluating its prediction by comparing the results to each
other in form of the penalty factor. With this information new
weights are generated and used for the next iteration.
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FIGURE 2. Proposed Twi-AdaBoost algorithm based on the collaborative exploitation of smartphone and smartwatch.

Algorithm 2 AdaBoost.R2
Input : Training dataset (x1, y1), ..., (xn, yn) y ∈ R;

WeakLearner ; Iteration T ; Initial weight
distribution Dt i = 1

n , i ∈ [1, n]
for each iteration t ∈ [1,T ] do

Call WeakLearner , providing it with a distribution
Dt .
Build the regression model: ht (x)→ y for regression
problems.
for each instance xi do

Calculate the adjusted error
eti =

1−exp(−|yi−ht (xi)|)
Dt

. Dt = maxnj=1|yj − ht (xj)|.
end
Calculate the adjusted error of ht : εt =

∑n
i=1 e

t
iw

t
i ; if

εt ≥ 0.5, stop and set N = t − 1.
βt =

εt
1−εt

.

Update the weight vector: wt+1i =
wtiβ

1−eti
t
Zt

, where Zt
is a normalization factor selected such that wt+1i will
be a distribution.

end
Output: Strong classifier H (x) is the weighted median

of ht (x) for t ∈ [1,T ], using log 1
βt

as the
weight.

In Algorithm 3, initially, each sample has a uniform weight
D1
j (i) = 1/M of the ith training sample on the jth dataset,

which indicates the relative contribution of each sample for
the final prediction result. The weight will be changed after
each iteration. The weight Dt+1j (xji) of each sample in Twi-
AdaBoost is decided by both the real-valued error L tj (xji)
and the punishment factor Ptj (xji), which is introduced to
convey the complementary characteristics across the two
datasets into the ensemble learning process. The penalty
degree of the weight is controlled by the scale factor Ptj (xji),
which is decided by the value of ptj (xji) of all weak learners

f tj (xji) achieving the agreement with both f tk (xji) and yi at
the tth iteration. With exploitation of both datasets from
smartphone and smartwatch, the ‘‘hardest’’ samples will be
punished with the largest weights, which forces the new
weak learners to focus on the ‘‘hardest’’ samples in the
next generation and helps this algorithm to achieve better
performance.

IV. EXPERIMENTS
A. DATASET ANALYSIS
In the experiment, the indoor localization datasets of paper [6]
are employed to test the proposed algorithm. The datasets
with over 36000 continuous samples are collected in a
185.12 m2 real indoor environment. The user was wearing
two devices simultaneously, such as a Sony XperiaM2 smart-
phone and a LG W110G smartwatch, to collect the data in
each campaign. Fig. 4 from paper [6] depicts the overall
map, where the data collection was performed. There are two
rooms, two corridors and one small entrance hall inside this
indoor office environment. Each dot in the map corresponds
to a detection point and each dot is 0.6meters far from another
since each dot occupies 0.6 m × 0.6 m. For each of them,
features of sensors in each device were collected. A zig-zag
trajectory was performed by two different users who were
wearing the same equipments to cover the entire map. The
walking speed of each user was 0.6 m/s on an average. Each
sample was collected about every 100 millisecond and the
collection time is very short.

All the recorded datasets include the following features:

• Place ID, Timestamp;
• Accelerometer_X, Accelerometer_Y, Accelerometer_Z,
MagneticField_X, MagneticField_Y, MagneticField_Z,
X_Axis Angle (Pitch), Y_Axis Angle (Roll), Z_Axis
Angle (Azimuth), Gyroscope_X, Gyroscope_Y,
Gyroscope_Z.

The exact numbers of recorded samples in each measure-
ment can be found in table 1.
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FIGURE 3. Interactive training process of Twi-AdaBoost across datasets from both smartphone and smartwatch.

B. DATASET PREPROCESSING
The datasets [6] were collected by recording the internal
sensor data of different devices about every 100 millisecond

when the walking speed of each user was 0.6 m/s on an
average. Thus, they might be not perfectly synchronized and
have a slight offset in time. Therefore, we filter the provided
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FIGURE 4. Map of the data collecting environment.

TABLE 1. Number of total samples recorded.

data beforehand to enable their suitable for our algorithm.
Furthermore, some samples are not usable, as their precise
recording position is unknown.

The samples of datasets are preprocessed and filtered out
according to the following conditions:

1) As the datasets contain recorded samples that are not
uniquely assignable to the given reference points, some
samples are removed in order to assure the correct
labeling of the data.

2) Each sample needs to have a counterpart-sample in
all other datasets, which was recorded within a 50ms
sliding window, in order to make sure that the sample-
pairs were recorded almost simultaneously. For exam-
ple, a sample pair consists of two samples, one recorded
on the smartphone and one recorded on the smartwatch
with max time difference of 50ms.

3) Each sample can only be chosen either once or never to
ensure that no sample is used twice and therefore unin-
tentionally weighted higher than the other ones. This
creates a one-to-one relationship between the selected
samples of each dataset, illustrated in Fig. 5.

After filtering out the datasets according to the above
conditions, there are 14228 samples and 12608 samples from
both smartphone and smartwatch in the first measurement
and second measurement, respectively.

Finally, all features are normalized using min-max scaling
technique [23]. The definition of it is given in equation (1),
where x ∈ X is the original and x ′ ∈ [a, b] is the rescaled

FIGURE 5. Illustration of a valid possible connection between samples
of each dataset after preprocessing.

value.

x ′ =
(b− a)(x − min(X ))
max(X )− min(X )

(1)

C. PERFORMANCE METRICS
In order to evaluate the results of Twi-AdaBoost algorithm,
the performance metrics provided by scikit-learn [22] are
employed in this paper. For example Root Mean Squared
Error (RMSE), which is used to measure the differences
between the values estimated by a model and the values
actually observed; Explained Variance Score (EVS), which
is used to compute the explained variance regression score;
Mean Absolute Error (MAE), which is a risk metric corre-
sponding to the expected value of the absolute error loss as
well as the box-and-whiskers plots, which can display the
variation in samples of a statistical population and detect the
outliers being plotted as individual points.

The RMSE estimated over nsamples is defined as equa-
tion (2), where y′i is the predicted value of the i-th sample
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Algorithm 3 Multi-Device AdaBoost Algorithm
Input : The training dataset

S = {(xji, yi)j=1, ..., N ; i=1, ..., M }, where N is
the number of different datasets from different
devices and M the number of samples;
WeakLearner ; Iteration T ; Initial weight of
each sample: D1

j (i) = 1/M .
for t = 1 to T do

for j = 1 to N do
Get a random integer r ∈ [1,M ] and generate a
subset R, containing the r highest weighted
samples of S.
Train the weak classifier with R and Dtj and
build the regression model f tj (xj).

end
for j = 1 to N do

Calculate the distance of each sample xji in S
and the prediction with l tj (xji) = |f

t
j (xji)− yi|.

Calculate the loss function L tj (xji) for each
sample using the exponential loss function as

L tj (xji) = 1− exp(−
ltj (xji)

maxi=1,..., M (ltj (xji))
).

Calculate the weighted loss as
L̄ tj =

∑M
i=1 L

t
j (xji)D

t
j (xji).

Set β tj =
L̄tj

1−L̄tj
.

For each sample xji in S, calculate the
punishment factor

Ptj (xji) = 1− exp(−
ptj (xji)

maxi=1,..., M (ptj (xji))
), where

ptj (xji) =
1
N (|f

t
j (xji)− yi| +

∑N
k=1(|f

t
j (xji)− f

t
k (xji)|).

For each sample xji in S, set

Dt+1j (xji) =
Dtj (xji)β

(1−Ltj (xji))(1−P
t
j (xki))

t

Z t where Z tj is
the normalization factor such that Dt+1j will be a
distribution.

end
end
Output: The strong classifier F(x) is the weighted

median of f tj (xj)(t=1, ..., T ; j=1, ..., N ), with
log( 1

β tj
) used as the weight.

and yi is the corresponding true value. The smaller the RMSE
value is, the better the performance of the proposed Twi-
AdaBoost algorithm. The EVS is estimated as equation (3),
where Var is the variance, i.e. the square of the standard
deviation. The higher the value is, the better the performance.
The best possible score is 1.0. Equation (4) depicts the MAE
estimated over nsamples.

RMSE(y, y′ ) =

√√√√√ 1
nsamples

nsamples−1∑
i=0

(yi − y′i)
2 (2)

EVS(y, y′ ) = 1 −
Var{y− y′}
Var{y}

(3)

MAE(y, y′ ) =
1

nsamples

nsamples−1∑
i=0

(|yi − y′i|) (4)

D. GENERAL RESULTS AND ANALYSIS
To verify the performance of the proposed Twi-AdaBoost
algorithm, we use 12608 samples including 6304 samples of
smartphone and 6304 samples of smartwatch in the second
measurement. About 85% samples are randomly selected
as the training set and the rest samples as testing set. The
metrics RMSE, EVS as well as box-and-whiskers plots
are utilized to evaluate the performance. In all the figures,
AdaBoost.R2 on SH denotes AdaBoost.R2 on smartphone
dataset; AdaBoost.R2 on SW denotes AdaBoost.R2 on
smartwatch dataset while AdaBoost.R2 on HW denotes
AdaBoost.R2 on the mixed dataset, where the datasets of
smartphone and smartwatch are merged by simply combining
all the features.

FIGURE 6. RMSE of position x estimation using Twi-AdaBoost and
AdaBoost.R2 methods.

1) ROOT MEAN SQUARE ERROR
In both Fig. 6 and Fig. 7, we can see that with the itera-
tion increase, the RMSE decreases. At the 50th iteration,
both AdaBoost.R2 and Twi-AdaBoost tend to be stable.
Fig. 6 depicts the RMSE of position x estimation using
Twi-AdaBoost and AdaBoost.R2 methods with iteration T
on the testing set. It is clear from Fig. 6 that compared
to AdaBoost.R2 on SH (1.42), the RMSE value achieved
by Twi-AdaBoost (0.69) is 51.63% lower while the RMSE
value obtained by Twi-AdaBoost is about 49.90% lower than
that of AdaBoost.R2 on SW (1.37) at the 50th iteration.
Compared with AdaBoost.R2 on HW, Twi-AdaBoost
achieves 40.54% improvement. Fig. 7 shows that RMSE of
position y estimation using Twi-AdaBoost and AdaBoost.R2
methods with iteration T on the testing set. We notice that
the RMSE of AdaBoost.R2 on SW (1.26) is better than that
of AdaBoost.R2 on SH (1.81). However, the RMSE value
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FIGURE 7. RMSE of position y estimation using Twi-AdaBoost and
AdaBoost.R2 methods.

achieved by Twi-AdaBoost (0.73) is 42.32% lower compared
to AdaBoost.R2 on SW at the 50th iteration. Compared with
AdaBoost.R2 on HW (1.32), Twi-AdaBoost achieves 45.10%
improvement.

FIGURE 8. EVS of position x estimation using Twi-AdaBoost and
AdaBoost.R2 methods.

2) EXPLAINED VARIANCE SCORE
As visible in Fig. 8 and Fig. 9, the EVS of both position x and
y increase with the increase of iteration. However, after the
30th iteration, the performance of EVS becomes stable. Fig. 8
describes that the EVS of position x estimation using Twi-
AdaBoost and AdaBoost.R2 methods with iteration T on the
testing set. It is demonstrated that Twi-AdaBoost outperforms
AdaBoost.R2 on SH, SW and HW, respectively. Specifi-
cally, the EVS of position x estimation of it attains 1.19%,
1.08% and 0.66% higher compared to AdaBoost.R2 on SH,
AdaBoost.R2 on SW and AdaBoost.R2 on HW, respectively.
In Fig. 9, it shows the EVS of position y estimation using
Twi-AdaBoost and AdaBoost.R2 methods with iteration T
on the testing set. The EVS of position y estimation of

FIGURE 9. EVS of position y estimation using Twi-AdaBoost and
AdaBoost.R2 methods.

AdaBoost.R2 on SH is worse than that of AdaBoost.R2 SW
while the EVS of AdaBoost.R2 on HW has almost same
performance with that of AdaBoost.R2 SW.The EVS of y
position estimation attained by Twi-AdaBoost is the highest
one with the EVS value 99.55%.

3) BOX-AND-WHISKERS PLOTS
Box-and-whiskers plots of the predicted position offsets are
shown in Fig. 10, Fig. 12 and Fig. 13, which is a more
complete performance analysis. The boxes refer to different
values of the updated period T based on different datasets
usingAdaBoost.R2 and Twi-AdaBoost, where the boundaries
of the box represent the 25th and 75th percentiles of the
sample data, respectively; the line within the box shows the
median;Whiskers above and below the box indicate the range
from the 90th percentiles and 10th percentiles, respectively;
the outliers are shown as dots. Notice that there are more
outliers in Fig. 10 and Fig. 12, which are obtained from smart-
phone and smartwatch dataset using AdaBoost.R2, respec-
tively. We can see that Fig. 13 obtains the best performance.

TABLE 2. Comparison results among Twi-AdaBoost and the
state-of-the-art.

E. COMPARISON RESULTS AND ANALYSIS
Table 2 illustrates the comparison results among the pro-
posed Twi-AdaBoost method and the state-of-the-art indoor
localization algorithms, where XRE denotes the RMSE on
X coordinate; YRE denotes the RMSE on Y coordinates;
Twi-Ada is Twi-AdaBoost; Ada.RT is AdaBoost.RT. It dis-
plays the performance of the different models, using the
metrics introduced previously, given the HW dataset, where
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FIGURE 10. Box-and-whiskers plots of the position offsets using
AdaBoost.R2 based on the smartphone dataset.

FIGURE 11. Box-and-whiskers plots of the position offsets using
AdaBoost.R2 based on the smartwatch dataset.

FIGURE 12. Box-and-whiskers plots of the position offsets using
AdaBoost.R2 based on the mixed dataset.

the datasets of smartphone and smartwatch are merged by
simply combining all the features. We conduct extensive
numerical studies on randomly selected different initial data.

FIGURE 13. Box-and-whiskers plots of the position offsets using
Twi-AdaBoost based on the mixed dataset.

It is clear to see that the proposed Twi-AdaBoost outperforms
the other algorithms throughout all metrics on both coordi-
nates. GRNN is perfomring second best on the X coordinate,
but worse than Ada.RT on the Y coordinate.

V. CONCLUSION
In this paper, we introduce Twi-AdaBoost, an indoor collabo-
rative localization algorithm that explores the accelerometer,
gyroscope and magnetometer sensors on both smartphone
and smartwatch. The key contribution of the proposed
Twi-AdaBoost algorithm is fusing the co-occurrence infor-
mation to get a better performance for the indoor localization
based on the real world data. The indoor localization datasets
[6] used in this paper have the multisource characteristics,
which are supported by the presence of two different devices
collecting data simultaneously from the surrounding envi-
ronment: a smartphone and a smartwatch, respectively. Each
device collects multivariate data represented by their internal
sensors, such as acceleration, orientation, and gyroscope.
From the experiment results, it is obvious that Twi-AdaBoost
convincingly outperforms the state-of-the-art indoor local-
ization algorithms, taking advantage of the co-occurrence
correlation across the sensors from multiple devices. Specif-
ically, the localization error of position x and y achieved by
Twi-AdaBoost is 0.387m and 0.398m, respectively.

Considering the future work, we plan to utilize the corre-
lation between the position x and y in the same location to
improve the performance of the indoor localization in this
paper. In addition, we will focus on exploiting the datasets
combined by more co-occurrence information from multi-
ple devices, like the Camera and WiFi, by machine learn-
ing methods to improve the localization accuracy in indoor
environment.
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