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ABSTRACT The extraction of features from the fully connected layer of a convolutional neural network
(CNN) model is widely used for image representation. However, the features obtained by the convolutional
layers are seldom investigated due to their high dimensionality and lack of global representation. In this study,
we explore the uses of local description and feature encoding for deeply convolutional features. Given an
input image, the image pyramid is constructed, and different pretrained CNNs are applied to each image scale
to extract convolutional features. Deeply local descriptors can be obtained by concatenating the convolutional
features in each spatial position. Hellinger kernel and principal component analysis (PCA) are introduced
to improve the distinguishable capabilities of the deeply local descriptors. The Hellinger kernel causes the
distance measure to be sensitive to small feature values, and the PCA helps reduce feature redundancy.
In addition, two aggregate strategies are proposed to form global image representations from the deeply
local descriptors. The first strategy aggregates the descriptors of different CNNs by Fisher encoding, and
the second strategy concatenates the Fisher vectors of different CNNs. Experiments on two remote sensing
image datasets illustrate that the Hellinger kernel, PCA, and two aggregate strategies improve classification
performance. Moreover, the deeply local descriptors outperform the features extracted from fully connected
layers.

INDEX TERMS Convolutional neural networks (CNN), image classification, local description, remote
sensing.

I. INTRODUCTION
As a fundamental task, remote sensing image (RSI) clas-
sification plays an important role in many remote sensing
applications [1], [2], such as hazard detection, determina-
tion of land use and land cover, geospatial object detection,
geographic image retrieval, environment monitoring, urban
planning [3], spatial-temporal data analysis [4], [5], and smart
city [6]. In this study, we focus on the stage of feature rep-
resentation in RSI classification, considering robust feature
extraction is a critical step for obtaining a high classification
performance.

Numerous methods for RSI classification have been devel-
oped during the past years. Existing methods can be divided
into three main categories according to feature type. They
are low-level, mid-level, and deep features. Early works on

RSI classification were mainly based on low-level features,
which aim to construct various handcrafted features, such
as color features, shape features, texture features, spectral
information, or a combination of multiple feature cues. Typ-
ical handcrafted features are color histograms [7], scale-
invariant feature transform (SIFT) [7], Gabor texture [8],
GIST [8], local binary patterns [9], and histograms of ori-
ented gradients (HOG) [10]. However, handcrafted features
should be redesigned for different data types, which causes
feature extraction to heavily depend on the experiences of
researchers.

For mid-level features, bag-of-visual-words (BOW) [7],
[11] is a popular topic in image representation. Early works
on BOW were applied to text analysis [12]. Since then,
BOW has been widely used for image representation, such as
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counting the frequency of visual words emerged in images.
The visual words can be obtained by low-level features (e.g.,
dense SIFT [13]). The quantization of the low-level features is
implemented by k-means or Gaussian mixture model (GMM)
clustering to divide a set of descriptors into clusters, thereby
causing within-cluster samples to be similar and between-
cluster samples to be dissimilar. The classification pipeline
of mid-level-based image representation generally consists
of three stages [14]: (1) extracting low-level features, such
as dense SIFT, HOG, or other types of local descriptors;
(2) aggregating these low-level features into a global image
representation by feature encoding; and (3) classifying the
global image features using a classifier, such as support
vector machine (SVM). In the past years, researchers have
been dedicated in developing the second stage, and numer-
ous feature encoding methods, such as locality-constrained
linear encoding [15], improved Fisher encoding [16], super
vector encoding [17], and kernel codebook encoding [18],
have been proposed. The abovementioned feature encoding
methods can be divided into two types. First, local descrip-
tors are represented by combinations of visual words (e.g.,
kernel codebook encoding, local linear encoding). Second,
the differences between the local descriptors and visual words
are computed (e.g., improved Fisher encoding, super vector
encoding). In the field of RSI classification, Sheng et al. [19]
proposed a multiple feature combination method using sparse
coding framework. Zheng et al. [20] introduced multi-feature
joint sparse coding with spatial relation constraint. Cheriya-
dat [21] explored unsupervised feature learning by extract-
ing dense low-level feature descriptors, followed by sparse
encoding with learned basis functions. Kobayashi [22] pro-
posed Dirichlet Fisher kernel to transform histogram-based
features (e.g., dense SIFT) for improving the distinguishabil-
ity of feature representation without increasing dimensional-
ity. Chen and Tian [23] proposed pyramid-of-spatial-relation
to investigate the absolute and relative spatial relationships of
dense SIFT. Wan et al. [24] proposed a combination of mul-
tiple local descriptors by improved Fisher encoding. Overall,
SIFT, HOG, and other local descriptors are the basis of exist-
ing mid-level methods, and BOW representations heavily
depend on the extraction of low-level features.

Low-level or mid-level features are shallow representa-
tions. By contrast, deep-learning-based methods [25] can
obtain different levels of data abstractions, which can sig-
nificantly improve the description capability of image rep-
resentation. In 2012, a breakthrough for image classification
using deep convolutional neural networks (CNNs) was made
by Krizhevsky et al. [26]. Since then, CNNs have gained
great success for a wide range of image recognition applica-
tions. Numerous CNN architectures, such as AlexNet [26],
VGG-VD [27], and GoogLeNet [28], have been proposed
for ImageNet [29] classification or other visual recognition
applications. Several interesting works also exist in the field
of RSI classification. For example, Makantasis et al. [30]
proposed to use CNN for encoding spectral and spatial infor-
mation of hyperspectral images. Zhang et al. [31] proposed

a gradient-boosting random convolutional network that can
be used to combine multiple CNNs. In most cases, using
existing pretrained CNN models (trained on ImageNet) to
extract feature representations for RSIs is a more suitable
choice than designing and training a new CNN architec-
ture because pretrained CNNs have good generality and a
large-scale RSI dataset is unusual [32]. Penatti et al. [33]
investigated the generalization power of pretrained
CaffeNet [34] and OverFeat by using activation vectors
extracted from fully connected layers. Nogueira et al. [32]
conducted an extensive comparison analysis of three pos-
sible CNN strategies to explore the description capabilities
of existing CNN architectures. Wan et al. [35] proposed
selective CNNs and cascade classifiers to combine multiple
pretrained CNNs.

In addition to the use of activation vectors from the fully
connected layer of a CNN, the features in the convolu-
tional layer also contain abundant information, such as local
description. However, the features extracted from the convo-
lutional layer are seldom investigated in RSI classification.
To the best of our knowledge, Hu et al. [36] investigated dense
descriptors from the convolutional layer of a single CNN, and
the dense descriptors were directly aggregated into a global
representation by feature coding. In this study, we explore
local description and feature encoding for the features of
the convolutional layer in three aspects: (1) How to extract
deeply local descriptors? (2) How to make the deeply local
descriptors distinguishable? and (3) How to aggregate these
deeply local descriptors?

The main contributions of this study are as follows: (1)
With the use of image pyramid, two types of CNN, Caf-
feNet and VGG-VD16, are introduced to extract deeply local
descriptors and complement each other. The combination of
CaffeNet and VGG-VD16 indicates significant performance
advantages over a single CNN. (2) Principal component anal-
ysis (PCA) [37] and Hellinger kernel [38] are introduced
to the linear and nonlinear transformations of deeply local
descriptors. The distinguishability of deeply local descrip-
tors can be significantly improved by PCA and Hellinger
kernel, thereby improving RSI classification performances.
and (3) Two aggregate strategies are proposed to form a
global image representation from the deeply local descriptors.
The first strategy aggregates the local descriptors of different
CNNs by Fisher encoding [16], [40], and the second strat-
egy concatenates the Fisher vectors (FV) of different CNNs.
Both aggregate strategies indicate significant performance
improvements.

The remainder of this paper is organized as follows.
Section II elucidates the proposed method. Section III
presents the experiments on two RSI datasets. Section IV
concludes this paper.

II. PROPOSED METHOD
The proposed method consists of three parts, as shown
in Fig. 1. The first part extracts deeply local descrip-
tors from convolutional layers, given the input image and
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FIGURE 1. Framework of the proposed method. (a) Given an image from the image pyramid, numerous local descriptors
are extracted from the last convolutional layer using a CNN model. (b) Aggregate strategy 1: combination of local
descriptors from different CNNs, followed by feature encoding. (c) Aggregate strategy 2: concatenation of feature encoding
representations from different CNNs.

CNNmodel. Two types of pretrained CNN, namely, CaffeNet
[34] and VGG-VD16 [27], are used to extract deep convolu-
tional features and complement each other. The second and
third parts are the proposed aggregate strategies for the deeply
local descriptors.

In the first part (Fig. 1 (a)), an image pyramid is con-
structed, and each image in the pyramid is individually used
as the input of a CNN model to extract the convolutional
features from the last convolutional layer. A local descriptor
can be formed by concatenating the convolutional features

that are at the same spatial position from all feature maps.
Numerous local descriptors can be obtained for the image
pyramid (multiple scales and positions).

In the second part (Fig. 1 (b)), the local descriptors are
processed by two steps: (1) Hellinger kernel, which helps
improve distinguishability, is applied to the nonlinear trans-
formation of these deeply local descriptors. and (2) Con-
sidering that the dimensions of the deeply local descriptors
extracted from different CNNs are different, PCA is intro-
duced to reduce the dimensions of different descriptors to a
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fixed length, thereby allowing the local descriptors extracted
from different CNNs to be aggregated. Feature encoding,
such as Fisher encoding with GMM clustering, is selected to
aggregate the deeply local descriptors into a global represen-
tation, followed by linear SVM classification [41].

In the third part (Fig. 1(c)), the deeply local descriptors
obtained by the first part are also processed by Hellinger
kernel and PCA, similar to the second part. Then, the two
types of local descriptor (CaffeNet-based and VGG-VD16-
based) are individually aggregated by Fisher encoding with
GMM clustering to form the global representations. Finally,
the two types of global representations are concatenated to
enhance the mid-level representation, to which linear SVM
classification is performed.

A. DEEPLY LOCAL DESCRIPTION WITH
CONVOLUTIONAL LAYER
Existing CNN architectures (e.g., AlexNet [26], CaffeNet
[34], VGG-VD [27], GoogLeNet [28]) trained on Ima-
geNet can obtain different classification performances on
an ImageNet testing set. For example, VGG-VD and
GoogLeNet can obtain significant accuracy advantages over
AlexNet or CaffeNet. However, when transferring these
pretrained CNNs (trained on ImageNet) to other types of
datasets, such as RSIs, the abovementioned conclusion is
unnecessarily reasonable. The experimental results from
Xia et al. [2] indicated that pretrained CaffeNet shows a
better performance than that of GoogLeNet and performs
similar to VGG-VD in RSI classification. The performance
(well or poor) of a pretrained CNN on the original training
and testing dataset is generally independent of its perfor-
mance on another dataset. Therefore, both pretrained Caf-
feNet and VGG-VD are used to extract deep convolutional
features for enhancing the description capability of the deeply
local descriptors.

1) CaffeNet
As a reference model in Caffe open source framework, Caf-
feNet [34] is nearly a replication of AlexNet [26]. Unlike
AlexNet, CaffeNet has no data argumentation in the train-
ing stage, and the order of normalization and pooling is
exchanged. CaffeNet contains five convolutional layers and
three fully connected layers. The input size of CaffeNet
is 227 × 227 pixels with three channels (red–green–blue).
Each convolutional layer includes a linear convolution with
one or more nonlinear operations (e.g., local response nor-
malization, rectified linear units, and max pooling). The first
convolutional layer includes 96 filters (the size of each filter
is 11 × 11 × 3). The second convolutional layer includes
256 filters (the size of each filter is 5 × 5 × 48). The third
convolutional layer includes 384 filters (the size of each filter
is 3 × 3 × 256). The fourth convolutional layer includes
384 filters (the size of each filter is 3 × 3 × 192). The fifth
convolutional layer includes 256 filters (the size of each filter
is 3 × 3 × 192). The sixth to eighth fully connected layers
contain 4096, 4096, and 1000 neurons, respectively.

2) VGG-VD16
VGG-VD [27] won the localization and classification tasks
in ILSVRC 2014. As one of the best performing CNNs in
VGG-VD architectures, VGG-VD16 contains 13 convolu-
tional layers, 5 pooling layers, and 3 fully connected layers.
The input size of VGG-VD16 is 224× 224 pixels with three
channels (red–green–blue). The filter size of all convolutional
layers is selected to be 3 × 3 pixels uniformly, and the
stride of convolutional operation is set to 1 pixel. After the
convolutional operation, the size of the feature maps can be
preserved by spatial padding. Several convolutional layers are
followed by a max pooling layer. The size of a max pooling
region is 2× 2 pixels, and the stride is set to 2. The last three
fully connected layers contain 4096, 4096, and 1000 neurons.

3) EXTRACTING DEEPLY LOCAL DESCRIPTORS
A pretrained CNN can be considered a feature extractor
for image representation, including RSI, because the learned
convolutional kernels in the CNN model have minimal data
dependence. When we take a pretrained CNN model as
a feature extractor, a popular feature extraction strategy is
extracting an activation vector from the last fully connected
layer (except for the classification layer) [32], [33]. Although
the activation vector extracted from fully connected layers
can capture the global structure of an input image, it remains
sensitive to object changes, such as rotations and scales.
Thus, we investigate the deep features extracted from the
convolutional layer (rather than the fully connected layer) to
form local descriptions. The local descriptions can then be
aggregated through feature encoding to enhance the robust-
ness of image representationwith changes in rotations, scales,
and other local variations.

Given a pretrained CNN, the size of the input image must
be fixed because the weight connections between the last
convolutional layer and the first fully connected layer are
predefined. All of the fully connected layers are removed
in this study to overcome the limitation of input image size,
thereby enabling the pretrained CNN to accept an input image
with arbitrary size. An image pyramid is also constructed by
resizing the original input image to different sizes to obtain
abundant and multi-scale local descriptions. Each scale in
the image pyramid is individually used as the input of the
pretrained CNN to extract the feature maps of the last con-
volutional layer. Noting that these feature maps are not pro-
cessed by ReLU and max pooling because the two CNN
operations can greatly reduce the distinguishability of deeply
local descriptor. For each scale, a deeply local descriptor
with L2 normalization can be formed by concatenating the
convolutional features that are at the same spatial position
from all feature maps, as shown in Fig. 1(a).

B. FEATURE TRANSFORMATION WITH HELLINGER
KERNEL AND PCA
Two types of processing techniques, Hellinger kernel [38]
and PCA transformation [37], are introduced to make
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the deeply local descriptors distinguishable, as shown
in Figs. 1(b) and 1(c). The Hellinger kernel is a popular
technique for the nonlinear transformation of local descrip-
tors, such as histogram-based SIFT. Although the deeply
local descriptors extracted from the convolutional layer are
not strictly histograms, this study illustrates that applying
Hellinger kernel to these descriptors does indeed improve
their distinguish capabilities and the subsequent classification
performance.

The dimensional lengths of the local descriptors extracted
from CaffeNet and VGG-VD16 are inconsistent. For exam-
ple, the lengths of CaffeNet-based and VGG-VD16-based
local descriptors are 256 and 512 dimensions, respectively.
PCA can project different local descriptors into the same
length, thereby causing the ‘‘aggregate strategy 1’’ (Fig. 1(b))
for local descriptors with different dimensions to be feasible.

1) HELLINGER KERNEL
Distance measure exists in GMM clustering and feature
encoding for the deeply local descriptors. A suitable measure
for the descriptors should be selected. Euclidean distance is a
popular choice for the measure of different descriptors (e.g.,
xi, xj ) with L2 normalization. The Euclidean distance can be
defined as

dis(xi, xj)2 =
∥∥xi − xj

∥∥2
2 = ‖xi‖

2
2 +

∥∥xj∥∥22 − 2xTi xj, (1)

where ‖xi‖22 = 1,
∥∥xj∥∥22 = 1. Equation (1) can be further

represented by

dis(xi, xj)2 = 2− 2E, (2)

where E = xTi xj.
For the measure of histogram-based descriptors, using

χ2 or Hellinger can often perform better than using Euclidean
distance. Given arbitrary two local descriptors, the Hellinger
kernel [38] is defined as follows:

H (xi, xj) =
d ′∑
m=1

√
xmi x

m
j , (3)

where xi and xj are two descriptors with L1 normalization; d ′

is the dimension length of the local descriptor; and m is the
index of dimension. The two descriptors with L2 normaliza-
tion can be measured by a Hellinger kernel through replacing
the Euclidean kernelE withH . To achieveHellingermeasure,
each descriptor can be processed by two steps: (1) L1 normal-
ization of each descriptor, which is originally normalizedwith
L2 normalization; and (2) square rooting of each element.

2) PCA
PCA is a traditional subspace learning technique for dimen-
sionality reduction to alleviate curse-of-dimensionality [39],
and it seeks an optimal linear projection on the basis of least
mean square reconstruction errors. Given a d ′-dimensional
descriptor x and a learned PCA subspace W with d ′ × d

elements (d is the number of principal components), the pro-
jection of x is achieved by

x′ =WTx, (4)

where x′ is a d-dimensional vector. A large number of
local descriptors, x1, x2, . . . , xN , are collected from train-
ing images to learn W. The projection W containing d top
eigenvectors (corresponding to d largest eigenvalues) can be
obtained by computing the covariance matrix of the local
descriptors and performing eigenvalue decomposition.

C. ENCODING DEEPLY LOCAL DESCRIPTORS
Given a set of deeply local descriptors (processed by
Hellinger kernel and PCA) for an image, Fisher encoding [40]
is used to encode these local descriptors into a global repre-
sentation with the use of a probability density distribution,
such as GMM.

1) CLUSTERING WITH GMM
A GMM p(x|φ) is the probability density on Rd , i.e.,

p(x|φ) =
K∑
k=1

p(x|µk , 6k )ωk , (5)

where p(x|µk , 6k ) =
1√

(2π )d |6k |
e−

1
2 (x−µk )

T6−1k (x−µk ),

φ = (ω1, µ1, 61, . . . , ωK , µK , 6K ) represents the parame-
ters, ωk ∈ R+ is the prior probability values, µk ∈ Rd is
the mean vectors, and 6k ∈ Rd×d is the positive definite
covariance matrices for a Gaussian component. The covari-
ance matrices are assumed to be diagonal, and the variance
vector is denoted by σ 2. Given a set of local descriptors x1,
x2, . . . , xN collected from training images, the GMM param-
eters can be learned by using expectation-maximization algo-
rithm. GMM defines the soft data-to-cluster assignments
qk,i(k = 1, 2, · · · ,K , i = 1, 2, · · · ,N ) from descriptors to
the Gaussian components,

qk,i =
p(xi|µk , 6k )ωk
K∑
j=1

p(xi|µj, 6j)ωj

. (6)

2) FISHER ENCODING
Fisher encoding, which can be considered a soft visual vocab-
ulary, measures the average first- and second-order differ-
ences between local descriptors and the clusters of a GMM.
The encoding of an FV starts by learning a GMM model φ.
Given a set of local descriptors (x1, x2, . . . , xn) extracted
from an input image, we let qk,i be the soft assignments of the
i-th (i = 1, 2, · · · , n) descriptor to the k-th (k = 1, 2, · · · ,K )
Gaussian component. For each k , we define the vectors as
follows:

uk =
1

N
√
ωk

N∑
i=1

qk,i(
xi − µk
σ

)

vk =
1

N
√
2ωk

N∑
i=1

qk,i(
(xi − µk )2

σ
− 1),

(7)
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FIGURE 2. Datasets. Top: 21-class dataset. Bottom: 19-class dataset.

where the division between vectors is a term-by-term oper-
ation. The encoding result of these local descriptors is the
concatenation of uk and vk for all Gaussian components,
thereby resulting in a global vector with 2×d×K dimensions.

III. EXPERIMENTS AND DISCUSSION
Experiments are conducted on two RSI datasets, as shown
in Fig. 2. The first is a 21-class land use dataset (denoted by
21-class) [7] downloaded from the United States Geological
Survey National Map. The second is a 19-class satellite scene
dataset (denoted by 19-class) [19] collected by the Wuhan
University from the Google Earth. The 21-class dataset is
acquired from aerial orthoimagery with a pixel resolution of
one foot and covers multiple regions of the United States.
This dataset contains 2100 256 × 256-pixel images with
red–green–blue channels (100 images per class) and includes
different spatial structures, homogeneous texture and color,
and some land cover and possibly object classes. The 19-class
contains high-resolution satellite images up to half a meter.
This dataset contains 950 600 × 600-pixel images with red–
green–blue channels (50 images per class) and covers multi-
ple regions around the world. Various objects with changes
in scales, rotations, orientations, and illumination conditions
exist in both datasets.

Each image in experiments is initially resized to 600×600
pixels, which indicates accuracy advantages than other sizes
such as 500×500 or 400×400 pixels. With the use of a fixed
subsampling ratio (e.g., 1.5), an image pyramid containing
five scales (600×600 pixels, 400×400 pixels, 267×267 pix-
els, 178×178 pixels, and 119×119 pixels) is then constructed
to obtain the desirable classification performances for both
datasets. For the image pyramid, each image scale is individ-
ually used as the input of CaffeNet and VGG-VD16 to extract
features from the last convolutional layer. Correspondingly,
37×37×256, 24×24×256, 16×16×256, 10×10×256,
and 7 × 7 × 256 features can be obtained by CaffeNet, and
38×38×512, 25×25×512, 17×17×512, 12×12×512,
and 8 × 8 × 512 features can be obtained by VGG-VD16,
thereby resulting in a total of 2350 256-dimensional and 2566
512-dimensional descriptors for CaffeNet and VGG-VD16,
respectively.

For both datasets, linear SVM is used for training and
classification, and all results are repeated 10 times to report
the average classification accuracy. In each round of testing,
a certain percent (e.g., 10%, 50%, 80%) of images of each
class are randomly selected to construct a subset for SVM
training, and the remaining images are used for testing. One
hundred thousand descriptors are randomly selected from
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the training images for learning PCA subspace and GMM
clusters. The amount of the selected descriptors is beneficial
for obtaining desirable results and preserving computational
cost.

In subsequent experiments, the effects of the two aggregate
strategies, Hellinger kernel, numbers of PCA dimensions,
and GMM clusters are analyzed by using 10% of the train-
ing images of each dataset; the confusion matrices for the
two aggregate strategies are discussed by using 10% of the
training images of each dataset; the performance comparisons
of different methods are discussed with the use of different
training ratios for both datasets.

A. ANALYSIS OF AGGREGATE STRATEGIES
Figure 3 shows the performance comparisons of three types
of image representation. ‘‘Aggregate strategy 1’’ adopts
both CaffeNet and VGG-VD16 to increase the total num-
ber of deeply local descriptors, followed by feature encod-
ing; ‘‘aggregate strategy 2’’ encodes the CaffeNet-based and
VGG-VD16-based local descriptors into two global rep-
resentations through Fisher encoding, followed by feature
concatenation; ‘‘single CNN-based description’’ encodes the
CaffeNet-based or VGG-VD16-based local descriptors into a
global representation. The number of GMM clusters is set to
64 for both datasets.

For ‘‘aggregate strategy 1,’’ PCA transformation is nec-
essary for the local descriptors extracted from CaffeNet
(256 dimensions) and VGG-VD16 (512 dimensions) because
the length of both descriptors is different. Thus, both
AlexNet-based and VGG-VD16-based local descriptors are
reduced to 255 dimensions to obtain the desirable classifi-
cation performance. After both local descriptors are trans-
formed to the same length, Fisher encoding can be applied to
aggregate both local descriptors simultaneously. For ‘‘aggre-
gate strategy 2,’’ the lengths of CaffeNet-based and VGG-
VD16-based local descriptors can be different because the
encoding of both descriptors is independent. The CaffeNet-
based and VGG-VD16-based local descriptors are therefore
reduced to 255 and 511 dimensions, respectively.

The red and green bars shown in Fig. 3 represent single
CaffeNet-based and single VGG-VD16-based local descrip-
tions, respectively. The red bars shown in Fig. 3(a) or Fig. 3(b)
are the same because the CaffeNet-based local descriptors
are projected into 255 dimensions uniformly. The green
bars shown in Fig. 3(a) or Fig. 3(b) present different PCA
dimensions (255 dimensions in Fig. 3(a) and 511 dimensions
in Fig. 3(b)).

The comparison of CaffeNet-based and VGG-VD16-based
local descriptions indicates that VGG-VD16 indicates signif-
icant accuracy advantages over CaffeNet because the number
of local descriptors extracted from VGG-VD16 is more than
that from CaffeNet and VGG-VD16 is deeper than CaffeNet.
The classification accuracy is improved for both datasets
through the use of ‘‘aggregate strategy 1’’ to increase the total
number of local descriptors compared with the use of a single
CNN model. The concatenation of different Fisher encoding

FIGURE 3. Comparisons of aggregate strategy 1, aggregate strategy 2, and
single CNN-based description. (a) 21-class dataset. (b) 19-class dataset.

representations (‘‘aggregate strategy 2’’) can also improve
the classification accuracy compared with that of single
CNN-based local description.

Unlike ‘‘aggregate strategy 1,’’ ‘‘aggregate strategy 2’’
obtains a higher classification accuracy. The reason can
be attributed to that ‘‘aggregate strategy 2’’ adopts 511-
dimensional descriptors, whereas ‘‘aggregate strategy 1’’
selects 255-dimensional descriptors. A high-dimensional
local descriptor helps preserve distinguishable image
features.

B. ANALYSIS OF HELLINGER KERNEL
Figure 4 shows the effectiveness of Hellinger kernel on
classification performance by using ‘‘aggregate strategy 1’’
and ‘‘aggregate strategy 2.’’ The number of GMM clus-
ters is set to 64 for both datasets. ‘‘Aggregate strategy 1’’
adopts 255-dimensional local descriptors for both Caf-
feNet and VGG-VD16, whereas ‘‘aggregate strategy 2’’
adopts 255-dimensional local descriptors for CaffeNet and
511-dimensional local descriptors for VGG-VD16.

The CNN-based local descriptor (without Hellinger ker-
nel transformation) is dominated by its large feature val-
ues, which exert influences on the distance measure among
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FIGURE 4. Effect of Hellinger kernel on ‘‘aggregate strategy 1’’ and ‘‘aggregate strategy 2.’’ (a) 21-class dataset. (b) 19-class dataset.

FIGURE 5. Effect of PCA transformation. (a) ‘‘aggregate strategy 1’’ on the 21-class dataset. (b) ‘‘aggregate strategy 1’’ on the 19-class
dataset. (c) ‘‘aggregate strategy 2’’ on the 21-class dataset. (d) ‘‘aggregate strategy 2’’ on the 19-class dataset.

different local descriptors. The application of Hellinger ker-
nel to each local descriptor is substantially a nonlinear trans-
formation. Hellinger kernel can reduce the large feature val-
ues relative to small ones; thus, the distance measure is
sensitive to the small feature values, thereby enhancing the
distinguishability of local descriptors.

For ‘‘aggregate strategy 1,’’ Hellinger kernel indicates
approximately 5.5% and 6.5% accuracy improvements for
the 21-class and 19-class datasets, respectively. For ‘‘aggre-
gate strategy 2,’’ Hellinger kernel indicates approximately
2% and 3% accuracy improvements for the 21-class and
19-class datasets, respectively. Both ‘‘aggregate strategy 1’’
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FIGURE 6. Effects of GMM clusters. (a) 21-class dataset. (b) 19-class dataset.

and ‘‘aggregate strategy 2’’ demonstrate that the description
capabilities of the deeply local descriptors can be improved
by Hellinger kernel.

C. ANALYSIS OF PCA
Figure 5 shows the performance comparisons of the proposed
method with different numbers of PCA dimensions. The
number of GMM clusters is set to 64 for both datasets.

Figures 5(a) and 5(b) show the performance of ‘‘aggre-
gate strategy 1’’ with different PCA dimensions. Single
CNN-based local description and feature encoding, such as
‘‘CaffeNet,’’ ‘‘VGG-VD16,’’ and ‘‘CaffeNet without PCA,’’
are also given for comparison. With the increase in PCA
dimensions, the classification accuracies for ‘‘CaffeNet,’’
‘‘VGG-VD16,’’ and ‘‘aggregate strategy 1’’ increase. After
PCA transformation, the use of 255-dimensional descriptors
can obtain the best performances for all cases. The black lines
represent the use of the original CaffeNet-based local descrip-
tor (256 dimensions) for feature encoding. The comparison
of ‘‘CaffeNet’’ and ‘‘CaffeNet without PCA’’ illustrates that
retaining all principal components can obtain the best results.

Figures 5(c) and 5(d) demonstrate the performance of
‘‘aggregate strategy 2’’ with different PCA dimensions.
In ‘‘aggregate strategy 2,’’ CaffeNet-based local descriptors
are transformed to a fixed length, whereas VGG-VD16-
based local descriptors are transformed to different dimen-
sions. Each CaffeNet-based local descriptor is transformed to
255 dimensions (the maximum length) by PCA, correspond-
ing to the red straight lines shown in Figs. 5(c) and 5(d).
With the increase in PCA dimensions, the VGG-VD16-based
local descriptor combined with PCA transformation (green
lines) indicates accuracy advantages over that without PCA
(black lines), especially on the 19-class dataset. After PCA
transformation, the use of 511 dimensions for the VGG-
VD16-based local descriptor performs best. Correspond-
ingly, ‘‘aggregate strategy 2’’ performs best when select-
ing 255-dimensional CaffeNet-based and 511-dimensional
VGG-VD16-based local descriptors. Overall, the effect of

PCA is accuracy improvement rather than dimensionality
reduction.

D. NUMBER OF GMM CLUSTERS
Figure 6 shows the effects of GMM clusters on the classifica-
tion accuracies of both datasets. For ‘‘aggregate strategy 1,’’
both CaffeNet-based andVGG-VD16-based local descriptors
are reduced to 255 dimensions. For ‘‘aggregate strategy 2,’’
the CaffeNet-based and VGG-VD16-based local descriptors
are reduced to 255 and 511 dimensions, respectively. The
reason for discussing GMM clustering in this section is that
the number of GMM clusters decides the dimensionality of
the final image representation. Given a GMM with 64 clus-
ters, 2 × 255 × 64 = 32640 and 2 × (255 + 511) × 64 =
98048 dimensions can be obtained for ‘‘aggregate strategy 1’’
and ‘‘aggregate strategy 2,’’ respectively. Therefore, although
‘‘aggregate strategy 2’’ performs better than ‘‘aggregate strat-
egy 1,’’ the dimensionality of the former is higher than that of
the latter.

The selection of 64 clusters performs best for both datasets,
and a large number of GMM clusters may generate over-
fitting because the classification accuracy decreases with
the increase in the number of clusters. Few GMM clusters
are generally beneficial for concatenating different feature
encodings because they can avoid the explosive growth of
dimension for the final image representation.

E. ANALYSIS OF CONFUSION MATRIX
We further analyze the confusion matrix of both datasets
to evaluate the classification performance of each class.
Figure 7 shows two confusion matrices of the 21-class dataset
for ‘‘aggregate strategy 1’’ (Fig. 7(a)) and ‘‘aggregate strat-
egy 2’’ with the use of 10% of training images (Fig. 7(b)).
The rows in Fig. 7 represent the ground truth, and the columns
represent the classification results, which are given as
percentages. The average classification accuracies (corre-
sponding to the average results of the diagonal elements)
of ‘‘aggregate strategy 1’’ and ‘‘aggregate strategy 2’’ are
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FIGURE 7. Confusion matrices for the 21-class dataset using 10% of training images. (a) ‘‘aggregate strategy 1’’ (85.09%).
(b) ‘‘aggregate strategy 2’’ (86.83%).

85.08% and 86.83%, respectively. Both ‘‘aggregate strat-
egy 1’’ and ‘‘aggregate strategy 2’’ perform efficiently on the
classes, such as ‘‘agricultural,’’ ‘‘airplane,’’ ‘‘beach,’’ ‘‘cha-
parral,’’ ‘‘forest,’’ ‘‘golf course,’’ ‘‘harbor,’’ and ‘‘parking
lot.’’ These classes contain significant texture features or spa-
tial structures. Although some classes contain objects with
different scales, e.g., aircrafts with different sizes exist in
the category of ‘‘airplane’’ (91.11%, 94.67%), the proposed
method performs efficiently on these classes because the
image pyramid significantly improves the local description.

The two confusion matrices shown in Fig. 7 perform poor
on some classes, such as ‘‘buildings,’’ ‘‘dense residential,’’
and ‘‘medium density residential.’’ The reason for these

poorly performed classes is that numerous buildings exist in
these classes and the buildings have high similarities across
classes, thereby resulting in a confused classification among
these classes.

Figure 8 shows two confusion matrices of the 19-class
dataset for ‘‘aggregate strategy 1’’ (Fig. 8(a)) and ‘‘aggregate
strategy 2’’ (Fig. 8(b)) with the use of 10% of training images.
The meanings of the rows and columns shown in Fig. 8 are
the same as those in Fig. 7. The average classification
accuracies for ‘‘aggregate strategy 1’’ and ‘‘aggregate strat-
egy 2’’ are 88.19% and 90.63%, respectively. Both ‘‘aggre-
gate strategy 1’’ and ‘‘aggregate strategy 2’’ perform effi-
ciently on the classes, such as ‘‘airport,’’ ‘‘beach,’’ ‘‘desert,’’
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FIGURE 8. Confusion matrices for the 19-class dataset using 10% of training images. (a) ‘‘aggregate strategy 1’’ (88.19%).
(b) ‘‘aggregate strategy 2’’ (90.63%).

‘‘farmland,’’ ‘‘forest,’’ ‘‘meadow,’’ ‘‘mountain,’’ ‘‘parking,’’
‘‘river,’’ and ‘‘viaduct.’’ The characteristics of these well-
performed classes are close to the well-performed classes
(e.g., significant textures, aircrafts) in the 21-class dataset.
Both ‘‘aggregate strategy 1’’ and ‘‘aggregate strategy 2’’
perform poorly on ‘‘commercial,’’ ‘‘industrial,’’ and ‘‘resi-
dential.’’ The reason can be attributed to that various build-
ings exist in ‘‘commercial,’’ ‘‘industrial,’’ and ‘‘residential,’’
thereby resulting in a confused classification, similar to that
in the 21-class dataset.

Overall, ‘‘aggregate strategy 2’’ indicates better per-
formances than ‘‘aggregate strategy 1’’ on both datasets.

The extraction of distinguishable local descriptions, which
are robust to building regions, is an effective way to further
improve the performance of the proposed method.

F. COMPARISONS BETWEEN CONVOLUTIONAL AND
FULLY CONNECTED LAYERS
Given a CNN model, extracting the activation vectors from
its fully connected layer as the global features (followed
by linear SVM classification) can achieve state-of-the-art
performances for RSI classification [32], [33], compared
with shallow representations, such as low-level and mid-level
features.
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TABLE 1. Performance comparisons between fully-connected layer and convolutional layer on the 21-class and 19-class datasets. All results are given as
percentages.

In this section, the features extracted from the convolu-
tional and fully connected layers are compared, as shown
in Table 1. For the features extracted from the fully con-
nected layer, we can obtain CaffeNet-based and VGG-VD16-
based activation vectors, namely, ‘‘CaffeNet (fully connected
layer)’’ and ‘‘VGG-VD16 (fully connected layer),’’ respec-
tively. Each input image is resized to the input size of the
corresponding CNN model to extract the activation vectors,
and 4096-dimensional activation vectors with L2 normal-
ization can then be extracted from the last fully connected
layer (except for the classification layer). Although each
CNN contains two fully connected layers (except for the
classification layer), both layers have similar classification
performances. For the deeply local descriptors extracted from
the convolutional layer, we can obtain two types of single
CNN-based variants for Hellinger kernel and PCA transfor-
mation (255 dimensions for CaffeNet-based descriptors and
511 dimensions for VGG-VD16-based descriptors), namely,
‘‘CaffeNet (255-dim convolutional layer)’’ and ‘‘VGG-VD16
(511-dim convolutional layer).’’

With the use of Hellinger kernel and PCA transformation,
CNN-based local description outperforms the activation vec-
tor (global description) extracted from the fully connected
layer in most cases. For example, ‘‘VGG-VD16 (511-dim
convolutional layer)’’ indicates accuracy advantages over
‘‘VGG-VD16 (fully connected layer)’’ under 10%, 50%, and
80% of training images. ‘‘CaffeNet (255-dim convolutional
layer)’’ indicates accuracy advantages over ‘‘CaffeNet (fully
connected layer)’’ under 50% and 80% of training images.
The proposed aggregate strategies, ‘‘aggregate strategy 1’’
and ‘‘aggregate strategy 2,’’ indicate accuracy advantages
over ‘‘CaffeNet (255-dim convolutional layer)’’ and ‘‘VGG-
VD16 (511-dim convolutional layer)’’ under different num-
bers of training images.

IV. CONCLUSIONS
We investigate deeply local descriptions based on convolu-
tional features extracted from the last convolutional layer of
CNN models in this study. Two types of pretrained CNN,
CaffeNet and VGG-VD16, are used to extract deeply local
descriptors, followed by Hellinger kernel and PCA trans-
formation. Two aggregate strategies are proposed to form
a global representation from the deeply local descriptors.
‘‘Aggregate strategy 1’’ adopts both CaffeNet and VGG-
VD16 to increase the number of local descriptors, followed

by feature encoding. ‘‘Aggregate strategy 2’’ encodes
CaffeNet-based and VGG-VD16-based local descriptors into
two global representations through Fisher encoding, followed
by feature concatenation. Experiments on two RSI datasets
illustrate that Hellinger kernel, PCA transformation, and the
two aggregate strategies can substantially improve classifica-
tion accuracy.
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