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ABSTRACT Prior 6LoWPAN intrusion detection system (IDS) utilized several features to detect various
malicious activities. However, these IDS methods only detect specific attack but fails when the attacks are
combined. In this paper, we propose an IDS known as compression header analyzer intrusion detection
system (CHA-IDS) that analyzes 6LoWPAN compression header data to mitigate the individual and
combination routing attacks. CHA-IDS is a multi-agent system framework that capture and manage raw
data for data collection, analysis, and system actions. The proposed CHA-IDS utilize best first and greedy
stepwise with correlation-based feature selection to determine only significant features needed for the
intrusion detection. These features are then tested using six machine learning algorithms to find the best
classification method that able to distinguish between an attack and non-attack and then from the best
classification method, we devise a rule to be implemented in Tmote Sky. To ensure the reliability of our
proposed method, we evaluate the CHA-IDS with three types of combination attacks known as hello flood,
sinkhole, and wormhole. We also compare our results in term of accuracy of detection, energy overhead, and
memory consumption with the prior 6LoWPAN-IDS implementation such as SVELTE and Pongle’s IDS.
The results show that CHA-IDS performs better than the aforementioned methods with 99% true positive
rate and consumed low energy overhead and memory that fit in constrained device such Tmote Sky.

INDEX TERMS Internet of Things, security, machine learning, compression header, 6LoOWPAN, RPL,

routing attack.

I. INTRODUCTION
IPv6 over Low-power Wireless Personal Area Network pro-
tocol (6LoWPAN) has been widely used as an adaption layer
between the standard IPv6 protocol and IEEE 802.15.4 link
layer. Thus, enables the resource constrained devices to
effectively transmit information via the standard IPv6.
In 6LoWPAN network, Routing Protocol for Low Power
and Lossy Network (RPL) has been introduced as a routing
protocol to deal with limited memory, power etc. RPL creates
Destination Oriented Directed Acyclic Graph (DODAG) [1]
and enables the nodes to forward the packets upwards to their
parents or downward to their children. However, in such con-
strained environment, RPL has limited support for security
services and are exposed to internal attacks.

There are three main attacks that targeting the RPL pro-
tocol in IoT namely hello flood, sinkhole, and wormhole
attacks. Several researchers have put their effort to propose

6LoWPAN Intrusion Detection System (6LoWPAN-IDS)
to mitigate the aforementioned problems. There are
two well-known 6LoWPAN-IDS implementations, namely
SVELTE [2] and Pongle’s IDS [1]. These methods are effi-
cient in detecting the individual routing attack in which,
SVELTE is designed specifically to detect sinkhole attack
whereas Pongle’s focus on detecting wormhole attack.
However, SVELTE and Pongle’s IDS can be ineffective
against a complex and more destructive attack that consists of
multiple or combination of attacks that produce new anomaly
attack.

Therefore, in this paper, we propose Compression
Header Analyzer Intrusion Detection System (CHA-IDS)
to detect individual routing attacks and their combina-
tion in 6LoWPAN network. CHA-IDS utilizes compression
header of 6LoWPAN as a feature instead of rank and
Received Signal Strength Indicator (RSSI) that used in
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SVELTE and Pongle’s. This is because the compression
header of 6LoWPAN is unique and contain essential infor-
mation needed to detect a complex attack. The framework
of the proposed CHA-IDS is divided into four layers; sensor
agent (SA), aggregator agent (AGA), analyzer agent (ANA)
and actuator agent (ACA). The framework will capture net-
work packet, extract significant features based on normal and
abnormal node, analyses data class labelling, and finally alert
the user if malicious activity is detected.

The pattern of the 6LoOWPAN Compression Header is stud-
ied using machine learning algorithm and the best rules are
selected. Based on the selected rules, we compare the perfor-
mance of the proposed CHA-IDS with the existing method
(i.e. SVELTE and Pongle’s [2], [1]) in term of accuracy. The
rest of this paper is organized as follows: types of the attacks
and the related works are discussed in Section 2. The frame-
work of the proposed method, evaluation metrics and exper-
imental setup are described in Section 3. Section 4 presents
the experiments and the evaluation of the performance of the
proposed method and Section 5 discusses the overall findings
of the proposed work. Finally, the conclusions are drawn and
future works are highlighted in Section 6.

Il. RELATED WORK

A. INTRUSION DETECTION SYSTEM (IDS)

Intrusion detection system (IDS) is a system used for moni-
toring malicious traffic in a network. The IDS act as a second
line defense to protect the network from intruders [3]. The
majority of IDS techniques proposed in the literature are
mainly based on three types of IDS such as signature-based,
anomaly-based and hybrid-based.

1) SIGNATURE BASED IDS

Earliest work on IDS techniques have been proposed based
on signature. The signature-based method actively compares
and matches the events from a network against a predefined
attack signature or pattern from a database [3]. This approach
needs specific knowledge of an individual attack in order
to work properly. Therefore, new attacks are undetectable
unless their signatures or patterns are manually added into the
database [3]. For this reason, the database needs to be updated
frequently with signatures of new attacks. This approach has
two main disadvantages: a) malicious data are required to
form an attack pattern. b) unable to discover new or unknown
attacks.

2) ANOMALY BASED IDS

Contrarily, anomaly-based method (or also known as event-
based detection) identifies malicious activities by analyzing
the unusual events of a network. This technique starts by
defining the normal behavior of a network followed by a com-
parison between the current protocol specifications with pre-
viously defined protocol state [3]. If normal activity changes
unexpectedly, they may be marked as an intrusion. The
anomaly-based method detects attacks more efficiently than
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their signature-based counterpart since no predefined signa-
ture is needed. Apart from that, anomaly-based method is able
to detect new attack patterns. Though significantly known for
having these two advantages, anomaly-based method facing
difficulties in determining the normal region. This is due
to blur boundary between the observation of normal and
abnormal behavior. In some cases, an abnormal observation
may encroach to the boundary of normal observation, or vice-
versa.

3) HYBRID BASED IDS

To overcome signature and anomaly-based weaknesses,
a hybrid IDS has been proposed by combining both tech-
niques. This combination enables the hybrid IDS to detect
both cases either misuse or anomaly attacks. Aydin ef al. [4]
proposed the hybrid IDS by combining packet header
anomaly detection (PHAD) and network traffic anomaly
detection using open source tools such as SNORT. In their
work, the standard PHAD was altered by modelling the pro-
tocols rather than the user behaviors. This model depends
on the rapid change of network statistics in a short
term.

B. MACHINE LEARNING ALGORITHM IN

INTRUSION DETECTION SYSTEM

Generally, machine learning algorithm is an artificial intel-
ligence that learned or adapted to new environment. The
machine learning algorithms are widely used in network secu-
rity for wireless sensor network environment. The algorithm
usually operates based on the features that represents the
characteristic of the object.

There a several IDS methods that used machine learning
algorithm as intrusion indicator. Shamshirband et al. [5] pro-
posed a hybrid clustering method namely density-based fuzzy
imperialist competitive clustering algorithm (D-FICCA)
which is a modification from density-based algorithm and
fuzzy logic to enhance the accuracy of malicious detection
such as DoS attacks. Then, Shamshirband er al. [6] pro-
posed Cooperative fuzzy artificial immune system (Co-FAIS)
to mitigate the DoS attacks. D-FICCA and Co-FAIS have
the advantages to predict the presence of DoS attack and
equipped with the counter-defense mechanism for wireless
sensor network. However, energy and memory consumption
of D-FICCA and Co-FAIS in constrained device such as
WSN node are not provided by the authors.

Selecting suitable features for machine learning algo-
rithm is important to differentiate between normal and
anomaly behaviors. Kolias er al. [7] used several machine
learning algorithms to analyze 156 features collected from
802.11 network. Then, 20 significant features obtained from
156 features are associated according to their specific attacks.
This feature selection is performed to select only important
features as well as to reduce the consumption of device
resources. These significant features can be used as an IDS
indicator to detect any attacks. Therefore, in this paper,
the machine learning algorithm is applied to find the new
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significant features and then classifies the features as intru-
sion indicator for an IDS.

C. INTRUSION DETECTION SYSTEM FOR

6LoWPAN BASED NETWORK

The rapid advancement of the internet and sensor network
technology has made IDS in IoT environment become essen-
tial each day. The intrusion in IoT can be categorized as
an outside or inside attack. In outside attack, the attack is
originated from the outside of the network/internet which
connect to 802.11 protocol. Examples of such attacks are
fragmentation attack, botnet attack, etc. For the inside attack,
the attack can be initiated by compromised or malicious
nodes that are part of the network. In this paper, we will
concentrate on the inside attacks within the 6LoWPAN proto-
col. To start with, a brief background of 6LoWPAN protocol
will be presented. This is then followed by the review of the
most common 6LoWPAN routing attacks such hello flood,
sinkhole, wormhole and others attacks.

1) 6LoWPAN BACKGROUND

6LoWPAN is a network architecture for low-power wireless
area networks, which is IPv6 stub network [8]. It is part
of IP-based infrastructures that uses IPv6 packet to route in
6LoWPAN network [5]. 6LOWPAN fragments and reassem-
bles the datagram because of the limited payload size in
the IoT devices [5]. All the device node are connected to
the Internet through a getaway known as 6LoWPAN Border
Router (6BR) that similar to a sink node in WSN network [5]
as shown in Figure 1. It performs the compression or decom-
pression and fragmentation or assembly of IPv6 datagrams
that can be implemented on any devices and not restricted to
constrained device only.

‘. =— IPV6/RPL connected 6LOWPAN

- 6BR

. Device Node

FIGURE 1. Communication of connected device in 6LoWPAN network
with 6LoWPAN Border Router.

Destination  Oriented  Directed  Acyclic ~ Graph
(DODAG) [1] is IPv6 Routing Protocol for Low-Power and
Lossy Networks (RPL) that forms like a tree topology with
one root known as a sink node. The formation of the topology
root node requires the transmission of DODAG Information
Object (DIO) messages. After that, other nodes that receive
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the DIO message will select the parent based on the rank
value calculated. If the rank sender is higher, the sender will
be selected as parents or vice versa [1]. The distance from the
root node and energy of the link may influence the rank value.
The network owner can decide the rank value by calculating
a parameter or continue to transmit the DIO message to form
the tree topology [1].

6BR is assumed to be always accessible from inside and
outside the network, hence, end-to-end security is required
in the implementation of IoT. Furthermore, sensor nodes in
the network are globally identified by an IP address that can
be accessed through the Internet. Because of that, implemen-
tation of IDS is important in the network to monitor any
intrusions.

2) ROUTING ATTACKS IN 6LoWPAN PROTOCOL

The attack occurs on 6LoWPAN network can be classified
as external or internal attacks. External attack is the attack
initiated from Internet side while the internal attack is ini-
tiated from the wireless sensor network side. Examples of
the external attack are Brute force attack, malware attack,
SSL attack and DNS attack. The internal attack includes the
routing attacks such as hello flood, sinkhole and wormhole
attacks. The routing attack aims to disrupt the network layer
while routing messages from one node to another node in the
network. In this paper, we will focus on the routing attacks
and discuss the literature that related to the attacks mitigation
in the following sub-section.

a: HELLO FLOOD

The hello flood attack utilizes the hello message to make
the legitimate nodes believe that the malicious nodes is their
neighboring nodes and within their range limit, even though
they are far away from the network. This will result in packet
loss since the packet travel is deceived by the malicious
nodes. Hello flood attack can be identified by utilizing the
UDP packet rate. The attack is considered as the Hello Flood
attack if the rate of UDP packet is at 30 packets per second [4].
In another work, Sherasiya et al. [3] integrated an IDS into the
network framework that developed within the EU FP7 project
rabbit. Their aims are to detect Hello Flood attacks targeted
for 6LoWPAN protocol using an open source Network Intru-
sion Detection System (NIDS) known as Snort. The Snort
will monitor the network traffic and analyzed them against a
set of Hello Flood signature rule defined by the researchers.
An attack is detected when their signatures are matched with
each other.

PalSingh et al. [9] on the other hand proposed a method that
utilizes the signal strength and distance between two nodes
to identify the Hello Flood attack. A Hello Flood Attacker
may use a high-quality signal to allure other nodes to use
its route even they are not part of the neighbors or they are
located at distance apart. For this reason, PalSingh et al. [9]
sent a test packet and if the packet doesn’t come back in a
predefined time, they are considered as a stranger. In a more
recent study, Grgic et al. [10] proposed an IDS based on
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distributed algorithms and collective decision-making
process. Their methods used the concept of probability esti-
mation to detect the malicious behavior of the nodes. The
probability estimation, however, relies on node failure in
order to achieve considerable estimation value. This approach
might have a high false positive rate since some attacks do not
aim to force the node to fail or to become malfunction.

b: SINKHOLE ATTACK

The aim of sinkhole attack is to control packet traffic in a
network as much as possible through malicious node. The
attacker deceives the legitimate nodes to establish link with
the malicious node by pretending having the optimal routes.
To mitigate sinkhole attack, Pongle and Chavan [1] proposed
SVELTE which monitors the rank information of client node
in 6LoWPAN environment. SVELTE is a hybrid of signature-
based and anomaly-based IDS method to detect sinkhole
and selective forwarding attack. However, SVELTE depends
on the availability of the rank information advertised by
the client node. The rank information might be lost if an
attacker disrupts the network by force. This is in view to the
fact that the attack may force the client node to drop their
packet.

¢: WORMHOLE ATTACK

In wormhole attack, the attacker disrupts the network routing
by tunneling a wormhole link between two colluding com-
promised nodes that are far apart from each other. Pongle
and Chavan [1] proposed IDS for wormhole attack detec-
tion using RSSI values. The presence of wormhole attack is
detected by knowing the location of each node whether the
nodes invalid range based on RSSI values received. In another
approach, Lai [11] proposed methods to detect wormhole by
calculating distance based on the rank of the node defined in
the network.

d: OTHER ATTACKS

There are also several other attacks that may disrupt the
6LoWPAN network such as selective forwarding and black-
hole. In selective forwarding, malicious nodes selectively
forward packets that targeted to disrupt routing paths [6]
whereas blackhole silently sucks in all data packets and drops
them [5]. All the attacks stated in this section and their
respective IDS methods are summarized in Table 1.

lll. PROPOSED METHOD

This section is divided into four sub-sections as follows.
In the first sub-section, we explain the routing information
that available in the 6LoWPAN compression header. The
second sub-section described the framework of the proposed
method that consists of four layers. Then, we present a set
of evaluation criteria to validate the performance of the pro-
posed method. Finally, network configuration for hello flood,
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TABLE 1. Summarization of the attacks and their intrusion detection
system.

Attacks Architecture

IDS

Description

Signature

Hello Flood

Anomaly

Anomaly

Ebbit [3]

Co-FAIS
[6]

D-FICCA
[3]

Count the packets
using Snort IDS to
validate the attack.
Advantage: Can
determine the attack
accurately
Disadvantages:
Unsuitable for
constrained devices.

Used Fuzzy Q-
Learning to improve
detection accuracy.
Advantage: Predicts
DDOS attack.
Disadvantages:
Unsuitable for
constrained devices.

Proposed a hybrid
clustering method
known as density-
based fuzzy imperialist
competitive clustering
algorithm.
Advantage: Predicts
DDOS attack.
Disadvantages:
Unsuitable for
constrained devices.

Sinkhole Hybrid

SVELTE
[2]

Monitor rank
advertises by
neighbors.
Advantage: Suitable
for constrained devices
and detect anomalies.
Disadvantages:
Unable to detect other
attacks such as
wormhole attack

Anomaly

Wormhole

Hybrid

Wormhole
IDS [1]

Gu Hsin
Lai [11]

Detects wormhole with
encapsulation &
wormhole with packet
relay by monitoring
neighbor’s RSSI value.
Advantage: Suitable
for constrained
devices.
Disadvantages:
Unable to detect
anomalies of other
attacks such as
sinkhole and hello
flood.

Detects malicious
wormbhole node if
unreasonable rank
values are identified.
Advantage: Can
improve Svelte [1]
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TABLE 1. (Continued.) Summarization of the attacks and their intrusion
detection system.

method on detected
sinkhole and
wormbhole use rank of
node as feature
detection.
Disadvantages:
Unsuitable for
constrained devices.

Used DSNSF to
predict normal
behavior of network
traffic activity through
historical data
analysis.

Advantage: High true
positive in detecting
anomalies.
Disadvantages: Not a
real-time detection.

Giberto
Fernades et
al [12]

(Others) Signature

Centralized detection
system where base
station decides on
potential intrusions
based on the control
packets sent from the
cluster heads.
Advantage: Suitable
for constrained
devices.
Disadvantages:
Unable to detect
anomalies of other
attacks such as
sinkhole and hello
flood.

Selective

Forwarding Faouzi

and Black Anomaly Hidoussi et
Hole al [13]
(Others)

sinkhole, and wormhole attacks are presented. The configura-
tion is conducted to simulate and collect attacks information
that will be used by the proposed method.

A. 6LoWPAN COMPRESSION HEADER

Figure 2 a) shows the layout and b) example of compression
header in 6LoWPAN packets. An effective header compres-
sion is highly dependent on information pertaining to the
entire 6LOWPAN network. 6LoWPAN compression header
consist a type of identifier where it can identify with a
predefined prefix. In RPL routing protocol, information about
routing communication is generated when a packet being
transmitted to the destinations in the network. This infor-
mation is stored in the 6LoOWPAN compression header and
there are 77 routing information available in 6LoWPAN
compression header that can be acquired from Wireshark
official website! using Wireshark tools. The routing infor-
mation in 6LoWPAN compression header can potentially be
used as features to distinguish between normal and abnormal

1 www.wireshark.org/docs/dfref/6/6lowpan.html
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01 | 000001 | IPv6 Uncompressed
01 | 000010 | IPv6 HCI compressed Encoding
01| 111111 | Additional Dispatch byte

Dispatch Header
[10] 0] 7] Hops Left [ Orig. Address, Final Address | | Mesh Header
‘ First Fragment Header

| 11 ‘ 000| Datagram Size | Datagram Tag

11 \ 100| Datagram Size | Datagram Tag \ Subsequent Fragment
Datagram Offset Header
(@
Frame Hdr | Dispatch Hdr | HCI Hdr | IPv6 compressed | UDP Hdr | Application
Hdr Data
Point to Point Small Packet
Frame Hdr | Frag Hdr HCIHdr | IPv6 compressed | UDP Hdr | Application
Hdr Data
Fragmented Packet Large Packet
FrameHdr | MeshHdr | Dispatch | IPv6 compressed | UDP Hdr | Application
Hdr Hdr Data
Mesh Transmitted Packet
(b)

FIGURE 2. (a): 6LOWPAN header layout [14], (b): Example of stack
header [14].

activities in 6LoWPAN network due to their unique charac-
teristics. Therefore, in this work, we propose the utilization
of routing information in 6LoWPAN compression header as
features to detect the routing attacks. However, it should be
noted that the features of 6LoWPAN compression header
used in this study may differ from others WSN network
protocol like Zigbee as this protocol transmitted IPv6 packets
over IEEE 802.15.4 networks.

B. PROPOSED SYSTEM FRAMEWORK

Our proposed CHA-IDS is a hybrid based IDS that applied
both anomaly and signature based IDS in the scheme.
Centralized detection system is implemented in CHA-IDS
where all the data will be routed to 6BR device for detection
of potential attacks. CHA-IDS utilizes 6LoWPAN compres-
sion header as the feature for the machine learning algorithm
to learn and classify the type of the attacks. Then, the rule
or signature created by the machine learning algorithm is
placed at the 6BR. Over time, when a new signature available
for the routing attacks, 6BR will be updated with the new
rule or signature generated from the new features.

CHA-IDS is divided into four layers as shown in Figure 3.
The first layer consists of Sensor Agents (SA) that captures
compression header data using Cooja traffic analyzer. The
captured data are further analyzed and filtered by Aggrega-
tor Agent (AGA) in second layer. The AGA extracts only
distinct features that able to distinguish between normal and
abnormal network activities. This is followed by the data class
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| Layer 1 | | Laver2 ‘

!/ Sensor Extract data—#| Aggregator —Fllmrdzt)( Data Set O
3 Agent Agent
S |

Traffic

Dat= Set

| Layer 3 |

Analyzer Agent

nnnnnnn

Testbsta——————  Testing

’—J

Classification dat sst

‘ Layer 4 |
Actuator
Result
Agent

FIGURE 3. Framework of the proposed CHA-IDS.

labelling in Analyzer Agent (ANA) layer. At this layer, data
are classified as either normal, hello flood, sinkhole or as
wormhole attack. At the final layer, Actuator Agent (ACA)
alerts the user if any malicious activities take place. To show
how each stage works, a more detailed description of the
proposed method framework is described next.

1) LAYER 1, SENSOR AGENT (SA)

SA is responsible for capturing network traffic by collecting
received packet data from all nodes in the network. The
packet data provide an abstraction of raw and heterogeneous
data. In the experiment, we use Cooja traffic analyzer to cap-
ture the radio message and save as the packet capture (pcap)
file as shown in Figure 4.

FIGURE 4. 6LoWPAN Analyzer with pcap capture in Cooja simulation
tools.

2) LAYER 2, AGGREGATOR AGENT (AGA)

This layer highlights the main contribution of this paper
which is finding the significant features that can be used
to differentiate between normal and abnormal activities.
To perform this task, an experiment that contains normal and
abnormal activities are configured. Then, the pcap files for
these two activities are filtered to select the data that only
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related to 6LoWPAN protocol. The filtration process results
in 77 routing information in 6LoWPAN compression header.
This routing information are saved in Comma Separated
Value (CSV) format and then fed into Searching and Fea-
ture Selection Algorithm. The Best First Search (BFS) and
Greedy Stepwise (GS) are chosen to perform the searching
whereas Correlation-based Features Selection (CFS) algo-
rithm are used to evaluate the most significant features that
able to differentiate between normal and abnormal network
activities (Algorithm 1). It can be noted that we utilizes two
different searching algorithms in the experiment. This is to
ensure that the selected features are correctly determined
which is, the output of the feature selection should be the
same for both BFS and GS searching algorithms. If a different
output is obtained, the selected features are not significant
and may not be able to distinguish between the normal and
abnormal activities.

Algorithm 1 Filtering Packet Data Algorithm
Input: pcap file

get Arguments pcap from network traffic;
Loop read each packet;

If packet header = 6LoWPAN;

Data write 6LoWPAN

Choose all info and write to CSV;

End if;

End loop;

NN R L=

a: FEATURE SELECTION

Best first search with Correlation Features Selec-
tion (BFS-CFS) and Greedy stepwise with Correlation Fea-
tures Selection (GS-CFS) are used to find the significant
features to categorize the observed activities into normal and
abnormal classes.

Algorithm 2 Greedy Hill Climbing Algorithm [15]
Let s < start state

Expand s by making each possible local change
Evaluate each child 7 of s

Let " child ¢ with highest evaluation e(r)

If e(s”) > e(s) then s < s, goto 2

Return s

A S

BFS will search the space of feature subsets using greedy
hill climbing (Algorithm 2). BFS allows backtracking along
the search path to move through the search space by making
local changes to the current feature subset [15]. The best first
search (Algorithm 3) can back-track to a more promising
previous subset and continue the search from there [15].

GS performs a greedy forward or backward search through
the space of feature subsets. It may start with certain features,
all features or randomly point in the space. It will rank the
77 routing information by traversing the space from empty
to full (or vice versa) and record the order of the selected

VOLUME 6, 2018



M. N. Napiah et al.: CHA-IDS for 6LoWPAN Communication Protocol

IEEE Access

Algorithm 3 Best First Search Algorithm [15]

1. Begin with Open list containing the start state, the
CLOSED list empty, and BEST <« start state.

2. Let s = arg max e(x) (get the state from OPEN with the

highest evaluation)

. Remove s from OPEN and add to CLOSED

. If e(s) > e (BEST), then BEST s

5. For each child t of s that is not in the OPEN or CLOSED
list, evaluate and add to OPEN

6. If BEST changed in the last set of expansions, goto 2

7. Return BEST

B~ W

feature [12]. This method (also known as the hill climbing
feature selection approach such in Algorithm 2) considers
both adding and removing features at each decision point,
which allows retracting an earlier decision without keeping
explicit track of the search path [12]. It stops when the addi-
tion or deletion of any remaining features results in a decrease
in the evaluation.

CFS is used to evaluate the worth of a subset of features
produce from BFS and GS by considering the individual
predictive ability of each feature along with the degree of
redundancy between them. Subsets of features that are highly
correlated with the class while having a low inter-correlation
with each other is formulated in Equation (1).

krer
Vk 4+ k(k — DW

Merit; = @))

Where Merit; is the heuristic “merit” of an feature subset S
containing k feature, 7.s the average feature-class correlation,
and 77 the average feature-feature inter-correlation [15], [16].

Equation 1 is a Pearson’s correlation coefficient, where
the features have been standardized [15]. It shows that the
correlation between a class and a feature is a function of the
number of features in the composite and the magnitude of
the inter-correlations among them, together with the mag-
nitude of the correlations between the components and the
outside feature [15].

3) LAYER 3, ANALYZER AGENT (ANA)

Three routing attacks in IoT namely, hello flood, sinkhole and
wormhole attack are configured at this layer. The significant
features of the attacks as determined from AGA layer are
chosen for further analysis. Their packet number are plotted
against time to study the behavior of each attack and a set
of rule is then devised. Next, classes labelled as “Normal”’,
“Hello Flood”, ‘““Sinkhole” and ‘“Wormhole” are created
based on the revised rule. To classify each attack according
to the defined classes, we compare six machine algorithms
via WEKA tools to find the best performing algorithm. The
algorithms are MLP, SVM, J48, Naive Bayes, Logistic, and
Random Forest.
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4) LAYER 4, ACTUATOR AGENT (ACA)

This agent will execute an action by giving an alert to the
users. It has simple behavior that responds to the ANA pro-
cess by comparing them with a threshold value. If the result
from the ANA process exceeded the threshold value, an alarm
will trigger. In this paper, a threshold value of 10% is set
(Algorithm 4) to reduce false alarm.

Algorithm 4 Monitoring & Alert Threshold
1. Check: TP rate percentage

2. If hello flood > 10 %

3. Alert attack occur: hello flood
4. End if

5. If sinkhole > 10 %

6. Alert attack occur: sinkhole

7

8

9

1

. End if
. If wormhole > 10%
. Alert attack occur: wormhole

C. EVALUATION METRICS

To verify the ability of the proposed method, two sets of
evaluation metric are devised. The first evaluates the perfor-
mance of machine learning to classify the routing attacks, and
the second measure the energy and memory consumptions.

TABLE 2. Terminology and derivations.

Terminology Derivations

TP(True Positive)
FP(False Positive)
TN(True Negative) : Total examples predicted as false that are actually false
FN(False Negative) : Total examples predicted as false that are actually true

: Total examples predicted as true that are actually true
. Total examples predicted as true that are actually false

1) MACHINE LEARNING CLASSIFICATIONS

As previously mentioned in Section 3.2.3, six machine learn-
ing algorithms (i.e. MLP, SVM, J48, Naive Bayes, Logistic,
and Random Forest) are evaluated to determine the best
performing algorithm to classify the routing attacks using
WEKA workbench. True Positive rate (TP), False Positive
rate (FP) Mean Absolute Error (MAE), Root Means Squared
error (RMSE), Relative Absolute error (RAE), precision,
recall and accuracy are computed and expressed as in equa-
tions (2, 3, 4, 5,6, 7, 8, and 9). The terminology and deriva-
tions of TP, FP, TN and FN are given in Table 2.

TP
Prate = —— 2)
TP + FN
FP
FPrate = ————— 3)
FP+ TN
1 n
MAE = — > |y =il 4)

i=1
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TABLE 3. Operating conditions of the Tmote sky.

Conditions Mon NOM Max Unit
Voltage 2.1 - 3.6 v

MCU on, Radio RX - 21.8 23 mA
MCU on, Radio TX - 19.5 21 mA
MCU on, Radio off - 1800 2400 HA
MCU idle, Radio off - 54.5 1200 A
MCU standby - 5.1 21.0 HA

TABLE 4. Memory capacity in Tmote sky

Types of memory Capacity
RAM 10 Kbytes
ROM 48 Kbytes
External Storage 1 Mbytes

vi = Actualandy; = Predicted

RMSE = &)
no\p. T, _ 1
RAE; = M hereT =~ T (6)
Zj:l|Tj—T| g
Pjy : value predicted by i for sample case j
T; : target value for sample case j
. TP
Precision = ——— (7
TP + FP
TP
Recall = — 3
TP + FN
TN + TP
Accuracy = * )

TP+ FN + FP+ 1IN

2) ENERGY & MEMORY CONSUMPTIONS

Typically, the nodes in IoT are battery powered with limited
memory. To evaluate the feasibility of the proposed method in
IoT environment, a constrained device known as Tmote Sky
is utilized. The operating conditions and memory capacity
of the Tmote Sky are tabulated in Table 3 and Table 4 [1].
Contiki Powertrace [1], [2] is used to evaluate the power con-
sumed by the proposed CHA-IDS, SVELTE [2] and Pongle’s
Wormhole IDS [1] implemented in the Tmote Sky. For the
measurement of power consumption, we only considered the
device for the client node in the network. Equation (10) shows
the energy usage for 30 min per node, whereas equation (11)
calculates the average of power consumed per second. Lastly,
the total size of memory consumed in the experiment is
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calculated according to Equation (12).

Transmit x 19.5 mA+listen x 21.8 mA

Energy (mJ) = | + CPU x 1.8mA + LPM x0.0545 mA
x (3V +4096) x 8
(10)
E J
Power (mW) = ZnersymJ) (11)
Time (s)

Total size = text + data + bss
RAM (12)

where bss is prezeroed

D. EXPERIMENTAL SETUP

The three routing attacks in IoT namely, hello flood,
sinkhole, and wormhole attacks are launched in Contiki’s
network simulator known as Cooja.? Due to limited budget,
we only implement part of the simulation using real hard-
ware platform provided by the Contiki while the additional
nodes were tested via simulation. Contiki has proven to be a
powerful toolbox for building complex wireless systems and
have shown a realistic result as in the real network [1], [2].
Furthermore, all the data used in the simulation are from the
real network environment. In the simulation, Tmote Sky is
used as client node and Cooja mote is used as 6BR or sink
node. Each attack is triggered separately and the experiment
is divided into two parts. Part 1: Data gathering to determine
features that can be used to create a dataset. All attacks are
simulated for 30 minutes and radio message’s communication
of each node are logged. Part 2: Dataset is collected at 10, 20,
30 minutes of the simulation period for each attack [1], [2].
In the experiment, a lossy configuration setting is selected
to resemble the actual 6LoWPAN network. Other than that,
Unit Disk Graph Medium (UDGM) loss model is used as
Cooja’s default radio model [1], [2]. UDGM models the
communication range as a circle in which, only the nodes
inside the circle can communicate.

At the beginning of the experiment, a normal 6LoW-
PAN network is configured without the presence of attacker
node. Subsequently, an abnormal 6LoWPAN network is
configured with the attacker node. This is done to distin-
guish between normal and abnormal network activities. Next,
the configuration for combined attack are similar with abnor-
mal 6LoWPAN network but have different way of evalua-
tion where three of attacks such hello flood, sinkhole and
wormhole are launch in the same time and network ran-
domly to create new anomaly attack pattern in the network.
Details configuration of the attacker nodes is described as
follows:

Figure 5 shows the configuration of hello flood attack
where node 8 is the malicious node broadcasting the hello
message. The malicious node can present itself as a neighbor
node to numerous nodes by broadcasting the message with
robust routing metrics to enter into the network. To start
the attack in RPL, attacker broadcasts the information about
DODAG [5] using DIO messages.

2 www.contiki-os.org
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FIGURE 5. Network configuration for hello flood.
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FIGURE 6. Network configuration for sinkhole.

Figure 6, the network configuration for sinkhole is pre-
sented. Node 2 which is the attacker node increases its rank
and advertises itself to the network in order to convince the
nearest neighbor to select node 2 as a parent or sink node.
In RPL, routing rule states that rank is strictly increased in the
downstream direction and strictly decreased in the upstream
direction. These rules are to prevent the nodes from creating a
non-optimized path or loop path. The RPL creates node rank
as its unique parameter for easily choosing and maintaining
the optimized path.

@
@
@ 6BR ©
& Clientnode @
@ Attacker node O
@
@
@

FIGURE 7. Network configuration for wormhole (encapsulation).

Two wormhole attacks using encapsulation and packet
relay techniques are configured in Figure 7 and Figure 8.
As shown in Figure 7, three nodes are used to create
the wormhole encapsulation attack wherein two malicious
nodes and one intermediate node are set to establish a tun-
nel between them [1]. On the other hand, Figure 8 shows
how the wormhole using packet relay technique is set up.
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FIGURE 8. Network configuration for wormhole (packet relay).

Malicious node relays the packets between two nearest nodes
to convince them that they are neighbors [1].

IV. EXPERIMENTAL RESULTS AND EVALUATIONS

A. SELECTION OF SIGNIFICANT FEATURE

At the AGA layer, 77 routing information of 6LoWPAN com-
pression header are studied as features to detect and classify
the routing attacks. However, some of the 77 information
are unreliable and contain noises that may lead to the wrong
classification of the routing attacks. Therefore, we utilize
BFS-CFS and GS-CFS searching algorithms to select the
most significant features from the 77 routing information of
the 6LoWPAN compression header in AGA layer (Layer 2).
The result from the AGA layer shows that only five routing
information are significant to detect abnormal activities in the
network, thus, they are selected as features in this study as
listed in Table 5.

TABLE 5. List of significant features to detect abnormal activities.

Attribute Description Type
6LoWPAN.dst Destination port Unsigned integer, 2
bytes
6LoWPAN.cid Context identifier Boolean

6LoWPAN.dci Destination context Unsigned integer, 1
identifier byte

6LoWPAN.next Next header Unsigned integer, 1
byte

6LoWPAN.pattern  pattern Unsigned integer, 1
byte

TABLE 6. List of significant features associated with hello flood, sinkhole
and wormhole attacks.

Type of attack Searching Algorithms Selected Features
Hello Flood Best First dst, pattern
Greedy Stepwise dst, pattern
Sinkhole Best First dst, cid, dci, next,
pattern
Greedy Stepwise dst, cid, dci, next,
pattern
Wormhole Best First dst, dci, cid, pattern

Greedy Stepwise dst, dci, cid, pattern

According to the five significant features highlighted
in Table 5, we perform a more detail test to associate the
significant features with each of the routing attack utilizes in
this work i.e. hello flood, sinkhole and wormhole attacks. The
results from this test are presented in Table 6. The features
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FIGURE 9. (a): Network pattern in normal based on numbers of packets
against time, (b): Network pattern in hello flood based on number of
packets against time, (c): Network pattern in sinkhole based on number
of packets against time, (d): Network pattern in wormhole based on
number of packets against time.
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for each attack are selected when both BFS and GS searching
algorithms results in the same features indicating the features
are stable and robust for machine learning algorithm to iden-
tify the routing attacks.

Following the selection of significant features for each
attack, the duplicated data are removed from the packet. Then,
the number of packets of the significant features are plot-
ted against time for normal network and during the routing
attacks as depicted in Figure 9 (a, b, ¢, d). From these figures,
the number of packet per second for each significant features
changes differently that are unique according to the routing
attacks. Thus, we derived a set of condition for each attack
based on the number of packet per second in the significant
features as summarized in Table 7. These conditions are
used to train and guide the machine learning algorithm for
classification of routing attacks.

TABLE 7. Summary of condition for each routing attack based on the
number of packets in the significant features.

Destination Context Destination Next Pattern Class
port (dst) identifier context header
(cid) identifier (next)

(dci)

dst> 40 - - - pattern Hello
> 40 Flood
dst>3 - 6>dci>2 next > - Sinkhole
5

dst>0 cid=0 dci = dst or - pattern Wormhole

dci>0 >0

B. SELECTION OF MACHINE LEARNING ALGORITHM
FOR ATTACKS CLASSIFICATION
In this study, the best algorithm to classify the routing attacks
according to the condition set in Table 7 is obtained by ana-
lyzing six machine learning algorithms i.e. MLP, SVM, J48,
Naive Bayes, Logistic, and Random Forest. TP and FP rates
are computed to examine whether the features are correctly
or incorrectly classified. To start with, the performance of the
machine learning algorithms against the individual attack are
evaluated as depicted in (Figure 10 (a), (b)), (Figure 11(a),(b))
and (Figure 12(a),(b)). The result shows that J48 and Random
Forest has the highest TP rate and manage to achieve 100%
detection of Hello Flood as depicted in Figure 10(a). In the
Sinkhole attack, Random Forest again attains a 100% of TP
rate for the entire simulation period while the performance
of J48 increases at 20 and 30 minutes of the simulation
period to gain from 99% to 100% (see Figure 11(a)). Similar
performances are also observed in Wormhole attack wherein
J48 and Random Forest achieve 100% detection for the entire
simulation period while other algorithms achieve 99.95%
and manage to improve their TP rate at 30 minutes of the
simulation period to obtain 99.98% (see Figure 12 (a)).
Following the TP and FP evaluations, other evaluation
metrics such as precision, recall and accuracy are also
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FIGURE 10. (a): TP rate in 10, 20, 30 minutes for hello flood, (b): FP rate
in 10, 20, 30 minutes for hello flood.

TABLE 8. Hello flood in 30 minutes.

Algorithm Precision (%) Recall (%) Accuracy (%)
J48 100 100 100
Logistic 99.9 99.9 99.9
MLP 99.8 99.8 99.8
Naive Bayes 97.1 96.2 96.2
Random Forest 100 100 100
SVM 96.8 96.7 96.8
TABLE 9. Sinkhole in 30 minutes.
Algorithm Precision (%) Recall (%) Accuracy (%)
J48 99.3 99.3 99.2
Logistic 77.2 85.2 85.2
MLP 95.6 95.7 96
Naive Bayes 93.7 93.9 93.8
Random Forest 100 100 100
SVM 91.1 91.7 91.6

considered in the experiment. In Table 8, J48 and Ran-
dom Forest achieved 100% of precision, recall and accuracy
when tested on Hello Flood dataset. Again, Random Forest
achieved 100% of precision, recall and accuracy in detecting
Sinkhole attack (Table 9). Lastly, all algorithm managed to
achieve 100% of precision, recall and accuracy in detecting
Wormhole attack as summarized in Table 10.
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FIGURE 11. (a): TP rate in 10, 20, and 30 minutes for sinkhole, (b): FP rate
in 10, 20, and 30 minutes for sinkhole.

TABLE 10. Wormbhole in 30 minutes.

Algorithm Precision (%) Recall (%) Accuracy (%)
J48 100 100 100
Logistic 100 100 100
MLP 100 100 100
Naive Bayes 100 100 100
Random Forest 100 100 100
SVM 100 100 100

TABLE 11. Evaluations of combined dataset with various algorithms.

Algorithm | Correctly | Incorrectly TP FP MAE RMSE RAE
Classified | Classified rate rate %
% %
148 99.4444 0.5556 0.994 | 0.002 | 0.0041 | 0.0529 | 1.259
Logistic 94.1667 5.8333 0.942 | 0.042 | 0.0498 | 0.1582 | 15.387
MLP 96.6667 3.3333 0.967 | 0.018 | 0.0338 | 0.1245 | 10.444
Naive 97.2222 2.7778 0.972 | 0.013 | 0.0286 | 0.1155 | 8.834
Bayes
Random 99.4444 0.5556 0.994 | 0.003 | 0.0087 | 0.0547 | 2.680
Forest
SVM 93.3333 6.6667 0.933 | 0.058 | 0.0333 | 0.1826 | 10.292

Apart from the evaluation of individual attack, the combi-
nation of the three attacks is also examined. The performance
of six machine learning algorithms in detecting the combined
attacks is summarized in Table 11. Overall, J48 achieved the
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FIGURE 12. (a): TP rate in 10, 20, and 30 minutes for wormhole,
(b): FP rate in 10, 20, and 30 minutes for wormhole.

B 10 minutes

highest TP rate with 99.4444% and the lowest MAE, which
is 0.0041 among all machine learning algorithms. Random
Forest algorithm is ranked in second with a similar TP rate
as J48 but obtained a slightly higher MAE with 0.0087.
Table 12 (a) to (f) show the confusion matrices of attacks
classification for each machine learning algorithm.

From the evaluation of individual and combination attacks,
J48 algorithm achieved the highest classification perfor-
mance among all machine learning algorithms when utilize
our proposed features as input. Therefore, J48 is selected to
detect the attacks in the proposed CHA-IDS. The rules of
J48 implemented in the client node as an IDS signature is
depicted in Figure 13.

C. COMPARISON WITH EXISTING APPROACH

Two mitigation approaches i.e. SVELTE [1] and Pongle’s
IDS [1] are considered in this evaluation. The TP rate,
energy and memory consumption of each approach are
compared to inspect their feasibility in real environment
implementation.
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TABLE 12. Confusion matrices of various classification algorithms.
(a) J48, (b) Logistic, (c) MLP, (d) Naive Bayes, (¢) Random forest, (f) SVM.

(a)
Normal Hello Sinkhole Wormbhole Classified as
Flood
166 0 0 1 Normal
0 125 0 0 Hello Flood
0 0 33 0 Sinkhole
0 1 0 34 Wormhole
(b)
Normal Hello Sinkhole Wormbhole Classified as
Flood
163 0 3 1 Normal
0 125 0 Hello Flood
16 0 17 0 Sinkhole
1 0 0 34 Wormbhole
©
Normal Hello Sinkhole Wormbhole Classified as
Flood
162 0 5 1 Normal
0 125 0 0 Hello Flood
4 0 29 0 Sinkhole
3 0 0 32 Wormbhole
(d)
Normal Hello Sinkhole Wormbhole Classified as
Flood
162 0 4 1 Normal
0 125 0 0 Hello Flood
5 0 28 0 Sinkhole
0 0 0 35 Wormbhole
()
Normal Hello Sinkhole Wormhole Classified as
Flood
166 0 0 1 Normal
0 125 0 0 Hello Flood
0 0 33 0 Sinkhole
1 0 0 34 Wormbhole
()
Normal Hello Sinkhole Wormhole Classified as
Flood
167 0 0 1 Normal
3 122 0 0 Hello Flood
18 0 15 0 Sinkhole
3 0 32 Wormbhole

1) TRUE POSITIVE RATE

Figure 14 and 15 show the comparison of TP rate between
the proposed CHA-IDS with prior methods for individual
and combined attacks respectively. The proposed CHA-IDS
achieved an overall of 99% of TP rate to detect three types
of attack individually. SVELTE obtained 100% of TP rate
in detecting hello flood and sinkhole attacks but a lower
TP rate with 80% is observed in detecting wormhole attack.
Pongle’s IDS only capable in detecting wormhole attack but
fails to detect hello flood and sinkhole attacks. For combined
attack, CHA-IDS scored 99% of TP rate which is the highest
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FIGURE 14. Comparison detection for individual attacks.
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FIGURE 15. Comparison detection for combination attack (hello flood,
sinkhole, wormhole).

among all, while SVELTE only detects 76% of the attacks.
The lowest performance among all is observed in Pongle’s
IDS method with minimal TP rate in detecting the combined
attacks. Figure 16 shows the detection time for each IDS to
trigger the first alert toward the attacks.
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FIGURE 17. Comparison of energy usages.

2) ENERGY OVERHEAD

Evaluation of energy consumption is important in estimating
the node lifetime. It is crucial for applications with limited
access to continuous power supply. Figure 17 shows the
comparison of energy overhead for each IDS in a Tmote Sky
node running for 30 minutes. The lowest energy consumption
is seen in SVELTE with 5780 mW followed by the pro-
posed CHA-IDS with 5840 mW. The highest energy is con-
sumed by Pongle’s Wormhole IDS with more than 6000 mW.
SVELTE has the lowest energy overhead because the client
node in SVELTE only collects and share information to 6BR.
Contrarily, CHA-IDS extracts and filters the number of pack-
ets received. The Pongle’s IDS, on the other hand, calculates
RSSI values, collect and also share information to the 6BR.
These processes making them more power hungry compared
to the others.

3) MEMORY CONSUMPTION

Typically, constrained devices in IoT applications have
limited memory, thus, memory consumption is evaluated
to assess the feasibility of IDS methods in constrained
devices. In this assessment, SVELTE consumed the lowest
memory usage with 44.1Kbytes followed by Pongle’s IDS
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FIGURE 18. Memory consumption usages.

with 44.6Kbytes and CHA-IDS with 44.9Kbytes as shown
in Figure 18.

V. DISCUSSIONS

In this paper, we examine the ability of 6LoWPAN compres-
sion header as features to detect three types of routing attacks
in IoT namely hello flood, sinkhole and wormhole (encapsu-
lation and packet relay) attacks. The features are tested with
individual attack and when the attacks are combined. The
chosen feature is also compared with two existing methods
called SVELTE and Pongle’s IDS.

When the individual attack is performed, SVELTE
successfully detects hello flood and sinkhole attacks. For
wormhole attacks, SVELTE detects 80% of the wormhole
encapsulation attack but fails to detect any of the wormhole
packet relay. This is because SVELTE is based on RPL
and ranking information. The packet relay attack causes the
disruption in the network and drop the incoming packet that
prevents SVELTE from receiving the information about the
client node ranking, thus, fails to work as intended. This
also affects the performance of SVELTE in detecting the
combination of routing attacks when only detects 76% of the
attacks during the experiment.

Pongle’s IDS method is based on RSSI value and node’s
location. It works by comparing the actual RSSI value with
the location published by the nodes. Malicious node in worm-
hole attack interrupts the route selection process by deceiving
their location information. However, the signal strength is not
easily manipulated by the attack. Therefore, Pongle’s IDS
can effectively detects the wormhole attack when there is
substantial difference in the location information between
the nodes. However, Pongle’s IDS unable to detect any of
the hello flood and sinkhole attacks because these attacks do
not manipulate location information. Thus, in the combined
attack Pongle’s IDS attained the lowest TP rate among all
method with only detects 4% of the combined attacks.

The proposed CHA-IDS demonstrate a high capability in
detecting both individual and combination of routing attacks
during the experiment. This performance is expected since
CHA-IDS utilizes part of 6LoWPAN compression header as
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features to detect the attacks. The 6LoWPAN compression
header stores the routing information which affected when
the abnormal routing activities exist in the network. This
can be seen when the number of packets in the compression
header changes with a distinctive pattern according to the type
of the attacks. Accordingly, CHA-IDS takes the advantage
of the distinctive patterns to detect the abnormalities in the
network.

In the experiment, energy overhead and memory con-
sumption of CHA-IDS, SVELTE and Pongle’s IDS are also
evaluated. Among the methods, it can be observed that
CHA-IDS is not the most efficient method in term of energy
and memory consumption. However, CHA-IDS offers the
best performance to effectively detect the three routing
attacks. For SVELTE and Pongle’s IDS to achieve the same
performance as CHA-IDS, these two attacks need to be
combined. Consequently, the combination of SVELTE and
Pongle’s IDS may consume more energy and memory than
CHA-IDS. Therefore, CHA-IDS offers the best balance
between the quality of the performance and the consumption
of energy and memory.

VI. CONCLUSION & FUTURE WORK

Nodes in the 6LoWPAN network of IoT are exposed to a vari-
ety of intrusion threats. In this paper, an IDS to detect routing
attacks namely, hello flood, sinkhole and wormhole attacks as
well as their combination is proposed. The proposed method
named as CHA-IDS utilizes 6LoWPAN compression header
as features. The 6LoOWPAN compression header consists
of 77 information regarding the routing details. From this
information, we used BFS-CFS and GS-CFS searching algo-
rithms to select the most significant information as input
features into a machine learning algorithm. This results in
five features being selected which are destination port, con-
text identifier, destination context identifier, next header and
pattern. We tested six machine learning algorithms i.e. MLP,
SVM, J48, Naive Bayes, Logistic, and Random Forest using
the five selected features to detect and classify the routing
attacks. Among these algorithms, J48 algorithm is chosen for
the proposed CHA-IDS as J48 shows the best performance
among all algorithms in detecting the routing attacks with
99% of true positive rate. During the experiment, the con-
sumption of energy and memory of CHA-IDS are 5840mW
and 44.9kB respectively. CHA-IDS effectively detected both
individual and new anomaly attack that created by combina-
tion of the routing attacks and outperformed other 6LoWPAN
based IDS called SVELTE and Pongle’s IDS in which, only
detect specific attack.

CHA-IDS has demonstrated a high capability in detecting
routing attacks. However the proposed method only man-
aged to detect the occurrence of the attacks but unable to
precisely identify the attacker. In future, the proposed CHA-
IDS can be extended by collaborating it with distribute IDS
to identify the attacker in the 6LoWPAN network. Other
than that, the proposed CHA-IDS can be improved to detect
other attacks in IoT such as Sybil, Clone ID and Version
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Number and Local Repair attacks. Other machine learning
algorithms such as fuzzy Q-learning [6] and density-based
fuzzy imperialist [5] can be tested with the proposed features
to improve the accuracy of the detection.
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